首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Leukotriene E4 was incubated with cysteine-conjugate beta-lyase isolated from the intestinal bacterium Eubacterium limosum. The reaction was terminated by addition of iodoacetic acid or dimethyl sulfate, and the products formed were isolated by reverse-phase high-performance liquid chromatography. The structures of two adducts of a metabolite were determined by uv spectroscopy, by gas-liquid radiochromatography, and by comparisons with chemically synthesized reference compounds. They were 5-hydroxy-6-S-carboxymethylthio-7,9-trans-11,14-cis-eicosatetraeno ic acid (iodoacetic acid adduct) and 5-hydroxy-6-S-methylthio-7,9-trans-11,14-cis-eicosatetraenoic acid (dimethyl sulfate adduct) indicating that the structure of the underivatized metabolite was 5-hydroxy-6-mercapto-7,9,11,14-eicosatetraenoic acid (5,6-HMETE). The latter product is formed by beta-lyase-catalyzed cleavage of the cysteine C-S bond in leukotriene E4. Leukotriene E4 was also metabolized to 5,6-HMETE by rat cecal contents. A product formed was trapped as the iodoacetic acid derivative and identified as 5-hydroxy-6-S-carboxy-methylthio-7,9,11,14-eicosatetraenoic acid. It is concluded that intestinal leukotriene E4, originating from biliary excretion of systemic cysteinyl leukotrienes or produced in the intestine, is converted by microfloral cysteine-conjugate beta-lyase to 5,6-HMETE.  相似文献   

2.
A covalent, catalytic intermediate of cytosolic liver acetyl coenzyme A: arylamine N-acetyltransferase (EC 2.3.1.5) from rapid acetylator rabbits (III/J) was isolated and chemically characterized. The active site was further studied using two covalent inhibitors, [2-3H]iodoacetic acid and bromoacetanilide. Inhibition experiments with [2-3H]iodoacetic acid at pH 6.9 showed that the incorporation of 0.7 mol of [2-3H]iodoacetic acid/mol of N-acetyltransferase led to rapid, irreversible loss of enzyme activity. Preincubation of the enzyme with acetyl coenzyme A (acetyl-CoA) completely protected against inactivation by [2-3H]iodoacetic acid. After incubating the N-acetyltransferase with [2-3H]acetyl-CoA in the absence of an acceptor amine, an acetyl-cysteinyl-enzyme intermediate was isolated and characterized. Preincubation of N-acetyltransferase with iodoacetic acid prevented the incorporation of the [2-3H]acetyl group into the enzyme. The product analog, bromoacetanilide, caused a rapid irreversible loss of N-acetyltransferase activity. The reaction was pseudo first-order and saturated at high bromoacetanilide concentrations (KI = 0.67 mM; k3 = 1 min-1). Preincubation of the enzyme with acetyl-CoA prevented inactivation by the inhibitor. The acceptor amine 4-ethylaniline did not prevent inhibition. Incorporation of the inhibitor was directly proportional to the loss of activity showing a 1:1 stoichiometry of enzyme to inhibitor. The target amino acid was identified as cysteine by amino acid analysis of inhibitor-treated enzyme.  相似文献   

