首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In tip-growing cells, the tip-high Ca(2+) gradient is thought to regulate the activity of components of the growth machinery, including the cytoskeleton, Ca(2+)-dependent regulatory proteins, and the secretory apparatus. In pollen tubes, both the Ca(2+) gradient and cell elongation show oscillatory behavior, reinforcing the link between the two. We report that in growing root hairs of Arabidopsis (Arabidopsis thaliana), an oscillating tip-focused Ca(2+) gradient can be resolved through imaging of a cytosolically expressed Yellow Cameleon 3.6 fluorescence resonance energy transfer-based Ca(2+) sensor. Both elongation of the root hairs and the associated tip-focused Ca(2+) gradient show a similar dynamic character, oscillating with a frequency of 2 to 4 min(-1). Cross-correlation analysis indicates that the Ca(2+) oscillations lag the growth oscillations by 5.3 +/- 0.3 s. However, growth never completely stops, even during the slow cycle of an oscillation, and the concomitant tip Ca(2+) level is always slightly elevated compared with the resting Ca(2+) concentration along the distal shaft, behind the growing tip. Artificially increasing Ca(2+) using the Ca(2+) ionophore A23187 leads to immediate cessation of elongation and thickening of the apical cell wall. In contrast, dissipating the Ca(2+) gradient using either the Ca(2+) channel blocker La(3+) or the Ca(2+) chelator EGTA is accompanied by an increase in the rate of cell expansion and eventual bursting of the root hair tip. These observations are consistent with a model in which the maximal oscillatory increase in cytosolic Ca(2+) is triggered by cell expansion associated with tip growth and plays a role in the subsequent restriction of growth.  相似文献   

2.
Roles of calcium ions in hyphal tip growth.   总被引:15,自引:0,他引:15       下载免费PDF全文
A role for Ca2+ in the tip growth process of fungal hyphae and other eukaryotic walled cells has been widely explored, following the earlier indications of their importance by Jaffe, Steer, and their colleagues. Analysis of the literature on fungi, with selected comparison with other tip-growing plant cells, shows that the growth rate and morphology of hyphae are sensitive to factors which influence intracellular Ca2+. These factors include variations in extracellular Ca2+ concentrations, Ca2+ ionophores, inhibitors of Ca2+ transport, and calmodulin- and Ca(2+)-binding dyes and buffers introduced into the cytoplasm. The effects of these agents appear to be mediated by a tip-high gradient of cytoplasmic free Ca2+ which is obligatorily present in all critically examined growing tips. Most recent observations agree that the gradient is very steep, declining rapidly within 10 to 20 microns of the tip. This gradient seems to be generated by the combined effects of an influx of Ca2+, via plasma membrane, possibly stretch-activated, channels localized in the hyphal tip, and subapical expulsion or sequestration of these ions. Expulsion probably involves a plasma membrane Ca(2+)-ATPase, but it is not yet possible to differentiate among mitochondria, endoplasmic reticulum, or vacuoles as the dominant sites of sequestration. It is suggested that regulation of the Ca2+ gradient in turn modulates the properties of the actin-based component of the cytoskeleton, which then controls the extensibility, and, possibly, the synthesis of the hyphal apex. Regulatory feedback mechanisms intrinsic to this model of tip growth regulation are briefly discussed, together with suggestions for future experiments which are crucial to its further elucidation and establishment.  相似文献   

3.
Auditory afferent fiber activity is driven by high-fidelity information transfer from the sensory hair cell. Presynaptic specializations, posited to maintain fidelity, are investigated at synapses with characteristic frequencies of 120 Hz and 320 Hz. Morphological data indicate that high-frequency cells have more synapses and higher vesicle density near dense bodies (DBs). Tracking vesicular release via capacitance changes identified three overlapping kinetic components of release corresponding to morphologically identified vesicle pools. High-frequency cells released faster; however, when normalized to release site number, low-frequency cells released faster, likely due to a greater Ca2+ load per synapse. The Ca(2+)-dependence of release was nonsaturating and independent of frequency, suggesting that release, not refilling, was rate limiting. A model of release derived from vesicle equilibration between morphologically defined pools reproduced the capacitance data, supporting a critical role in vesicle trafficking for DBs. The model suggests that presynaptic specializations enable synapses to operate most efficiently at their characteristic frequencies.  相似文献   

