首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Interactions between macroalgae and their associated fauna are of great interest for marine invasions, because fauna may increase the biotic resistance of a system and macroalgal invasions may cause shifts in faunal composition. We tested for differences in faunal community structure between a macroalgal invader, Sargassum muticum, and several native macroalgae in intertidal pools on both the west and south coast of Portugal. On each coast, we compared the faunal diversity and composition associated with the invader with that of the competing native macroalga(e). On the west coast, the diversity of the fauna associated with S. muticum was equal to or lower than with the native competitor, Cystoseira humilis. Fauna composition differed between S. muticum and C. humilis at both locations, but within each species, no differences between locations were detected. In contrast, the fauna diversity on S. muticum of the south coast varied among locations. S. muticum fauna differed from the fauna of all native macroalgae at one location, but only from three out of seven native macroalgae at the other location. Discriminating fauna species did not show a consistent pattern towards higher or lower abundances in S. muticum compared to most native macroalgae, and species-specific contributions were small. Differences in fauna community also depended on the identity of the native macroalga. In conclusion, the fauna associated with S. muticum differs from many native brown macroalgae, but these differences were not consistent as they depend both on the native macroalgal species and on location. This invader does not seem to have a severe negative impact on local macroalgae-associated fauna.  相似文献   

2.
Invasive species can transform ecological communities. Their profound effects may alter the sources and pathways of primary production. We investigated the effects of the reef forming polychaete Ficopomatus enigmaticus invasion on the biomass and distribution of estuarine macroalgae in a SW Atlantic coastal lagoon (Mar Chiquita, 37° 40′S, 57° 23′W, Argentina). Reefs built by this species serve as substrates for macroalgal development and furnish structures that modify physical and biological conditions for the surrounding benthos. We showed that (1) the red macroalga Polysiphonia subtilissima settles and grows almost exclusively on the surface of the reef, (2) the green macroalgae Cladophora sp. and Enteromorpha intestinalis are found almost exclusively in areas without reefs attached to mollusk shells and, (3) no macroalgae occur in the sediment between reefs. Manipulative experiments show that reefs provide a complex substrate for settlement and survival and therefore benefit red macroalga. These experiments also show that the invasive reef builder has negative indirect effects on green macroalgae by increasing grazing and probably by increased sedimentation between reefs. Via these direct and indirect effects, reefs change the relative biomass contribution of each macroalgal species to the overall production in the lagoon. Knowledge of these processes is important not only for predicting net effects on primary production but also because changes in macroalgal species composition may produce effects that cascade through the food web.  相似文献   

3.
Biological invasions have the potential to cause severe alterations to the biodiversity of natural ecosystems. At the same time, variation in the diversity and composition of native communities may have an important influence on the impact of invasions. Here, effects of the invasive Japanese wireweed, Sargassum muticum, were tested across a range of native marine algal assemblages using a combined additive and substitutive design. The invasive alga significantly reduced primary production, an important component of ecosystem functioning, and increased connectance, a key property of the food webs associated with the algal resources. These impacts were mediated by changes in the proportions of intermediate and top species, as well as apparent reductions in faunal species richness and diversity. Some key alterations to faunal species composition (including the arrival of generalist species associated with S. muticum) may have been important in determining these patterns. Overall results suggest that S. muticum not only directly impeded the native algal community, but that these effects extended indirectly to the native fauna and therefore caused major changes throughout the ecosystem.  相似文献   