3.
A novel method is described for the cyclization of peptides--or segments of polypeptides--which requires a free N-terminal alpha-amino group and a distal amino acid residue containing a nucleophilic side chain. The reaction is conducted in two steps, both in the aqueous phase. The first step involves acylation of the N-terminal alpha-amino group with iodoacetic anhydride at pH 6. This acylation reaction has greater than 90% specificity for peptide alpha-amino groups and gives no alkylation of Arg, His, Lys or Met by the iodoacetate side product (R. Wetzel et al., Bioconjugate Chem., 1, 114-122, 1990). In the second step, the acylation reaction mixture or the isolated iodoacetyl-peptide is incubated at room temperature to give the cyclic peptide formed by reaction of the nucleophilic side chain with the iodoacetyl moiety. The pH dependence of the cyclization reaction by Met, Lys, Arg or His is consistent with the pKa of the nucleophilic side chain. Thus, peptides containing Met plus other nucleophilic amino acids should preferentially cyclize via Met at low pH. In this paper, preparation of cyclic peptides containing 3-6 amino acids is described; the full range of ring sizes and sequences which can undergo this cyclization has not been further explored. Preliminary results suggest that this method is also fairly general with respect to the amino acid sequence being cyclized. The reaction appears to be particularly suited for cyclization via Lys and Met side chains. All of the cyclized products are sufficiently stable for many biological applications.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
On the disulphide bonds of rhodopsins.   总被引:3,自引:0,他引:3       下载免费PDF全文
Carboxymethylation using 14C- or 3H-labelled iodoacetic acid has been used to identify the cysteine residues in bovine rhodopsin involved in the formation of the two intramolecular disulphide bridges. Iodo[2-14C]acetic acid was used to modify 5.8-5.9 residues of cysteine under non-reducing conditions. After dialysis and reduction of disulphide bridges by 2-mercaptoethanol, iodo[2-3H]acetic acid was employed to covalently modify 3.3-3.6 residues of cysteine. Peptide purification and sequencing has unambiguously shown that cysteine residues 322 and 323 are only carboxymethylated after reduction of disulphide bridges. Indirect evidence presented, now coupled with the earlier finding [Findlay & Pappin (1986) Biochem. J. 238, 625-642] suggests that the other disulphide bridge is formed between cysteine residues 110 and 187. A comparison is made of all the sequences of mammalian rhodopsins and colour pigments and attention is drawn to the fact that whereas Cys-322 and Cys-323 are conserved only in three rhodopsins (bovine, ovine and human), the residues corresponding to Cys-110 and Cys-187 are found in all the visual proteins (from rods as well as human cones).  相似文献   

5.
(1) The sulphydryl groups of brain white matter proteolipids were studied by alkylation with iodoacetic acid and iodoacetamide in an organic solvent medium. To make sterically hindered sulphydryl groups available, the reaction was also carried out in the presence of sodium dodecyl sulphate. (2) In all cases, iodoacetamide was a better alkylating agent than was iodoacetic acid. (3) Only minimal alkylation of crude white matter proteolipids was obtained in the absence of detergent; addition of sodium dodecyl sulphate increased the availablity of SH groups. (4) Purified proteolipids prepared by column chromatography were alkylated to a lesser degree than were crude proteolipids. (5) Prior reduction with mercaptoethanol resulted in the quantitative conversion of cysteine to S-carboxymethylcysteine with either alkylating agent and in both preparations. (6) The possibility of a conformational difference between the protein in the crude and purified preparations is discussed.  相似文献   

6.
S-Alkylcysteine alpha, beta-lyase [EC 4.4.1.6] of Pseudomonas putida catalyzes alpha,beta-elimination of L-djenkolate [3,3'-methylenedithiobis(2-aminopropionic acid)] to produce pyruvate, ammonia, and S-(mercaptomethyl)cysteine initially. Secondly, S-(mercaptomethyl)-cysteine, which was identified in the form of S-(mercaptomethyl)cysteine thiolactone and S-(2-thia-3-carboxypropyl)cysteine in the absence and presence of iodoacetic acid, respectively, is decomposed enzymatically to pyruvate, ammonia, and bis(mercapto)methane, or spontaneously to cysteine, formaldehyde, and hydrogen sulfide. Balance studies showed that 1.3 mol each of pyruvate and ammonia and 0.2 mol each of formaldehyde and cysteine were produced with consumption of 1 mol of L-djenkolate. 1,2,4,5-Tetrathiane, 1,2,4-trithiolane, 1,2,4,6-tetrathiepane, and 1,2,3,5,6-pentathiepane, which are derivatives of bis(mercapto)methane, were also produced during the alpha,beta-elimination of L-djenkolate. In addition, a polymer with the general formula of -(CH2S)n- was produced as a white precipitate. When the alpha,beta-elimination of L-djenkolate was carried out in the presence of 20 mM iodoacetic acid, neither formaldehyde, cysteine, hydrogen sulfide, or the polymer were formed. Instead, the S-carboxymethyl derivatives of bis(mercapto)methane and S-(mercaptomethyl)cysteine were produced in addition to pyruvate and ammonia.  相似文献   

