首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, pyrolysis of grape bagasse was investigated with the aim to study the product distribution and their chemical compositions and to identify optimum process conditions for maximizing the bio-oil yield. Particular investigated process variables were temperature (350-600 °C), heating rate (10-50 °C/min) and nitrogen gas flow rate (50-200 cm3/min). The maximum oil yield of 27.60% was obtained at the final pyrolysis temperature of 550 °C, sweeping gas flow rate of 100 cm3/min and heating rate of 50 °C/min in a fixed-bed reactor. The elemental analysis and heating value of the bio-oils were determined, and then the chemical composition of the bio-oil was investigated using chromatographic and spectroscopic techniques such as column chromatography, 1H NMR and FTIR. The fuel properties of the bio-oil such as flash point, viscosity and density were also determined. The bio-oils obtained from grape bagasse were presented as an environmentally friendly feedstock candidate for bio-fuels.  相似文献   

2.
Pyrolysis of olive and hazelnut bagasse biomass samples with two selected catalysts, namely activated alumina and sodium feldspar, have been conducted in a fixed-bed reactor. Experiments were carried out under certain pyrolysis conditions in a fixed-bed Heinze reactor. The catalyst was mixed with feedstock in different percentages. The effects of catalysts and their ratio (10%, 20%, 30% and 40% w/w) on the pyrolysis product yields were investigated and the results were compared with the results of experiments performed without catalyst under the same conditions. The maximum bio-oil yields for the bio-oils obtained from pyrolysis of olive bagasse were found as 37.07% and 36.67% on using activated alumina and sodium feldspar as catalysts, respectively, while these values were 27.64% and 31.68%, respectively, for the bio-oils from hazelnut bagasse. The oxygen contents of the bio-oils were also markedly reduced while the yield of bio-oil was reduced by the use of catalysts. The pyrolysis oils were examined using some spectroscopic and chromatographic analysis techniques. The results were compared with the petroleum fractions and the possibility of being a potential source of bio-oils was investigated.  相似文献   

3.
A reactor was designed and commissioned to study the fast pyrolysis behavior of banagrass as a function of temperature and volatiles residence time. Four temperatures between 400 and 600°C were examined as well as four residence times between ~1.0 and 10 seconds. Pyrolysis product distributions of bio-oil, char and permanent gases were determined at each reaction condition. The elemental composition of the bio-oils and chars was also assessed. The greatest bio-oil yield was recorded when working at 450°C with a volatiles residence time of 1.4 s, ~37 wt% relative to the dry ash free feedstock (excluding pyrolysis water). The amounts of char (organic fraction) and permanent gases under these conditions are ~4 wt% and 8 wt% respectively. The bio-oil yield stated above is for ''dry'' bio-oil after rotary evaporation to remove solvent, which results in volatiles and pyrolysis water being removed from the bio-oil. The material removed during drying accounts for the remainder of the pyrolysis products. The ''dry'' bio-oil produced under these conditions contains ~56 wt% carbon which is ~40 wt% of the carbon present in the feedstock. The oxygen content of the 450°C, 1.4 s ''dry'' bio-oil is ~38 wt%, which accounts for ~33 wt% of the oxygen in the feedstock. At higher temperature or longer residence time less bio-oil and char is recovered and more gas and light volatiles are produced. Increasing the temperature has a more significant effect on product yields and composition than increasing the volatiles residence time. At 600°C and a volatiles residence time of 1.2 seconds the bio-oil yield is ~21 wt% of the daf feedstock, with a carbon content of 64 wt% of the bio-oil. The bio-oil yield from banagrass is significantly lower than from woody biomass or grasses such as switchgrass or miscanthus, but is similar to barley straw. The reason for the low bio-oil yield from banagrass is thought to be related to its high ash content (8.5 wt% dry basis) and high concentration of alkali and alkali earth metals (totaling ~2.8 wt% relative to the dry feedstock) which are catalytic and increase cracking reactions during pyrolysis.  相似文献   

