首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This paper describes the development of a reliable transformation system for garlic (Allium sativum L.) and its application in producing insect resistant GM garlic lines. The transformation system is based on Agrobacterium tumefaciens as a vector, using young callus derived from different callus sources: callus induced from both apical and non-apical root segments of in vitro plantlets, true garlic seeds and bulbils. Two different reporter genes were used in our garlic transformation experiments, namely the gusA gene coding for -glucuronidase and the gfp gene coding for green fluorescent protein. A total of seven independent transformed callus lines derived from different callus sources were obtained. The advantage of the system developed is the short time period needed for completion of the protocol (about 6 months) and the year-round availability of high quality callus from in vitro roots. The highest transformation frequency in a single experiment (1.47%), was obtained using garlic cv. 'Printanor'. Differences existed between cultivars in transformation frequency but were not significant. The same was found for the plasmids used in transforming garlic. Via PCR the presence of the gusA, hpt (hygromycin phosphotransferase) and gfp genes could be demonstrated in putative transformed in vitro plants. Southern hybridization showed that the reporter gene gusA and the selective gene hpt were stably integrated into the garlic genome. After transfer to the greenhouse of in vitro regenerants, transgenic garlic harbouring the gusA gene survived and grew well, whereas the gfp transgenic garlic gradually died under these conditions.Using this protocol transgenic garlic resistant to beet armyworm using the cry1Ca and H04 resistance genes from Bacillus thuringiensis were developed. Via Southern hybridization it was shown that the cry1Ca sequence was stably integrated into the garlic genome. After transfer of the transgenic in vitro garlic plants to the greenhouse, the cry1Ca plants developed normally and grew well to maturity with normal bulbs. However, all transgenic in vitro H04 garlic plants did not survive after transfer to the greenhouse. Transgenic cry1Ca garlic plants proved completely resistant to beet armyworm in a number of in vitro bio-assays. This finding will facilitate the development of new garlic cultivars resistant to beet armyworm.  相似文献   

2.
We established an effective biolistic transformation procedure fortransferring foreign genes into garlic (Allium sativumL.),which we demonstrated by generating transgenic plants resistant tochlorsulfuron, a sulfonylurea herbicide. We subcultured callus tissue from theapical meristem of garlic cloves and repeatedly selected calli with brittle,non-mucilaginous surfaces for over six months, to increase transformationefficiency. We then constructed recombinant DNA that contained the acetolactatesynthase (ALS) gene from a chlorsulfuron-resistantArabidopsis mutant, the cauliflower mosaic virus 35Spromoter, the -glucuronidase (GUS) reporter gene, and the hygromycinphosphotransferase (HPT) selectable marker gene. The garlic calli werebombarded twice with tungsten particles coated with the DNA constructs. Transformed calliwere efficiently selected by embedding them in solid agar medium containing 50mg l–1 hygromycin B. Selected propagules wereregenerated into 12 independent plants. We confirmed that the transgenes wereintegrated and expressed in the plants using PCR-Southern and Northern blotanalyses and by -glucuronidase expression assay forGUS. The regenerated plants survived in the presence of 3mg l–1 chlorsulfuron, demonstrating that theirALS was insensitive to this herbicide. These results illustrate the successfultransformation of foreign genes into garlic plants. The set of proceduresdeveloped in this study is applicable to the generation of transgenic garlicplants with other agronomically beneficial traits. These authors contributed equally to this work  相似文献   

3.
The microprojectile bombardment method was used to transfer DNA into embryogenic callus of asparagus (Asparagus officcinalis L.) and to produce stably transformed asparagus plants. Embryogenic callus, derived from UC 157 and UC72 asparagus cultivars, was bombarded with tungsten particles coated with plasmid DNA that contained genes encoding hygromycin phosphotransferase, phosphinothricin acetyl transferase and -glucuronidase. Putatively transformed calli were identified from the bombarded tissue after 4 months selection on 25 mg/L hygromycin B plus 4 mg/L phosphinothricin (PPT). By selecting embryogenic callus on hygromycin plus PPT the overall transformation and selection efficiencies were substantially improved over selection with hygromycin or PPT alone, where no transgenic clones were recovered. The transgenic nature of the selected material was demonstrated by GUS histochemical assays and Southern blot hybridization analysis. Transgenic asparagus plants were found to withstand the prescribed levels of the PPT-based herbicide BASTATM for weed control.Abbreviations GUS -glucuronidase - HPT hygromycin phosphotransferase - bar phosphinothricin acetyl transferase gene - PPT phosphophinothricin - NAA naphthalene acetic acid - 2iP 2-isopentenyl adenine  相似文献   