7.
Rat ovarian lutropin receptor occurs predominantly as a monomer of an apparent molecular mass of 70 or 80 kDa determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing and reducing conditions, respectively. The receptor contains 0.4% free cysteine and 1.9% cysteine as cystine, determined by amino acid analysis of the S-carboxymethyl receptor prepared before and after reduction. The presence of free thiol groups was further shown by the specific adsorption of the receptor on p-chloromercuribenzoate-agarose and its susceptibility to 3H labeling with [3H]N-ethylmaleimide or [3H]iodoacetic acid. The receptor readily undergoes association into homo-oligomers. Evidence suggests that the association was caused by the intermolecular oxidation of the free -SH groups to form disulfide bonds. The aggregation could be induced by H2O2 or molecular O2 and was inhibited by sulfhydryl protecting agents such as N-ethylmaleimide, iodoacetic acid, dithiothreitol, cysteine, and Zn(II). The oligomers could be dissociated by reduction into a monomer. 125I-Labeling of the S-carboxymethyl- or N-ethylmaleyl receptor gave a single band of molecular mass 70 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. Furthermore, S-alkylation of the receptor did not affect its binding to the ligand. On reduction, however, it lost its ability to bind to the ligand, but the reduced receptor retained its ability to bind to a specific polyclonal rabbit antireceptor antibody indicating the separation of the ligand and antibody binding sites. Endoproteinase Glu-C cleaved the receptor at a single glutamyl residue to give two components, 46 and 36 kDa. The 36-kDa component was extracellularly located since it contained the carbohydrate. On deglycosylation with endoglycosidase F, it yielded two components, 27 and 25 kDa. The deglycosylation of the reduced intact receptor (80 kDa) with endoglycosidase F occurred in two steps giving 73- and 64-kDa polypeptides, indicating the presence of about 20% carbohydrate contained in two or more N-linked chains.  相似文献   

8.
The active site cysteine of pig liver thioltransferase was identified as Cys22. The kinetics of the reaction between Cys22 of the reduced enzyme and iodoacetic acid as a function of pH revealed that the active site sulfhydryl group had a pKa of 2.5. Incubation of reduced enzyme with [1-14C]cysteine prevented the inactivation of the enzyme by iodoacetic acid at pH 6.5, and no stable protein-cysteine disulfide was found when the enzyme was separated from excess [1-14C]cysteine, suggesting an intramolecular disulfide formation. The results suggested a reaction mechanism for thioltransferase. The thiolated Cys22 first initiates a nucleophilic attack on a disulfide substrate, resulting in the formation of an unstable mixed disulfide between Cys22 and the substrate. Subsequently, the sulfhydryl group at Cys25 is deprotonated as a result of micro-environmental changes within the active site domain, releasing the mixed disulfide and forming an intramolecular disulfide bond. Reduced glutathione, the second substrate, reduces the intramolecular disulfide forming a transient mixed disulfide which is then further reduced by glutathione to regenerate the reduced enzyme and form oxidized glutathione. The rate-limiting step for a typical reaction between a disulfide and reduced glutathione is proposed to be the reduction of the intramolecular disulfide form of the enzyme by reduced glutathione.  相似文献   