4.
Sargassum muticum was first observed in Scandinavia in Limfjorden (Denmark) in 1984, where it is now the most abundant and conspicuous macroalga. Despite the ecological importance of Sargassum, few studies have described seasonal patterns within Scandinavian Sargassum beds. We quantified the dynamics of macroalgae among years and seasons along a depth transect through a typical Sargassum bed in Limfjorden. The annual investigations (summer transects 1989–1999) showed a gradual increase in the dominance of Sargassum, especially at the 2–4-m depth interval. Significant seasonal dynamics in macroalgal abundance and assemblage structure were observed in this depth interval; the mean cover of Sargassum varied from ca. 5% (autumn and winter) to 25% (mid-summer). In comparison, encrusting algae had high and relatively stable covers throughout the year (ca. 20%). Other perennial macroalgae had low mean covers (<2%) characterized by a few patches of higher abundances. Except from a spring bloom, filamentous algae had low covers throughout the year. Within this relatively uniform bed, Sargassum abundance was positively related to boulders >10 cm in diameter and species richness was negatively correlated to depth and stones <10 cm in diameter, and non-correlated to other algal form-groups or grazer densities. Thus, in Limfjorden, the distribution of Sargassum is determined by large- (>6 m) and small-scale (<1 m) depth differences where low light limits Sargassum at depth, physical disturbance and sediment stress limits Sargasum in shallow waters, and the presence of stable boulder substratum facilitate Sargassum. Competition for space from other macroalgae and herbivory are probably of minor importance.  相似文献   

5.
Ongoing changes in natural diversity due to anthropogenic activities can alter ecosystem functioning. Particular attention has been given to research on biodiversity loss and how those changes can affect the functioning of ecosystems, and, by extension, human welfare. Few studies, however, have addressed how increased diversity due to establishment of nonindigenous species (NIS) may affect ecosystem function in the recipient communities. Marine algae have a highly important role in sustaining nearshore marine ecosystems and are considered a significant component of marine bioinvasions. Here, we examined the patterns of respiration and light‐use efficiency across macroalgal assemblages with different levels of species richness and evenness. Additionally, we compared our results between native and invaded macroalgal assemblages, using the invasive brown macroalga Sargassum muticum (Yendo) Fensholt as a model species. Results showed that the presence of the invader increased the rates of respiration and production, most likely as a result of the high biomass of the invader. This effect disappeared when S. muticum lost most of its biomass after senescence. Moreover, predictability–diversity relationships of macroalgal assemblages varied between native and invaded assemblages. Hence, the introduction of high‐impact invasive species may trigger major changes in ecosystem functioning. The impact of S. muticum may be related to its greater biomass in the invaded assemblages, although species interactions and seasonality influenced the magnitude of the impact.  相似文献   

6.
Plant biodiversity can enhance primary production in terrestrial ecosystems, but biodiversity effects are largely unstudied in the ocean. We conducted a series of field and mesocosm experiments to measure the relative effects of macroalgal identity and richness on primary productivity (net photosynthetic rate) and biomass accumulation in hard substratum subtidal communities in North Carolina, USA. Algal identity consistently and strongly affected production; species richness effects, although often significent, were subtle. Partitioning of the net biodiversity effect indicated that complementarity effects were always positive and species were usually more productive in mixtures than in monoculture. Surprisingly, slow growing species performed relatively better in the most diverse treatments than the most productive species, thus selection effects were consistently negative. Our results suggest that several basic mechanisms underlying terrestrial plant biodiversity effects also operate in algal-based marine ecosystems, and thus may be general.  相似文献   

7.
8.
《Aquatic Botany》2005,83(1):31-47
The expansion of Sargassum muticum in the Danish estuary Limfjorden between 1984 and 1997 was followed by a decrease in abundance of native perennial macroalgae such as Halidrys siliquosa. Although commonly associated with the expansion of exotic species, it is unknown whether such structural changes affect ecosystem properties such as the production and turnover of organic matter and associated nutrients. We hypothesized that S. muticum possesses ‘ephemeral’ traits relative to the species it has replaced, potentially leading to faster and more variable turnover of organic matter. The biomass dynamics of S. muticum and H. siliquosa was therefore compared in order to assess the potential effects of the expansion of Sargassum. The biomass of Sargassum was highly variable among seasons while that of Halidrys remained almost constant over the year. Sargassum grew faster than Halidrys and other perennial algae and the annual productivity was therefore high (P/B = 12 year−1) and exceeded that of Halidrys (P/B = 5 year−1) and most probably also that of other perennial algae in the system. The major grazer on macroalgae in Limfjorden, the sea urchin Psammechinus miliaris, preferred Sargassum to Halidrys, but estimated losses due to grazing were negligible for both species and most of the production may therefore enter the detritus pool. Detritus from Sargassum decomposed faster and more completely than detritus from Halidrys and other slow-growing perennial macrophytes. High productivity and fast decomposition suggest that the increasing dominance of S. muticum have increased turnover of organic matter and associated nutrients in Limfjorden and we suggest that the ecological effects of the invasion to some extent resemble those imposed by increasing dominance of ephemeral algae following eutrophication.  相似文献   