4.
Eukaryotic cells from fungal hyphae to neurites that grow by polarized extension must coordinate cell growth and cell orientation to enable them to exhibit growth tropisms and to respond to relevant environmental cues. Such cells generally maintain a tip-high Ca(2+) cytoplasmic gradient, which is correlated with their ability to exhibit polarized tip growth and to respond to growth-directing extracellular signals. In yeast and other fungi, the polarisome, exocyst, Arp2/3, and Spitzenk?rper protein complexes collectively orchestrate tip growth and cell polarity, but it is not clear whether these molecular complexes also regulate cell orientation or whether they are influenced by cytoplasmic Ca(2+) gradients. Hyphae of the human pathogenic fungus Candida albicans reorient their growth axis in response to underlying surface topography (thigmotropism) and imposed electric fields (galvanotropism). The establishment and maintenance of directional growth in relation to these environmental cues was Ca(2+) dependent. Tropisms were attenuated in media containing low Ca(2+), or calcium-channel blockers, and in mutants where calcium channels or elements of the calcium signaling pathway were deleted. Therefore galvanotropism and thigmotropism may both be mediated by localized Ca(2+) influx at sites of polarized growth via Ca(2+) channels that are activated by appropriate environmental signals.  相似文献   

5.
Auxin (indole-3-acetic acid) regulates caulonema differentiation as a result of gradual transitional events in the chloronema tip cells in moss protonema. This auxin action in the moss Funaria hygrometrica involves a rapid influx of calcium ions from the extracellular medium. This investigation demonstrates spatial and temporal changes in calmodulin (CaM) activation (formation of Ca(2+)-CaM complex) in the chloronema tip cells subjected to auxin treatment. Photomicroscopic localisation of the fluorescence (excitation at 365 nm and emission of 397 nm) from the tricomplex of Ca(2+)-CaM with trifluoperazine (TFP, a blocker of Ca(2+)-CaM action) shows a tip to base (tip high) gradient of Ca(2+)-CaM in the chloronema tip cells. Comparison of Ca(2+)-CaM-TFP fluorescence over time in the chloronema tip cells of wild type Funaria with the response in an auxin overproducer mutant (86.1) and an auxin deficient mutant (87.13) reveals the involvement of auxin in calmodulin activation as a rapid response prior to cell differentiation.  相似文献   

6.
Secretory vesicles of chromaffin cells are acidic organelles that maintain an increasing pH gradient towards the cytosol (5.5 vs. 7.3) that is mediated by V-ATPase activity. This gradient is primarily responsible for the accumulation of large concentrations of amines and Ca(2+), although the mechanisms mediating Ca(2+) uptake and release from granules, and the physiological relevance of these processes, remain unclear. The presence of a vesicular matrix appears to create a bi-compartmentalised medium in which the major fractions of solutes, including catecholamines, nucleotides and Ca(2+), are strongly associated with vesicle proteins, particularly chromogranins. This association appears to be favoured at acidic pH values. It has been demonstrated that disrupting the pH gradient of secretory vesicles reduces their rate of exocytosis and promotes the leakage of vesicular amines and Ca(2+), dramatically increasing the movement of secretory vesicles and triggering exocytosis. In this short review, we will discuss the data available that highlights the importance of pH in regulating the association between chromogranins, vesicular amines and Ca(2+). We will also address the potential role of vesicular Ca(2+) in two major processes in secretory cells, vesicle movement and exocytosis.  相似文献   