9.
The mechanism of 3-dehydroquinate synthase was explored by incubating partially purified enzyme with mixtures of [1-14C]3-deoxy-D-arabino-heptulosonic acid 7-phosphate (DAHP) and one of the specifically tritiated substrates [4-3H]DAHP, [5-3H]DAHP, [6-3H]DAHP, (7RS)-[7-3H]DAHP, (7R)-[7-3H]DAHP, or (7S)-[7-3H]DAHP. Kinetic and secondary 3H isotope effects were calculated from 3H:14C ratios obtained in unreacted DAHP, 3-dehydroquinate, and 3-dehydroshikimate. 3H was not incorporated from the medium into 3-dehydroquinate, indicating that a carbanion (or methyl group) at C-7 is not formed. A kinetic isotope effect kH/k3H of 1.7 was observed at C-5, and afforded support for a mechanism involving oxidation of C-5 with NAD. A similar kinetic isotope effect was found at C-6 owing to removal of a proton in elimination of phosphate, which is reasonably assumed to be the next step in 3-dehydroquinate synthase. Hydrogen at C-7 of DAHP was not lost in the cyclization step of the reaction, indicating that the enol formed in phosphate elimination participated directly in an aldolase-type reaction with the carbonyl at C-2. In the dehydration of 3-dehydroquinate to 3-dehydroshikimate the (7R) proton from (7RS)- or (7R)-[7-3H]DAHP is lost, indicating that the 7R proton occupies the 2R position in dehydroquinate. Hence the cyclization step occurs with inversion of configuration at C-7. A kinetic isotope effect kH/k3H = 2.3 was observed in the conversion of (2R)-[2-3H]dehydroquinate to dehydroshikimate. Hence loss of a proton from the enzyme-dehydroquinate imine contributed to rate limitation in the reaction.  相似文献   

10.
Cysteine residues 110 and 187 are essential for the formation of the correct bovine rhodopsin structure (Karnik, S. S., Sakmar, T. P., Chen, H.-B., and Khorana, H. G. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 8459-8463). We now show that the sulfhydryl groups of these 2 cysteine residues interact to form a disulfide bond. Rhodopsin mutants containing cysteine----serine substitutions were prepared as follows. In one mutant, CysVII, all the 10 cysteine residues of rhodopsin were replaced by serines. A second mutant, CysVIII, contained only C110 and C185; a third mutant, CysIX, contained only C185 and C187 while the fourth mutant, CysX, contained only C110 and C187. Only mutant CysX formed functional rhodopsin. Mutants CysVIII and CysIX reacted with [3H]iodoacetic acid showing the presence of free sulfhydryl groups while mutant CysX was inert to this reagent. CysX reacted with cyanide ion to form a thiocyanate derivative showing the presence of a disulfide bond. The C110-C187 disulfide bond is buried in rhodopsin because reactions with disulfide reducing agents and cyanide ion require prior treatment with denaturants.  相似文献   

11.
12.
Incubation of bovine adrenal 3 beta-hydroxysteroid dehydrogenase/steroid isomerase with 5'-[p-(fluorosulfonyl)benzoyl]adenosine (5'-FSBA) results in the inactivation of the 3 beta-hydroxysteroid dehydrogenase enzyme activity following pseudo-first-order kinetics. A double-reciprocal plot of 1/kobs versus 1/[5'-FSBA] yields a straight line with a positive y intercept, indicative of reversible binding of the inhibitor prior to an irreversible inactivation reaction. The dissociation constant (Kd) for the initial reversible enzyme-inhibitor complex is estimated at 0.533 mM, with k2 = 0.22 min-1. The irreversible inactivation could be prevented by the presence of NAD+ during the incubation, indicating that 5'-FSBA inactivates the 3 beta-hydroxysteroid dehydrogenase activity by reacting at the NAD+ binding site. Although the enzyme was inactivated by incubation with 5'-FSBA, no incorporation of the inhibitor was found in labeling studies using 5'-[p-(fluorosulfonyl)benzoyl] [14C]adenosine. However, the inactivation of 3 beta-hydroxysteroid dehydrogenase activity caused by incubation with 5'-FSBA could be completely reversed by the addition of dithiothreitol. This indicates the presence of at least two cysteine residues at or in the vicinity of the NAD+ binding site, which may form a disulfide bond catalyzed by the presence of 5'-FSBA. The intramolecular cysteine disulfide bridge was found between the cysteine residues in the peptides 274EWGFCLDSR282 and 18IICLLVEEK26, by comparing the [14C]iodoacetic acid labeling before and after recovering the enzyme activity upon the addition of dithiothreitol.  相似文献   