4.
The genetic improvement of garlic plants (Allium sativum L.) with agronomical beneficial traits is rarely achieved due to the lack of an applicable transformation system. Here, we developed an efficient Agrobacterium-mediated transformation procedure with Danyang, an elite Korean garlic cultivar. Examination of sGFP (synthetic green fluorescence protein) expression revealed that treatment with 2-(N-morpholino) ethanesulfonic acid (MES), L-cysteine and/or dithiothreitol (DTT) gives the highest efficiency in transient gene transfer during Agrobacterium co-cultivation with calli derived from the roots of in vitro plantlets. To increase stable transformation efficiency, a two-step selection was employed on the basis of hygromycin resistance and sGFP expression. Of the hygromycin-resistant calli initially produced, only sGFP-expressing calli were subcultured for selection of transgenic calli. Transgenic plantlets produced from these calli were grown to maturity. The transformation efficiency increased up to 10.6% via our optimized procedure. DNA and RNA gel-blot analysis indicated that transgenic garlic plants stably integrated and expressed the phosphinothricin acetyltransferase (PAT) gene. A herbicide spraying assay demonstrated that transgenic plants of garlic conferred herbicide resistance, whilst nontransgenic plants and weeds died. These results indicate that our transformation system can be efficiently utilized to produce transgenic garlic plants with agronomic benefits.  相似文献   

5.
Summary An analysis of the progeny of primary transgenic pea plants in terms of transmission of the transferred DNA, fertility and morphology is presented. A transformation system developed for pea that allows the regeneration of fertile transgenic pea plants from calli selected for antibiotic resistance was used. Expiants from axenic shoot cultures were co-cultivated with a nononcogenic Agrobacterium tumefaciens strain carrying a gene encoding hygromycin phosphotransferase as selectable marker, and transformed callus could be selected on callus-inducing media containing 15 mg/l hygromycin. After several passages on regeneration medium, shoot organogenesis could be reproducibly induced on the hygromycin resistant calli, and the regenerated shoots could subsequently be rooted and transferred to the greenhouse, where they proceeded to flower and set seed. The transmission of the introduced gene into the progeny of the regenerated transgenic plants was studied over two generations, and stable transmission was shown to take place. The transgenic nature of the calli and regenerated plants and their progeny was confirmed by DNA and RNA analysis. The DNA and ploidy levels of the progeny plants and primary regenerants were studied by chromosome analysis, and the offspring of the primary transformants were evaluated morphologically.Abbreviations 2,4-D 2,4-Dichlorophenoxyacetic acid - BA 6-ben-zyladenine - hpt hygromycin phosphotransferase gene - IAA indole acetic acid, kin, kinetin - NAA -naphtalene acetic acid - picloram 4-amino-3,5,6-trichloropicolinic acid  相似文献   

6.
 By using highly regenerative calluses, we developed a stable transformation system in garlic (Allium sativum L.). The temperature and number of days of co-cultivation with Agrobacterium tumefaciens was shown to be an important factor in transient expression of the uid A gene. After a culture period of 5 months in selection medium containing hygromycin, 20 shoots were induced from ca. 1000 calluses, among which 15 plants expressed β-glucuronidase activity upon staining with X-Gluc. Shoots developed into transgenic garlic after 1 month. Integration of the uid A gene was confirmed by Southern blot analysis for genomic DNA of transgenic garlic plants. Received: 25 October 1999 / Revision received: 16 February 2000 / Accepted: 22 February 2000  相似文献   