7.
He X  Liu YM  Wang W  Li Y 《Annals of botany》2006,98(1):49-55
BACKGROUND AND AIMS: Actin distribution in root hair tips is a controversial topic. Although the relationship between Ca2+ gradient and actin dynamics in plant tip-growth has been a focus of study, there is still little direct evidence on the exact relationship in root hair tip-growth. METHODS: G-actin was labelled by fluorescein isothiocyanate-DNase I. F-actin was labelled by tetramethylrhodamine isothiocyanate-phalloidin. Actin in root hairs of Triticum aestivum (wheat) was investigated using confocal laser-scanning microscopy. KEY RESULTS: Thick F-actin bundles did not extend into a region of approx. 5-10 microm from the tip of the growing root hairs, although they gave off branches of fine actin filaments in the hair tips. A tip-focused G-actin gradient was shown at the extreme apex of growing root hairs. In full-grown wheat root hairs, the tip-focused G-actin gradient disappeared while the thick F-actin bundles extended into the tips. BAPTA-AM, a Ca2+ disruption agent, also caused the tip-focused G-actin gradient to disappear and the diffuse F-actin bundles to appear in the tips of wheat root hairs. CONCLUSIONS: These results suggest that the tip-focused gradient of intracellular G-actin concentration at the extreme apex may be essential for root hair growth, and that preserving the tip-focused gradient needs a high Ca2+ concentration in the root hair tips.  相似文献   

8.
The transport mechanism and specificities of ionophore ETH-29 have been investigated in a highly defined phospholipid vesicle system, with the goal of facilitating the application of this compound to biological problems. ETH-129 transports Ca(2+) via an electrogenic mechanism, in contrast to A23187 and ionomycin, which function in a charge neutral manner. The rate of transport is a function of membrane potential, increasing by 3.9-fold per 59 mV over a broad range of that parameter. Rate is independent of the transmembrane pH gradient and strongly stimulated by the uncoupler carbonyl cyanide m-chlorophenylhydrazone when no external potential has been applied. The effect of uncoupler reflects the collapse of an opposing potential arising during Ca(2+) transport, but also reflects the formation of a mixed complex between the uncoupler, ETH-129, and Ca(2+) that readily permeates the vesicle membrane. Oleate does not substitute for the uncoupler in either regard. ETH-129 transports polyvalent cations according to the selectivity sequence La(3+) > Ca(2+) > Zn(2+) approximately equal to Sr(2+) > Co(2+) approximately equal to Ni(2+) approximately equal to Mn(2+), with the magnitude of the selectivity coefficients reflecting the cation concentration range considered. There is little or no activity for the transport of Na(+), K(+), and Mg(2+). These properties suggest that ETH-129 will be useful for investigating the consequences of a mitochondrial Ca(2+) overload in mammalian cells, which is difficult to pursue through the application of electroneutral ionophores.  相似文献   

9.
The synaptic vesicle protein synaptotagmin I has been proposed to serve as a Ca(2+) sensor for rapid exocytosis. Synaptotagmin spans the vesicle membrane once and possesses a cytoplasmic domain largely comprised of two C2 domains designated C2A and C2B. We have determined how deep the Ca(2+)-binding loops of Ca(2+).C2A penetrate into the lipid bilayer and report mutations in synaptotagmin that can uncouple membrane penetration from Ca(2+)-triggered interactions with the SNARE complex. To determine whether C2A penetrates into the vesicle ("cis") or plasma ("trans") membrane, we reconstituted a fragment of synaptotagmin that includes the membrane-spanning and C2A domain (C2A-TMR) into proteoliposomes. Kinetics experiments revealed that cis interactions are rapid (< or =500 micros). Binding in the trans mode was distinguished by the slow diffusion of trans target vesicles. Both modes of binding were observed, indicating that the linker between the membrane anchor and C2A domain functions as a flexible tether. C2A-TMR assembled into oligomers via a novel N-terminal oligomerization domain suggesting that synaptotagmin may form clusters on the surface of synaptic vesicles. This novel mode of clustering may allow for rapid Ca(2+)-triggered oligomerization of the protein via the membrane distal C2B domain.  相似文献   