4.
Biomass in the form of agricultural residues is becoming popular among new renewable energy sources, especially given its wide potential and abundant usage. Pyrolysis is the most important process among the thermal conversion processes of biomass. In this study, the various characteristics of bio-oils acquired under different pyrolysis conditions from safflower seed press cake (SPC) were identified. The elemental analyses and calorific values of the bio-oils were determined, and then the chemical compositions of the bio-oils were investigated using chromatographic and spectroscopic techniques such as column chromatography, 1H NMR, FTIR and GC. The fuel properties of the bio-oil such as kinematic viscosity, flash point, density, water content and ASTM distillation were also determined. Chemical compositions of bio-oils showed that some quantities of hydrocarbons were present, while oxygenated and polar fractions dominated. The bio-oils obtained from safflower seed press cake were presented as an environmentally friendly feedstock candidate for biofuels and chemicals.  相似文献   

5.
Kar Y 《Bioresource technology》2011,102(20):9800-9805
This study investigated potential synergistic activities between tar sand and walnut shell during co-pyrolysis. A series of pyrolysis studies were conducted under specific operating conditions in a fixed-bed reactor. The highest yield of bio-oil from the co-pyrolysis was 31.84 wt.%, which represented an increase of 7.88 wt.% compared to the bio-oil yield from the pyrolysis of walnut shell alone. The bio-oils were characterized using various spectroscopic and chromatographic analysis techniques. The results indicated that the synergetic effect increased the co-pyrolysis bio-oil yield and its quality. Consequently, the results indicate that the bio-oils obtained will be suitable for the production of fuels and chemicals as feedstock after required improvements.  相似文献   

6.
Bae YJ  Ryu C  Jeon JK  Park J  Suh DJ  Suh YW  Chang D  Park YK 《Bioresource technology》2011,102(3):3512-3520
The pyrolysis of two brown macroalgae (Undaria pinnatifida and Laminaria japonica) and one red macroalgae (Porphyra tenera) was investigated for the production of bio-oil within the temperature range of 300-600°C. Macroalgae differ from lignocellulosic land biomass in their constitutional compounds and high N, S and ash contents. The maximum production of bio-oil was achieved at 500°C, with yields between 37.5 and 47.4 wt.%. The main compounds in bio-oils vary between macroalgae and are greatly different from those of land biomass, especially in the presence of many nitrogen-containing compounds. Of the gaseous products, CO(2) was dominant, while C(1)-C(4) hydrocarbons gradually increasing at 400°C and above. The pretreatment of macroalgae by acid washing effectively reduced the ash content. The pyrolysis of macroalgae offers a new opportunity for feedstock production; however, the utilization of bio-oil as a fuel product needs further assessment.  相似文献   

7.
Bio-oil from hydro-liquefaction of Dunaliella salina over Ni/REHY catalyst   总被引:2,自引:0,他引:2  
Yang C  Jia L  Chen C  Liu G  Fang W 《Bioresource technology》2011,102(6):4580-4584
The hydro-liquefaction of Dunaliella salina over solid acid catalyst was examined under moderate conditions (200 °C, 2.0 MPa, 60 min). The significant increment of bio-oil yield was obtained over Ni/REHY catalyst, increasing about 20% compared without modified REHY. H2-temperature-programmed desorption (H2-TPD) and X-ray powder diffraction (XRD) demonstrated that Ni/REHY as bifunctional catalyst played roles in hydrogenation and cracking, and further achieved the deoxygenation and desulfurization of D. salina under hydrogen gas. The oxygen and sulfur contents of bio-oils decreased relative to D. salina, and the higher heating value (HHV) significantly increased to 30.11 MJ/kg. From gas chromatography/mass spectrometry (GC/MS), the dominant compounds of the bio-oils were found to be esters, glycerins. The qualities of bio-oils were greatly improved. Hydro-liquefaction was beneficial to the exploration of bio-oils from microalgae.  相似文献   