9.
The invasiveness of algal species can be facilitated by chemo-ecological traits that allow the establishment of invasive species in a highly competitive environment. Anti-bacterial, anti-quorum sensing, anti-diatom and anti-larval properties of the invasive brown macroalga Sargassum muticum and three native Sargassum species from Oman waters were compared in laboratory and field experiments to assess whether these traits have the potential to facilitate the invasion process. Only the extract of S. muticum inhibited bacterial growth of four marine bacterial strains and quorum sensing in the reporter strain Chromobacterium violaceum CV017. Settlement, growth and survival of the diatom Cylindrotheca closterium and larvae of the bryozoan Bugula neritina were significantly inhibited by all Sargassum extracts in laboratory experiments. However, crude extracts of S. muticum had the strongest antifouling effect. Natural tissue-level concentrations of S. muticum extract reduced diatom density to about 20% compared with the controls. Larval mortality increased by 80–90% compared with controls with S. muticum extract diluted to one-third natural levels. Significant anti-diatom activity of S. muticum was confirmed in the field experiments with Sargassum extracts embedded in a phytagel matrix. Comparison of non-polar compounds by gas chromatography–mass spectrometry demonstrated that S. muticum extracts had overall fewer secondary metabolites but more species-unique compounds than extracts of native Sargassum spp. The greater antifouling defence of invasive vs. native Sargassum species indicates a selective trait that may contribute to the invasion success of S. muticum.  相似文献   

10.
Quantifying the impacts that invasive alien species (IAS) cause on affected systems is not an easy task. Here, we explore the application of variation partitioning techniques to measure and control for the effects of possible confounding factors when studying the impact that feral pigeons, European starlings, and house sparrows cause on native urban bird communities in Mexico. We argue that these IAS are provoking a severe impact on whole assemblages of native passerines only if (a) their marginal effect is statistically significant, (b) it remains so after partialling out other explanatory variables, and (c) is larger than (or similar to) the conditional effect of these covariates. We censused passerine bird assemblages and measured habitat variables in a number of greenspaces in three replicate study areas. Then, by means of partial redundancy analyses, we decomposed the total variability in bird data as a function of IAS, physical variables and vegetation data. In one of the study areas the marginal effect of IAS on native assemblages was significant, but the conditional effect was not. We conclude that this IAS effect was confounded with other explanatory variables. In the other study areas, no (marginal or partial) significant effect was found. Without invoking interspecific competition, our results support the opportunistic hypothesis, according to which IAS can exploit ecological conditions in modern cities that native species cannot even tolerate. Finally, apart from the Precautionary Principle, we found no scientific justification to control the abundance of the three IAS in our study areas.  相似文献   