13.
Dimedone is a widely used reagent to assess the redox state of cysteine‐containing proteins as it will alkylate sulfenic acid residues, but not sulfinic acid residues. While it has been reported that dimedone can label selenenic acid residues in selenoproteins, we investigated the stability, and reversibility of this label in a model peptide system. We also wondered whether dimedone could be used to detect seleninic acid residues. We used benzenesulfinic acid, benzeneseleninic acid, and model selenocysteine‐containing peptides to investigate possible reactions with dimedone. These peptides were incubated with H2O2 in the presence of dimedone and then the reactions were followed by liquid chromatography/electrospray ionization mass spectrometry (LC/ESI‐MS). The native peptide, H‐PTVTGCUG‐OH (corresponding to the native amino acid sequence of the C‐terminus of mammalian thioredoxin reductase), could not be alkylated by dimedone, but could be carboxymethylated with iodoacetic acid. However the “mutant peptide,” H‐PTVTGAUG‐OH, could be labeled with dimedone at low concentrations of H2O2, but the reaction was reversible by addition of thiol. Due to the reversible nature of this alkylation, we conclude that dimedone is not a good reagent for detecting selenenic acids in selenoproteins. At high concentrations of H2O2, selenium was eliminated from the peptide and a dimeric form of dimedone could be detected using LCMS and 1H NMR. The dimeric dimedone product forms as a result of a seleno‐Pummerer reaction with Sec‐seleninic acid. Overall our results show that the reaction of dimedone with oxidized cysteine residues is quite different from the same reaction with oxidized selenocysteine residues.  相似文献   

14.
T Nakayama  N Esaki  H Tanaka  K Soda 《Biochemistry》1988,27(5):1587-1591
L-Methionine gamma-lyase from Pseudomonas putida is composed of four identical polypeptide chains and contains four cysteinyl residues per subunit. We have found one of them catalytically essential by its specific cyanylation with 2-nitro-5-thiocyanobenzoic acid. We have shown its essentiality also with N-(bromoacetyl)pyridoxamine 5'-phosphate (BAPMP), which is a cofactor analogue and also an affinity-labeling agent. The kinetic data show that the apoenzyme forms a binary complex with BAPMP prior to covalent binding. The stoichiometry of inactivation was 1 mol of BAPMP per subunit. We have shown that the cysteine residue modified with BAPMP is identical with that labeled specifically with [14C]iodoacetic acid. The amino acid sequences of the peptides containing the essential cysteine residue and the lysine residue to which pyridoxal 5'-phosphate is bound were determined by automated Edman degradation.  相似文献   

15.
Thiol reactivity of the nitrogenase Fe-protein from Azotobacter vinelandii   总被引:8,自引:0,他引:8  
A procedure has been developed to examine some of the functional roles of the 14 cysteinyl residues in the nitrogenase Fe-protein (Av2) from Azotobacter vinelandii. The reduced form of Av2 was alkylated with iodo[2-14C]acetic acid under a variety of experimental conditions, e.g. reaction in the presence of nucleotides, alpha,alpha'-dipyridyl and nucleotides, or denaturants. The labeled cysteinyl residues were identified and quantified using an analytical DEAE-Sepharose ion exchange chromatography peptide mapping technique based upon the known amino acid sequence (Hausinger, R. P., and Howard, J. B. (1982) J. Biol. Chem. 257, 2483-2490). From the results of the labeling experiments, the following features of the Av2 structure have been proposed. 1) Av2 contains no disulfides, hyperreactive thiols, or surface thiols as defined by reaction with iodoacetic acid. 2) Cysteines 97 and 132 are the probable ligands for the Av2 Fe:S center which is bound symmetrically between subunits. 3) MgATP partially protects cysteine 85 from carboxymethylation by iodoacetic acid and may be part of the nucleotide-binding site. 4) Of the five nonligand thiols only cysteines 5 and 184 are completely alkylated when Av2 is denatured in hexamethylphosphoramide, whereas all five nonligand thiols appear to rapidly exchange at the Fe:S center if the protein is denatured in the absence of alkylating reagents. 5) Both Av2 and apo-Av2 appear to undergo a reversible conformational change upon binding MgATP.  相似文献   