7.
Summary Direct gene transfer has proved to be an efficient transformation method for arabidopsis thaliana, a member of the Brassicaceae. Transgenic Arabidopsis plants resistant to hygromycin B have been regenerated from mesophyll protoplasts treated with polyethylene glycol and plasmid DNA carrying the hygromycin phosphotransferase (HPT) gene under the control of the 35 S promoter of cauliflower mosaic virus. The transformation procedure reproducibly yields transformants at frequencies of approximately 1×10-4 (based on the number of protoplasts treated) or 5% (based on the number of regenerating calli). DNA from plants regenerated from hygromycin resistant colonies was analysed by Southern blot hybridization demonstrating that the foreign gene is stably integrated into the plant chromosome. Genetic analysis of several hygromycin resistant plants showed that the HPT gene is transmitted to the progeny. Transformation experiments performed with a selectable and a non-selectable gene on separate plasmids resulted in a co-transformation rate of functionally active copies in about 25% of the transformants analysed. Hence this approach can be used to introduce non-selectable genes into the Arabidopsis genome.  相似文献   

8.
We have demonstrated the transfer and expression of a foreign chimeric gene in the grass species, Dactylis glomerata L. This species is a member of the Gramineae sub-family Pooideae, which includes the small grain cereals, from which transformed plants have not yet been obtained. A chimeric hygromycin-resistance gene was introduced into protoplasts isolated from an embryogenic suspension culture, using heat shock followed by electroporation or polyethylene glycol treatment. Cell colonies resistant to 20 g/ml hygromycin were selected in liquid medium using an agarose bead type culture system. Transformed calli were identified by Southern hybridization. Embryogenic callus was induced to regenerate plants and transformed plants were shown to contain the hygromycin resistance gene.Abbreviations 2,4-D 2,4-Dichloro-phenoxy-acetic acid - dicamba 3,6-dichloro-2-methoxy benzoic acid - PEG polyethylene glycol - SDS Sodium dodecyl sulfate - SH medium Medium of Schenk and Hildebrandt (1972)  相似文献   

9.
In order to improve the efficiency of cassava (Manihot esculenta Crantz) transformation, two different selection systems were assessed, a positive one based on the use of mannose as the selective agent, and a negative one based on hygromycin resistance encoded by an intron-containing hph gene. Transgenic plants selected on mannose or hygromycin were regenerated for the first time from embryogenic suspensions cocultivated with Agrobacterium. After the initial selection using mannose and hygromycin, 82.6% and 100% of the respective developing embryogenic callus lines were transgenic. A system allowing plant regeneration from only transgenic lines was designed by combining chemical selection with histochemical GUS assays. In total, 12 morphologically normal transgenic plant lines were produced, five using mannose and seven using hygromycin. The stable integration of the transgenes into the nuclear genome was verified using PCR and Southern analysis. RT-PCR and northern analyses confirmed the transgene expression in the regenerated plants. A rooting test on mannose containing medium was developed as an alternative to GUS assays in order to eliminate escapes from the positive selection system. Our results show that transgenic cassava plants can be obtained by using either antibiotic resistance genes that are not expressed in the micro-organisms or an antibiotic-free positive selection system.  相似文献   

10.
An improved rice transformation system using the biolistic method   总被引:38,自引:0,他引:38  
Immature embryos and embryogenic calli of rice, both japonica and indica subspecies, were bombarded with tungsten particles coated with plasmid DNA that contained a gene encoding hygromycin phosphotransferase (HPH, conferring hygromycin resistance) driven by the CaMV 35S promoter or Agrobactenum tumefaciens NOS promoter. Putatively transformed cell clusters were identified from the bombarded tissues 2 weeks after selection on hygromycin B. By separating these cell clusters from each other, and by stringent selection not only at the callus growth stage but also during regeneration and plantlet growth, the overall transformation and selection efficiencies were substantially improved over those previously reported. From the most responsive cultivar used in these studies, an average of one transgenic plant was produced from 1.3 immature embryos or from 5 pieces of embryogenic calli bombarded. Integration of the introduced gene into the plant genome, and inheritance to the offspring were demonstrated. By using this procedure, we have produced several hundred transgenic plants. The procedure described here provides a simple method for improving transformation and selection efficiencies in rice and may be applicable to other monocots.Abbreviations bp base pairs - CaMV cauliflower mosaic virus - GUS -glucuronidase - HPH hygromycin phosphotransferase - hyg B hygromycin B - hygr hygromycin resistance - NOS Agrobactenum tumefaciens nopaline synthase - PCR polymerase chain reaction - X-Gluc 5-bromo-4-chloro-3-indolyl--D-glucuronide  相似文献   