11.
12.
We examined the effects of native kelps, Laminaria longicruris de la Pylaie and L. digitata (Hudson) Lamouroux, and of the invasive alga, Codium fragile ssp. tomentosoides (Van Goor) Silva, on the composition and abundance of mobile benthic macrofauna and of turf algae by measuring the response of these assemblages to experimental removal of the respective macroalgal canopy. From June 2003 to November 2004, we censused macrofauna and measured canopy cover within 4 × 10 m strips of alternating Canopy Intact (control) and Canopy Removed treatments in both a Codium- and a Laminaria-dominated habitat in the rocky subtidal zone of a semi-protected embayment on the Atlantic coast of Nova Scotia, Canada. Macroalgal canopy cover fluctuated seasonally, peaking in September/October (69% cover in 2003; 55% cover in 2004) for Codium and in May 2004 (70% cover) for kelps, and with both canopy types reaching a winter minimum in January 2004 (22 and 28% cover, respectively). In both Codium and Laminaria habitats, significant effects of canopy removal on the overall macrofaunal assemblage were evident only during periods in which canopy cover in the Canopy Intact treatment was ≥ 50%. In the Codium habitat, 4 out of 11 characteristic taxa were more abundant in the Canopy Intact treatment, where taxonomic diversity also was higher. In contrast, 4 out of 11 characteristic taxa in the Laminaria habitat were more abundant in the Canopy Removed treatment and diversity was similar between treatments. Turf algae were sampled in November 2004 and, despite between-treatment differences in the light regime, there was no significant effect of canopy removal. Our results indicate that selection of algal habitats by mobile macrofauna is likely determined by the different shelter and foraging opportunities offered by these morphologically dissimilar ecosystem engineers.  相似文献   

13.
The Japanese brown seaweed Sargassum muticum, recently invaded several shorelines worldwide including the Atlantic coast of Morocco with large well‐established populations. Within the framework of a sustainable strategy to control this invasive seaweed, we report on extraction yield, spectroscopic characterization and rheological properties of alginate, a commercially valuable colloid, from harvested biomass of S. muticum. Extraction yield was about 25.6% on dry weight basis. Infrared spectroscopy analysis shows that the obtained Fourier transform infrared spectra of the extracted biopolymer exhibit strong similarities with that of the commercial alginate. Furthermore, Proton nuclear magnetic resonance spectroscopy revealed that S. muticum alginate has almost equal amounts of β‐D‐mannuronic acid (M; 49%) and α‐L‐guluronic acid (G; 51%) with an M/G ratio of 1.04 and a high content of heteropolymeric MG GM diads suggesting a sequence distribution of an alternated polymer type. Rheological measurements were performed at different sodium alginate concentrations, temperatures and shear rates. The hydrocolloid exhibited pseudoplastic behavior and showed shear thinning, particularly at high solution concentration and low temperature which is consistent with the rheological behavior reported for commercial alginates. Considering the abundance of S. muticum in the Northwestern Atlantic coast of Morocco and the quality of the extracted hydrogel, this invasive species could be considered as a potential source of alginates.  相似文献   

14.
Aim Propagule size and output are critical for the ability of a plant species to colonize new environments. If invasive species have a greater reproductive output than native species (via more and/or larger seeds), then they will have a greater dispersal and establishment ability. Previous comparisons within plant genera, families or environments have conflicted over the differences in reproductive traits between native and invasive species. We went beyond a genus‐, family‐ or habitat‐specific approach and analysed data for plant reproductive traits from the global literature, to investigate whether: (1) seed mass and production differ between the original and introduced ranges of invasive species; (2) seed mass and production differ between invasives and natives; and (3) invasives produce more seeds per unit seed mass than natives. Location Global. Methods We combined an existing data set of native plant reproductive data with a new data compilation for invasive species. We used t‐tests to compare original and introduced range populations, two‐way ANOVAs to compare natives and invasives, and an ANCOVA to examine the relationship between seed mass and production for natives and invasives. The ANCOVA was performed again incorporating phylogenetically independent contrasts to overcome any phylogenetic bias in the data sets. Results Neither seed mass nor seed production of invasive species differed between their introduced and original ranges. We found no significant difference in seed mass between invasives and natives after growth form had been accounted for. Seed production was greater for invasive species overall and within herb and woody growth forms. For a given seed mass, invasive species produced 6.7‐fold (all species), 6.9‐fold (herbs only) and 26.1‐fold (woody species only) more seeds per individual per year than native species. The phylogenetic ANCOVA verified that this trend did not appear to be influenced by phylogenetic bias within either data set. Main conclusions This study provides the first global examination of both seed mass and production traits in native and invasive species. Invasive species express a strategy of greater seed production both overall and per unit seed mass compared with natives. The consequent increased likelihood of establishment from long‐distance seed dispersal may significantly contribute to the invasiveness of many exotic species.  相似文献   