10.
Calcium uptake was examined in sealed plasma membrane vesicles isolated from red beet (Beta vulgaris L.) storage tissue using (45)Ca(2+). Uptake of (45)Ca(2+) by the vesicles was ATP-dependent and radiotracer accumulated by the vesicles could be released by the addition of the calcium ionophore A23187. The uptake was stimulated by gramicidin D but slightly inhibited by carbonylcyanide m-chlorophenylhydrazone. Although the latter result might suggest some degree of indirect coupling of (45)Ca(2+) uptake to ATP utilization via deltamuH(+), no evidence for a secondary H(+)/Ca(2+) antiport in this vesicle system could be found. Following the imposition of an acid-interior pH gradient, proton efflux from the vesicle was not enhanced by the addition of Ca(2+) and an imposed pH gradient could not drive (45)Ca(2+) uptake. Optimal uptake of (45)Ca(2+) occurred broadly between pH 7.0 and 7.5 and the transport was inhibited by orthovanadate, N,N'-dicyclohexylcarbodiimide, and diethylstilbestrol but insensitive to nitrate and azide. The dependence of (45)Ca(2+) uptake on both calcium and Mg:ATP concentration demonstrated saturation kinetics with K(m) values of 6 micromolar and 0.37 millimolar, respectively. While ATP was the preferred substrate for driving (45)Ca(2+) uptake, GTP could drive transport at about 50% of the level observed for ATP. The results of this study demonstrate the presence of a unique primary calcium transport system associated with the plasma membrane which could drive calcium efflux from the plant cell.  相似文献   

11.
Sensory hair cell ribbon synapses respond to graded?stimulation in a linear, indefatigable manner, requiring that vesicle trafficking to synapses be rapid and nonrate-limiting. Real-time monitoring of vesicle fusion identified two release components. The first was saturable with both release rate and magnitude varying linearly with Ca(2+), however the magnitude was too small to account for sustained afferent firing rates. A second superlinear release component required recruitment, in a Ca(2+)-dependent manner, of vesicles not in the immediate vicinity of the synapse. The superlinear component had a constant rate with its onset varying with Ca(2+) load. High-speed Ca(2+) imaging revealed a nonlinear increase in internal Ca(2+) correlating with the superlinear capacitance change, implicating release of stored Ca(2+) in driving vesicle recruitment. These data, supported by a mass action model, suggest sustained release at hair cell afferent fiber synapse is dictated by Ca(2+)-dependent vesicle recruitment from a reserve pool.  相似文献   

12.
Lei S  McBain CJ 《Neuron》2002,33(6):921-933
Dentate gyrus granule cells innervate inhibitory interneurons via a continuum of synapses comprised of either Ca(2+)-impermeable (CI) or Ca(2+)-permeable (CP) AMPA receptors. Synapses at the extreme ends of this continuum engage distinct postsynaptic responses, with activity at CI synapses being strongly influenced by NMDA receptor activation. NMDARs at CI synapses have a lower NR2B subunit composition and a higher open probability, which generate larger amplitude and more rapid EPSCs than their CP counterparts. A novel form of NMDAR-dependent long-term depression (iLTD) is associated with CI-mossy fiber synapses, whereas iLTD at CP synapses is dependent on Ca(2+)-permeable AMPA receptor activation. Induction of both forms of iLTD required elevation of postsynaptic calcium. Thus mossy fibers engage CA3 interneurons via multiple synapse types that will act to expand the computational repertoire of the mossy fiber-CA3 network.  相似文献   