11.
Transgenic rice embryogenic callus and plants were recovered from experiments involving electric discharge particle acceleration (AccellTM technology). Critical parameters influencing successful delivery and stable integration of exogenous DNA into organized rice tissue had been identified previously. We report here on the effects of one selective agent (hygromycin B) on the phenotype and genotype of recovered callus and plants. The nature, timing and culture practices appeared to be more critical for the successful recovery of transgenic callus and plants than the level of selection used. By utilizing the procedures described in this report, transformation frequencies well in excess of 10% were obtained routinely in all varieties of rice tested. The combination of AccellTM technology with a selectable and prolific regeneration culture system resulted in the development of a variety-independent and highly efficient method for the routine introduction of any gene into any rice variety.  相似文献   

12.
The successful transfer of a marker gene (hpt gene) from Brassica nigra into B. napus via direct gene transfer was demonstrated. Total DNA was isolated from a hygromycin-resistant callus line, which contained three to five copies of the hpt gene. This line had been produced via direct gene transfer with the hygromycin resistance-conferring plasmid pGL2. The treatment of B. napus protoplasts with genomic DNA of B. nigra (HygR) resulted in relative transformation frequencies of 0.1–0.4%. Similar transformation rates were obtained in direct gene transfer experiments using B. napus protoplasts and plasmid pGL2.  相似文献   

13.
14.
Microprojectile bombardment mediated genetic transformation parameters have been standardized for seed derived callus of Eleusine coracana. Plasmid pCAMBIA 1381 harboring hygromycin phosphotransferase (hptII) as selectable marker gene and β-glucuronidase (gus A) as reporter gene, was used for the optimization of gene transfer conditions. The transient GUS expression and survival of putative transformants were taken into consideration for the assessment of parameters. Optimum conditions for the microprojectile bombardment mediated genetic transformation of finger millet were 1,100 psi rupture disk pressure with 3 cm distance from rupture disk to macrocarrier and 12 cm microprojectile travel distance. Double bombardment with gold particles of 1.0 μm size provided maximum transient GUS expression and transformation efficiency. Osmotic treatment of callus with 0.4 M sorbitol enhanced efficiency of particle bombardment mediated genetic transformation. Regenerative calli were bombarded at optimum conditions of bombardment and placed on regeneration medium with hygromycin to obtain transformed plants. The integration of hptII and gus A genes was confirmed with PCR amplification of 684 and 634 bp sizes of the bands respectively from putative transformants and Southern blot hybridization using PCR amplified DIG labeled hptII gene as probe. PCR analysis with hptII gene specific primers indicated the presence of transgene in T1 generation plants. Thus a successful genetic transformation system was developed using particle bombardment in E. coracana with 45.3% transformation efficiency. The protocol will be helpful for the introgression of desired genes into E. coracana.  相似文献   

15.
Seashore paspalum (Paspalum vaginatum O. Swartz) is an important warm-season turfgrass with great salinity tolerance. Based on establishment of embryogenic callus induction and regeneration from different mature seeds of ‘Sea Spray’, an Agrobacterium tumefaciens-mediated transformation was established and optimized in this study. Three clones of callus were selected for examining transformation conditions using Agrobacterium tumefaciens strain AGL1 carrying the binary vector pCAMBIA1305.2, containing β-glucuronidase (GUS) as a reporter gene and hygromycin phosphotransferase (HPT) as a selective marker gene. The results showed that a high transient transformation efficiency was observed by using Agrobacterium concentration of OD600?=?0.6, 5 min of sonication treatment during Agrobacterium infection, and 2 d of co-cultivation. By using the optimized transformation conditions, transgenic seashore paspalum plants were obtained. PCR and Southern blot analysis showed that T-DNA was integrated into the genomes of seashore paspalum. GUS staining experiments showed that the GUS gene was expressed in transgenic plants. Our results suggested that the transformation protocol will provide an effective tool for breeding of seashore paspalum in the future.  相似文献   