15.
Natural assemblages are variable in space and time; therefore, quantification of their variability is imperative to identify relevant scales for investigating natural or anthropogenic processes shaping these assemblages. We studied the variability of intertidal macroalgal assemblages on the North Portuguese coast, considering three spatial scales (from metres to 10 s of kilometres) following a hierarchical design. We tested the hypotheses that (1) spatial pattern will be invariant at all the studied scales and (2) spatial variability of macroalgal assemblages obtained by using species will be consistent with that obtained using functional groups. This was done considering as univariate variables: total biomass and number of taxa as well as biomass of the most important species and functional groups and as multivariate variables the structure of macroalgal assemblages, both considering species and functional groups. Most of the univariate results confirmed the first hypothesis except for the total number of taxa and foliose macroalgae that showed significant variability at the scale of site and area, respectively. In contrast, when multivariate patterns were examined, the first hypothesis was rejected except at the scale of 10 s of kilometres. Both uni- and multivariate results indicated that variation was larger at the smallest scale, and thus, small-scale processes seem to have more effect on spatial variability patterns. Macroalgal assemblages, both considering species and functional groups as surrogate, showed consistent spatial patterns, and therefore, the second hypothesis was confirmed. Consequently, functional groups may be considered a reliable biological surrogate to study changes on macroalgal assemblages at least along the investigated Portuguese coastline.  相似文献   

16.
Climate-driven and biodiversity effects on the structure and functioning of ecosystems are increasingly studied as multiple stressors, which subsequently may influence species invasions. We used a mesocosm experiment to test how increases in temperature and CO2 partial pressure (pCO2) interact with functional diversity of resident macroalgal assemblages and affect the invasion success of the non-indigenous macroalga Sargassum muticum. Early settlement of S. muticum germlings was assessed in the laboratory under common environmental conditions across three monocultures and a polyculture of functional groups of native macroalgae, which had previously grown for 3 weeks under crossed treatments of temperature and pCO2. Functional diversity was a key driver shaping early settlement of the invader, with significant identity and richness effects: higher settlement occurred in low-diversity and low-stature assemblages, even after accounting for treatment biomass. Overall, early survivorship of settled germlings responded to an interaction of temperature and pCO2 treatments, with survivorship enhanced in one treatment (high pCO2 at ambient Temperature) after 3 days, and reduced in another (ambient pCO2 at high Temperature) after 10 days, although size was enhanced in this same treatment. After 6 months in the field, legacy effects of laboratory treatments remained, with S. muticum reaching higher cover in most assemblages previously subjected to ambient pCO2, but ephemeral green algae appearing disproportionately after elevated-pCO2 treatment. These results caution that invasion outcomes may change at multiple points in the life cycle under higher-CO2, higher-temperature conditions, in addition to supporting a role for intact, functionally diverse assemblages in limiting invader colonization.  相似文献   

17.
Invasive plants are capable of modifying attributes of soil to facilitate further invasion by conspecifics and other invasive species. We assessed this capability in three important plant invaders of grasslands in the Great Plains region of North America: leafy spurge (Euphorbia esula), smooth brome (Bromus inermis) and crested wheatgrass (Agropyron cristatum). In a glasshouse, these three invasives or a group of native species were grown separately through three cycles of growth and soil conditioning in both steam-pasteurized and non-pasteurized soils, after which we assessed seedling growth in these soils. Two of the three invasive species, Bromus and Agropyron, exhibited significant self-facilitation via soil modification. Bromus and Agropyron also had significant facilitative effects on other invasives via soil modification, while Euphorbia had significant antagonistic effects on the other invasives. Both Agropyron and Euphorbia consistently suppressed growth of two of three native forbs, while three native grasses were generally less affected. Almost all intra- and interspecific effects of invasive soil conditioning were dependent upon presence of soil biota from field sites where these species were successful invaders. Overall, these results suggest that that invasive modification of soil microbiota can facilitate plant invasion directly or via ‘cross-facilitation’ of other invasive species, and moreover has potential to impede restoration of native communities after removal of an invasive species. However, certain native species that are relatively insensitive to altered soil biota (as we observed in the case of the forb Linum lewisii and the native grasses), may be valuable as ‘nurse’species in restoration efforts.  相似文献   