13.
Sakaba T 《Neuron》2008,57(3):406-419
Cerebellar basket cells inhibit postsynaptic Purkinje cells in a rapid and precise manner. To investigate the mechanisms of transmitter release underlying this rapid inhibition, Ca(2+) uncaging was employed to measure the intracellular Ca(2+) dependence of transmitter release and the kinetics of synaptic vesicle pool transitions in immature basket cell synapses at room temperature. Vesicle release properties distinct from those previously observed at excitatory synapses were seen, including a relatively high intracellular Ca(2+) sensitivity of vesicle fusion, rapid vesicle pool mobilization with few reluctant vesicles, and vesicle replenishment driven by unusually high Ca(2+) levels from both local and residual Ca(2+) sources during action potential trains. These results suggest that inhibitory basket cell synapses are optimized for rapid and precise temporal and spatial Ca(2+) coordination of synaptic vesicle fusion and replenishment, which may contribute to the unique physiology of inhibitory synaptic transmission, including phasic release during action potential trains and tonic release by residual intracellular Ca(2+).  相似文献   

14.
Sidedness of synaptic plasma membrane vesicles isolated from brain synaptosomes has been assessed by two distinct experimental approaches: first, analysis of (Na+ + K+)-ATPase, Mg2+-ATPase, and (Ca2+ + Mg2+)-ATPase activities before and after permeabilization of vesicles; second, analysis of Ca2+ fluxes via the Na+/Ca2+ exchanger, before and after modification of an imposed Na+ gradient by penetrating or nonpenetrating Na+ channel-modifying drugs. 0.05% saponin, which completely permeabilizes the vesicles, increases digitoxigenin-sensitive (Na+ + K+)-ATPase, basal Mg2+-ATPase, and (Ca2+ + Mg2+)-ATPase activities by 51.0, 47.4, and 83.6%, respectively. Saponin increases only the Vmax of the latter activity, the Km for Ca2+ (0.13 microM; the same as that for Ca2+-pumping) being unaltered by saponin. An increment of 20.5% in the Vmax of (Ca2+ + Mg2+)-ATPase activity with 10 microM A23187, reveals that the enzyme activity in nonpermeabilized vesicles is limited by the formation of a Ca2+ gradient. Thus, the saponin-induced increment in (Ca2+ + Mg2+)-ATPase due only to exposure of occluded sites (as opposed to Ca2+ gradient dissipation) is actually 52%, which is similar to values for both other ATPases, and suggests that 32-35% of plasma membranes exist in an inverted orientation. Vesicle orientation was independently assessed by the differential actions of tetrodotoxin (a membrane impermeant blocker) and veratridine (a membrane permeant agonist) on Na+-channel opening measured indirectly by dissipation of an imposed Na+ gradient utilized to drive a large 45Ca2+ accumulation via the Na+/Ca2+ exchanger. Tetrodotoxin reverses 35-44% of veratridine-mediated Na+ gradient-dissipation, the relative membrane-permeability of the two channel modifiers, suggesting that 56-65% of sealed vesicles are inverted. The concurrence of these two independent measurements of vesicle orientation reinforces their validity.  相似文献   

15.
Rhizobium-made Nod factors induce rapid changes in both Ca(2+) and gene expression. Mutations and inhibitors that abolish Nod-factor-induced Ca(2+) spiking block gene induction, indicating a specific role for Ca(2+) spiking in signal transduction. We used transgenic Medicago truncatula expressing a "cameleon" Ca(2+) sensor to assess the relationship between Nod-factor-induced Ca(2+) spiking and the activation of downstream gene expression. In contrast to ENOD11 induction, Ca(2+) spiking is activated in all root-hair cells and in epidermal or pre-emergent root hairs cells in the root tip region. Furthermore, cortical cells immediately below the epidermal layer also show slow Ca(2+) spiking and these cells lack Nod-factor-induced ENOD11 expression. This indicates a specialization in nodulation gene induction downstream of Nod-factor perception and signal transduction. There was a gradient in the frequency of Ca(2+) spiking along the root, with younger root-hair cells having a longer period between spikes than older root hairs. Using a Ca(2+)-pump inhibitor to block Ca(2+) spiking at various times after addition of Nod factor, we conclude that about 36 consecutive Ca(2+) spikes are sufficient to induce ENOD11-GUS expression in root hairs. To determine if the length of time of Ca(2+) spiking or the number of Ca(2+) spikes is more critical for Nod-factor-induced ENOD11 expression, jasmonic acid (JA) was added to reduce the rate of Nod-factor-induced Ca(2+) spiking. This revealed that even when the period between Ca(2+) spikes was extended, an equivalent number of Ca(2+) spikes were required for the induction of ENOD11. However, this JA treatment did not affect the spatial patterning of ENOD11-GUS expression suggesting that although a minimal number of Ca(2+) spikes are required for Nod-factor-induced gene expression, other factors restrict the expression of ENOD11 to a subset of responding cells.  相似文献   