16.
17.
We developed a highly efficient transformation protocol for the PEG-mediated direct transfer of plasmid DNA into protoplasts of haploid Datura innoxia. Vectors harbouring a neomycin phosphotransferase II gene or a hygromycin B phosphotransferase gene under the control of different promoters were used in the transformation experiments. Various amounts of plasmid DNA were applied without any carrier DNA to show the direct influence of the plasmid DNA concentration on the transformation efficiency. Approximately 95% of the selected calli were regenerated to plants; 20% of them remained haploid. Total DNA of different transgenic plants was analysed with regard to the integration pattern of the plasmid DNA. Plants carrying only one or two copies of the vector DNA were observed as well as individuals with multi-copy integration (up to ten or more copies).Abbreviations ATF/RTF absolute/relative transformation frequency - BAP 6-benzylaminopurine - CaMV cauliflower mosaic virus - CTAB N-cetyl-N,N,N-trimethyl-ammonium bromide - HPT hygromycin B phosphotransferase gene - PEG polyethyleneglycol - MES 2-(N-morpholino) ethanesulfonic acid - NPT II neomycin phosphotransferase II gene  相似文献   

18.
This paper describes the development of a reliable transformation protocol for onion and shallot (Allium cepa L.) which can be used year-round. It is based on Agrobacterium tumefaciens as a vector, with three-week old callus, induced from mature zygotic embryos, as target tissue. For the development of the protocol a large number of parameters were studied. The expression of the uidA gene coding for -glucuronidase was used as an indicator in the optimization of the protocol. Subspecies (onion and shallot) and cultivar were important factors for a successful transformation: shallot was better than onion and for shallot cv. Kuning the best results were obtained. Also, it was found that constantly reducing the size of the calli during subculturing and selection by chopping, thus enhancing exposure to the selective agent hygromycin, improved the selection efficiency significantly. Furthermore, callus induction medium and co-cultivation period showed a significant effect on successful stable transformation. The usage of different Agrobacterium strains, callus ages, callus sources and osmotic treatments during co-cultivation did not influence transformation efficiency. The highest transformation frequency (1.95%), was obtained with shallot cv. Kuning. A total of 11 independent transformed callus lines derived from zygotic embryos were produced: seven lines from shallot and four lines from onion. Large differences in plantlet production were observed among these lines. The best line produced over 90 plantlets. Via PCR the presence of the uidA and hpt (hygromycin phosphotransferase) genes could be demonstrated in these putative transformed plants. Southern hybridization showed that most lines originated from one transformation event. However, in one line plants were obtained indicating the occurrence and rescue of at least three independent transformation events. This suggested that T-DNA integration occurred in different cells within the callus. Most transgenic plants only had one copy of T-DNA integrated into their genomes. FISH performed on 12 plants from two different lines representing two integration events showed that original T-DNA integration had taken place on the distal end of chromosomes 1 or 5. A total of 83 transgenic plants were transferred to the greenhouse and these plants appeared to be diploid and normal in morphology.  相似文献   

19.
A protocol for consistent production of fertile transgenic rice plants was established utilizing microparticle bombardment of embryogenic tissues (Oryza sativa L. japonica cv. Taipei 309). This system has been employed to produce several thousand independently transformed plant lines carrying the hygromycin phosphotransferase (hph) gene and various genes of interest. The most efficient target tissue was highly embryogenic callus or suspension cell aggregates, when they were given an osmotic pre- and post-transformation treatment of 0.6 m carbohydrate. By optimizing the age of the tissue at the time of gene transfer and applying an improved selection procedure, transgenic plants were recovered in 8 weeks from the time of gene transfer, at an average of 22.3±9.7 per 100 calli and 22.4±8.0 plant lines per dish of suspension cell aggregates. This system has facilitated a number of studies using rice as a model for genetic transformation and will enable the large-scale production of transgenic rice plants for genomic studies. Received: 12 March 1998 / Revision received: 5 May 1998 / Accepted: 15 May 1998  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号