18.
A growing number of studies seeking generalizations about the impact of plant invasions compare heavily invaded sites to uninvaded sites. But does this approach warrant any generalizations? Using two large datasets from forests, grasslands and desert ecosystems across the conterminous United States, we show that (i) a continuum of invasion impacts exists in many biomes and (ii) many possible species–area relationships may emerge reflecting a wide range of patterns of co-occurrence of native and alien plant species. Our results contradict a smaller recent study by Powell et al. 2013 (Science 339, 316–318. (doi:10.1126/science.1226817)), who compared heavily invaded and uninvaded sites in three biomes and concluded that plant communities invaded by non-native plant species generally have lower local richness (intercepts of log species richness–log area regression lines) but steeper species accumulation with increasing area (slopes of the regression lines) than do uninvaded communities. We conclude that the impacts of plant invasions on plant species richness are not universal.  相似文献   

19.
The success of exotic plants may be due to lower herbivore loads than those on native plants (Enemies Release Hypothesis). Predictions of this hypothesis include lower herbivore abundances, diversity, and damage on introduced plant species compared to native ones. Greater density or diversity of predators and parasitoids on exotic versus native plants may also reduce regulation of exotic plants by herbivores. To test these predictions, we measured arthropod abundance, arthropod diversity, and foliar damage on invasive Chinese tallow tree (Triadica sebifera) and three native tree species: silver maple (Acer saccharinum), sycamore (Platanus occidentalis), and sweetgum (Liquidambar styraciflua). Arthropod samples were collected with canopy sweep nets from six 20 year old monoculture plots of each species at a southeast Texas site. A total of 2,700 individuals and 285 species of arthropods were caught. Overall, the species richness and abundance of arthropods on tallow tree were similar to the natives. But, ordination (NMS) showed community composition differed on tallow tree compared to all three native trees. It supported an arthropod community that had relatively lower herbivore abundance but relatively more predator species compared to the native species examined. Leaves were collected to determine damage. Tallow tree experienced less mining damage than native trees. The results of this study supported the Enemies Release Hypothesis predictions that tallow tree would have low herbivore loads which may contribute to its invasive success. Moreover, a shift in the arthropod community to fewer herbivores without a reduction in predators may further limit regulation of this exotic species by herbivores in its introduced range.  相似文献   

20.
The high biodiversity of coral reefs is attributable to the many invertebrate groups which live in symbiotic relationships with other reef organisms, particularly those which associate with the living coral habitat. However, few studies have examined the diversity and community structure of coral-dwelling invertebrates and how they vary among coral species. This study quantified the species richness and composition of animals associated with four common species of branching corals (Acropora nasuta, A. millepora, Pocillopora damicornis, and Seriatopora hystrix) at Lizard Island in the northern Great Barrier Reef. One hundred and seventy-eight nominal species from 12 different phyla were extracted across 50 replicate colonies of each coral host. A single coral colony, approximately 20 cm in diameter, harbored as many as 73 individuals and 24 species. There were substantial differences in invertebrate species composition among coral hosts of different families as well as genera. Twenty-seven species (15% of all taxa collected) were found on only one of the four different coral species, which may potentially indicate some level of specialization among coral hosts. The distinct assemblages on different coral species, and the presence of potential specialists, suggests invertebrate communities will be sensitive to the differential loss of branching coral species resulting from coral reef degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号