16.
Synaptotagmins contain tandem C2 domains and function as Ca(2+) sensors for vesicle exocytosis but the mechanism for coupling Ca(2+) rises to membrane fusion remains undefined. Synaptotagmins bind SNAREs, essential components of the membrane fusion machinery, but the role of these interactions in Ca(2+)-triggered vesicle exocytosis has not been directly assessed. We identified sites on synaptotagmin-1 that mediate Ca(2+)-dependent SNAP25 binding by zero-length cross-linking. Mutation of these sites in C2A and C2B eliminated Ca(2+)-dependent synaptotagmin-1 binding to SNAREs without affecting Ca(2+)-dependent membrane binding. The mutants failed to confer Ca(2+) regulation on SNARE-dependent liposome fusion and failed to restore Ca(2+)-triggered vesicle exocytosis in synaptotagmin-deficient PC12 cells. The results provide direct evidence that Ca(2+)-dependent SNARE binding by synaptotagmin is essential for Ca(2+)-triggered vesicle exocytosis and that Ca(2+)-dependent membrane binding by itself is insufficient to trigger fusion. A structure-based model of the SNARE-binding surface of C2A provided a new view of how Ca(2+)-dependent SNARE and membrane binding occur simultaneously.  相似文献   

17.
Previous work has shown that hyphal elongation in the fungus Neurospora crassa requires a tip-high cytosolic Ca2+ gradient. The source of the Ca2+ appears to be intracellular stores as there is no net transplasma membrane Ca2+ flux at the elongating hyphal tip and modification of ion fluxes across the plasma membrane using voltage clamp is without effect on tip growth. To decode the internal mechanisms which generate and maintain the tip-high Ca2+ gradient we first identified calcium regulators which affect hyphal growth and morphology, then determined how they modify cytosolic [Ca2+] and the actin cytoskeleton using fluorescent dyes and confocal microscopy. Cyclopiazonic acid (a known inhibitor of the endoplasmic reticulum calcium ATPase) inhibits growth and increases cytoplasmic [Ca2+] in the basal region 10-25 microm behind the hyphal tip. 2-APB (2-aminoethoxydiphenyl borate, an inhibitor of IP3-induced Ca2+ release) inhibits hyphal elongation and dissipates the tip-high Ca2 gradient 0-10 microm from the tip. Microinjections of the IP3 receptor agonists adenophostin A and IP3 (but not control microinjections of the biologically inactive L-IP3) transiently inhibited growth and induced subapical branches. IP3 microinjections, but not L-IP3, lowered tip-localized [Ca2+] and increased basal [Ca2+]. Even though their effect on [Ca2+] gradients was different, both cyclopiazonic acid and 2-APB disrupted similarly the normal actin pattern at the hyphal apex. Conversely, disruption of actin with latrunculin B dissipated tip-localized Ca2+. We conclude that the tip-high Ca2+ gradient is generated internally by Ca2+ sequestration into endoplasmic reticulum behind the tip and Ca2+ release via an IP3 receptor from tip-localized vesicles whose location is maintained by the actin cytoskeleton.  相似文献   