8.
Lei H  Ren S  Wang L  Bu Q  Julson J  Holladay J  Ruan R 《Bioresource technology》2011,102(10):6208-6213
Microwave pyrolysis of distillers dried grain with solubles (DDGS) was investigated to determine the effects of pyrolytic conditions on the yields of bio-oil, syngas, and biochar. Pyrolysis process variables included reaction temperature, time, and power input. Microwave pyrolysis of DDGS was analyzed using response surface methodology to find out the effect of process variables on the biofuel (bio-oil and syngas) conversion yield and establish prediction models. Bio-oil recovery was in the range of 26.5-50.3 wt.% of the biomass. Biochar yields were 23.5-62.2% depending on the pyrolysis conditions. The energy content of DDGS bio-oils was 28 MJ/kg obtained at the 650 °C and 8 min, which was about 66.7% of the heating value of gasoline. GC/MS analysis indicated that the biooil contained a series of important and useful chemical compounds: aliphatic and aromatic hydrocarbons. At least 13% of DDGS bio-oil was the same hydrocarbon compounds found in regular unleaded gasoline.  相似文献   

9.
The residues from the palm oil industry are the main contributors to biomass waste in Malaysia, and these wastes require extra attention with respect to handling. The biomass waste is a renewable resource that can potentially be used to produce absorbents, fuels, and chemical feedstocks through the pyrolysis process. In this study, the wastes of palm shell, empty fruit bunches, and mesocarp fiber were characterized and then pyrolyzed in a fixed-bed reactor under the following conditions: a temperature of 500 °C, a nitrogen flow rate of 2 L/min and reaction time of 60 min. After pyrolysis, characterization of the products with an emphasis on the bio-oil and the bio-char was performed using various approaches (including Karl Fischer water-content tests, FTIR, SEM, TGA and CNH/O analyses). The results showed that the pyrolysis of palm oil wastes yielded more bio-oil than bio-char or non-condensable gases. The results also indicated that all of the bio-oils were acidic and contained high levels of oxygen. The bio-oils heating values were low and varied from 10.49 MJ/kg to 14.78 MJ/kg. The heating values of the bio-chars (20–30 MJ/kg) were higher than those of the bio-oils. Among the biomasses studied in this work, palm shell contained the highest level of lignin and showed the highest levels of bio-char yield and fixed and elemental carbon in the raw and bio-char form.  相似文献   

10.
Microwave-assisted pyrolysis of microalgae for biofuel production   总被引:1,自引:0,他引:1  
Du Z  Li Y  Wang X  Wan Y  Chen Q  Wang C  Lin X  Liu Y  Chen P  Ruan R 《Bioresource technology》2011,102(7):4890-4896
The pyrolysis of Chlorella sp. was carried out in a microwave oven with char as microwave reception enhancer. The results indicated that the maximum bio-oil yield of 28.6% was achieved under the microwave power of 750 W. The bio-oil properties were characterized with elemental, GC-MS, GPC, FTIR, and thermogravimetric analysis. The algal bio-oil had a density of 0.98 kg/L, a viscosity of 61.2 cSt, and a higher heating value (HHV) of 30.7 MJ/kg. The GC-MS results showed that the bio-oils were mainly composed of aliphatic hydrocarbons, aromatic hydrocarbons, phenols, long chain fatty acids and nitrogenated compounds, among which aliphatic and aromatic hydrocarbons (account for 22.18% of the total GC-MS spectrum area) are highly desirable compounds as those in crude oil, gasoline and diesel. The results in this study indicate that fast growing algae are a promising source of feedstock for advanced renewable fuel production via microwave-assisted pyrolysis (MAP).  相似文献   