16.
S L Flitsch  H G Khorana 《Biochemistry》1989,28(19):7800-7805
In developing new approaches to structural studies of polytopic transmembrane proteins, we have prepared bacteriorhodopsin mutants containing single cysteine residues at selected sites in different topological domains. Four such mutants were prepared: Gly-72----Cys and Ser-169----Cys in the presumed looped-out regions on the opposite sides of the membrane bilayer and Thr-90----Cys and Leu-92----Cys in the membrane-embedded helix C. The four mutants folded and regenerated the characteristic chromophore in detergent/phospholipid micelles and pumped protons like the wild-type bacteriorhodopsin. After reconstitution in asolectin vesicles, the sulfhydryl groups in the mutants Gly-72----Cys and Ser-169----Cys reacted with iodo[2-3H]acetic acid, while the sulfhydryl groups in the membrane-embedded mutants, Thr-90----Cys and Leu-92----Cys, did not. The sulfhydryl groups in all four mutants could be derivatized in the denatured state by reaction with iodoacetic acid or 6-acryloyl-2-(dimethylamino)naphthalene. Of these derivatives, the two from the mutants Gly-72----Cys and Ser-169----Cys folded like the wild-type bacterioopsin, whereas of the two from the helix C mutants, Thr-90----Cys and Leu-92----Cys, only the latter folded normally. However, the folding of Leu-92----Cys was also impaired when treated with the bulky 5-(iodoacetamido)fluorescein. The reactivity and the folding behavior of the cysteine mutants can thus report on the topographic domain as well as on the orientation of the helices within the membrane.  相似文献   

17.
A Wada 《Journal of biochemistry》1986,100(6):1595-1605
Four new proteins, A, B, C, and D, found in Escherichia coli ribosomes by an improved two dimensional gel electrophoresis were characterized by oxidation, reduction, and carboxymethylation of cysteine residues, and CsCl fractionation. The cysteine contents of proteins A, B, C, and D were determined to be 1 +/- 0, 3 +/- 1, 5 +/- 1, and 0 +/- 0 by carboxymethylation with iodoacetic acid. The components of protein complexes, which formed numerously under non-reducing conditions, were analyzed. Including protein A, B, and C, every ribosomal protein (r-protein) having cysteine residue(s) except unconfirmed S1 was proved to form such complexes with various combinations. The cysteine residue in protein A, in particular, was highly reactive to make intermolecular S-S bridges so that spot A almost disappeared on the second dimension gel under the non-reducing conditions. Proteins B and C shifted their spots by reduction towards upper left side as do all known r-proteins having plural cysteine residues except S1. This suggests that proteins B and C change their conformation by intramolecular S-S bridges. The CsCl density gradient centrifugation of high salt washed 70S ribosomes showed that protein A belonged to the insoluble split proteins, proteins B and C to the core particles, and protein D and a small population of B to the soluble split proteins. The electrophoretic behaviors, CsCl fractionation and stoichiometry of the four new proteins suggested strongly that they were intrinsic ribosomal constituents different from known ribosomal proteins or factors.  相似文献   