18.
H Li  Y Lin  R M Heath  M X Zhu    Z Yang 《The Plant cell》1999,11(9):1731-1742
We have shown that Rop1At, a pollen-specific Rop GTPase that is a member of the Rho family of small GTP binding proteins, acts as a key molecular switch controlling tip growth in Arabidopsis pollen tubes. Pollen-specific expression of constitutively active rop1at mutants induced isotropic growth of pollen tubes. Overexpression of wild-type Arabidopsis Rop1At led to ectopic accumulation of Rop1At in the plasma membrane at the tip and caused depolarization of pollen tube growth, which was less severe than that induced by the constitutively active rop1at. These results indicate that both Rop1At signaling and polar localization are critical for controlling the site of tip growth. Dominant negative rop1at mutants or antisense rop1at RNA inhibited tube growth at 0.5 mM extracellular Ca(2+), but growth inhibition was reversed by higher extracellular Ca(2+). Injection of anti-Rop antibodies disrupted the tip-focused intracellular Ca(2+) gradient known to be crucial for tip growth. These studies provide strong evidence for a Rop GTPase-dependent tip growth pathway that couples the control of growth sites with the rate of tip growth through the regulation of tip-localized extracellular Ca(2+) influxes and formation of the tip-high intracellular Ca(2+) gradient in pollen tubes.  相似文献   

19.
The continuously changing polar cytoplasmic organization during initiation and tip growth of root hairs is reflected by a dynamic redistribution of cytoskeletal elements. The small G-actin binding protein, profilin, which is known to be a widely expressed, potent regulator of actin dynamics, was specifically localized at the tip of root hairs and co-distributed with a diffusely fluorescing apical cap of actin, but not with subapical actin microfilament (MF) bundles. Profilin and actin caps were present exclusively in the bulge of outgrowing root hairs and at the apex of elongating root hairs; both disappeared when tip growth terminated, indicating a tip-growth mechanism that involves profilin-actin interactions for the delivery and localized exocytosis of secretory vesicles. Phosphatidylinositol-4,5-bisphosphate (PIP2), a ligand of profilin, was localized almost exclusively in the bulge and, subsequently, formed a weak tip-to-base gradient in the elongating root hairs. When tip growth was eliminated by the MF-disrupting inhibitor cytochalasin D, the apical profilin and the actin fluorescence were lost. Mastoparan, which is known to affect the PIP2 cycle, probably by stimulating phospholipases, caused the formation of a meshwork of distinct actin MFs replacing the diffuse apical actin cap and, concomittantly, tip growth stopped. This suggests that mastoparan interferes with the PIP2-regulated profilin-actin interactions and hence disturbs conditions indispensable for the maintenance of tip growth in root hairs. Received: 11 March 1999 / Accepted: 27 May 1999  相似文献   

20.
Ca (2+) is an essential ion in the control of pollen germination and tube growth. However, the control of pollen tube development by Ca (2+) signaling and its interactions with cytoskeletal components, energy-providing pathways, and cell-expansion machinery remain elusive. Here, we used nifedipine (Nif) to study Ca (2+) functions in differential protein expression and other cellular processes in Pinus bungeana pollen tube growth. Proteomics analysis indicated that 50 proteins showed differential expression with varying doses of Nif. Thirty-four of these were homologous to previously reported proteins and were classified into different functional categories closely related to tip-growth machinery. Blocking the L-type Ca (2+) channel with Nif in the pollen tube membrane induced several early alterations within a short time, including a reduction of extracellular Ca (2+) influx and a subsequently dramatic decrease in cytosolic free Ca (2+) concentration ([Ca (2+)] c), concomitant with ultrastructural abnormalities and changes in the abundance of proteins involved in energy production and signaling. Secondary alterations included actin filament depolymerization, disrupted patterns of endocytosis/exocytosis, and cell wall remodeling, along with changes in the proteins involved in these processes. These results suggested that extracellular Ca (2+) influx was necessary for the maintenance of the typical tip-focused [Ca (2+)] c gradient in the P. bungeana pollen tube, and that reduced adenosine triphosphate production (ATP), depolymerization of the cytoskeleton, and abnormal endocytosis/exocytosis, together with enhanced rigidity of cell walls, were responsible for the growth arrest observed in pollen tubes treated with Nif.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号