18.
Irradiation of 2-nitrobenzyl alcohol (1, R = H) and 1-(2-nitrophenyl)ethanol (1, R = Me) in various solvents yields 2-nitroso benzaldehyde (4, R = H) and 2-nitroso acetophenone (4 R = Me), respectively, with quantum yields of about 60%. The mechanism of this reaction, known since 1918, was investigated using laser flash photolysis, time-resolved infrared spectroscopy (TRIR), and 18O-labeling experiments. The primary aci-nitro photoproducts 2 react by two competing paths. The balance between the two depends on the reaction medium. Reaction via hydrated nitroso compounds 3 formed by proton transfer prevails in aprotic solvents and in aqueous acid and base. In water, pH 3-8, the classical mechanism of cyclization to benzisoxazolidine intermediates 5, followed by ring opening to carbonyl hydrates 6, predominates. The transient intermediates 3 and 6 were identified by TRIR. Potential energy surfaces for these reactions were mapped by density functional calculations.  相似文献   

19.
Membrane localization of p21ras is dependent upon its posttranslational modification by a 15-carbon farnesyl group. The isoprenoid is linked to a cysteine located within a conserved carboxyl-terminal sequence termed the "CAAX" box (where C is cysteine, A is an aliphatic amino acid, and X is any amino acid). We now show that three GTP-binding proteins encoded by the recently identified rac1, rac2, and ralA genes also undergo isoprenoid modification. cDNAs coding for each protein were transcribed in vitro, and the RNAs were translated in reticulocyte lysates. Incorporation of isoprenoid precursors, [3H]mevalonate or [3H]farnesyl pyrophosphate, indicated that the translation products were modified by isoprenyl groups. A protein recognized by an antibody to rac1 also comigrated with a protein metabolically labeled by a product of [3H] mevalonate in cultured cells. Gel permeation chromatography of radiolabeled hydrocarbons released from the rac1, rac2, and ralA proteins by reaction with Raney nickel catalyst indicated that unlike p21Hras, which was modified by a 15-carbon moiety, the rac and ralA translation products were modified by 20-carbon isoprenyl groups. Site-directed mutagenesis established that the isoprenylated cysteines in the rac1, rac2, and ralA proteins were located in the fourth position from the carboxyl terminus. The three-amino acid extension distal to the cysteine was required for this modification. The isoprenylation of rac1 (CSLL), ralA (CCIL), and the site-directed mutants rac1 (CRLL) and ralA (CSIL), demonstrates that the amino acid adjacent to the cysteine need not be aliphatic. Therefore, proteins with carboxyl-terminal CXXX sequences that depart from the CAAX motif should be considered as potential targets for isoprenoid modification.  相似文献   

20.
The metabolism of benzyl isothiocyanate and its cysteine conjugate.   总被引:8,自引:0,他引:8       下载免费PDF全文
1. The corresponding cysteine conjugate was formed when the GSH (reduced glutathione) or cysteinylglycine conjugates of benzyl isothiocyanate were incubated with rat liver or kidney homogenates. When the cysteine conjugate of benzyl isothiocyanate was similarly incubated in the presence of acetyl-CoA, the corresponding N-acetylcysteine conjugate (mercapturic acid) was formed. 2. The non-enzymic reaction of GSH with benzyl isothiocyanate was rapid and was catalysed by rat liver cytosol. 3. The mercapturic acid was excreted in the urine of rats dosed with benzyl isothiocyanate or its GSH, cysteinyl-glycine or cysteine conjugate, and was isolated as the dicyclohexylamine salt. 4. An oral dose of the cysteine conjugate of [14C]benzyl isothiocyanate was rapidly absorbed and excreted by rats and dogs. After 3 days, rats had excreted a mean of 92.4 and 5.6% of the dose in the urine and faeces respectively, and dogs had excreted a mean of 86.3 and 13.2% respectively. 5. After an oral dose of the cystein conjugate of [C]benzyl isothiocyanate, the major 14C-labelled metabolite in rat urine was the corresponding mercapturic acid (62% of the dose), whereas in dog urine it was hippuric acid (40% of the dose). 5. Mercapturic acid biosynthesis may be an important route of metabolism of certain isothiocyanates in some mammalian species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号