11.
Olive bagasse (Olea europea L.) was pyrolysed in a fixed-bed reactor. The effects of pyrolysis temperature, heating rate, particle size and sweep gas flow rates on the yields of the products were investigated. Pyrolysis runs were performed using pyrolysis temperatures between 350 and 550 degrees C with heating rates of 10 and 50 degrees C min(-1). The particle size and sweep gas flow rate varied in the ranges 0.224-1.8mm and 50-200 cm3 min(-1), respectively. The bio-oil obtained at 500 degrees C was analysed and at this temperature the liquid product yield was the maximum. The various characteristics of bio-oil obtained under these conditions were identified on the basis of standard test methods. The empirical formula of the bio-oil with heating value of 31.8 MJ kg(-1) was established as CH(1.65)O(0.25)N(0.03). The chemical characterization showed that the bio-oil obtained from olive bagasse may be potentially valuable as a fuel and chemical feedstock.  相似文献   

12.
李宁  王祥  柏雪源  李志合  张英 《生物工程学报》2015,31(10):1501-1511
在对操作流化速度进行冷态实验以及流化床温度稳定性进行测试的基础上,研制了新型流化床反应器,并使用玉米秸秆为原料,探究了热烟气气氛下快速热解制取生物油的最佳反应温度以及床料。在最佳热解条件下,对糠醛废弃物、木糖废弃物以及海藻进行了实验研究,得到了各产物产率,并对得到的生物油进行了物理特性分析。结果显示,在最佳操作流速下,当温度为500 ℃时使用白云石为床料可以获得最大生物油产率。4种原料中玉米秸秆的生物油产率最高,达到42.3 wt%。在最佳热解条件下获得了4种物料不同含量的重油和轻质油,其中重油的物理特性差别很小,重油的热值比轻质油的热值高很多。不可冷凝气的高位热值是6.5?8.5 MJ/m3,因此不可冷凝气体可以作为一种燃料气被加以利用。  相似文献   

13.
The poor and inconsistent physicochemical properties of bio-oil are inhibiting its industrialized production. We investigated the variability in properties of switchgrass bio-oil produced at three pyrolysis temperatures (T = 450, 500, and 550 °C) and three feedstock moisture contents (MC = 5%, 10%, and 15%) in a 3 × 3 factorial experiment in order to exploit opportunities to improve bio-oil properties through optimization of pyrolysis parameters. Results showed that even with the single type of feedstock and pyrolysis system, the two main factors and their interaction caused large variations in bio-oil yield and most of the measured physicochemical properties. Following improvements of bio-oil properties could be individually achieved by selecting an optimal pyrolysis condition (shown in parenthesis) comparing with the worst case: increase of bio-oil yield by more than twofold (MC = 10%, T = 450 °C), increase of pH by 20.4% from 2.74 to 3.3 (MC = 10%, T = 550 °C), increase of higher heating value by 18.1% from 16.6 to 19.6 MJ/kg (MC = 10%, T = 450 °C), decrease of density by 5.9% from 1.18 to 1.11 g/cm3 (MC = 5%, T = 550 °C), decrease of water content by 36% from 31.4 to 20.1 wt.% (MC = 5%, T = 450 °C), decrease of viscosity by 40% from 28.2 to 17 centistokes (MC = 5%, T = 550 °C), decrease of solid content by 57% from 2.86 to 1.23 wt.% (MC = 15%, T = 550 °C), and decrease of ash content by 41.9% from 0.62 to 0.36 wt.% (MC = 15%, T = 550 °C). There is no single, clear-cut optimal condition that can satisfy the criteria for a bio-oil product with all the desired properties. Trade-offs should be balanced according to the usage of the end-products.  相似文献   

14.
Pyrolysis experiments were performed with algal and lignocellulosic feedstocks under similar reactor conditions for comparison of product (bio-oil, gas and bio-char) yields and composition. In spite of major differences in component bio-polymers, feedstock properties relevant to thermo-chemical conversions, such as overall C, H and O-content, C/O and H/C molar ratio as well as calorific values, were found to be similar for algae and lignocellulosic material. Bio-oil yields from algae and some lignocellulosic materials were similar; however, algal bio-oils were compositionally different and contained several N-compounds (most likely from protein degradation). Algal bio-char also had a significantly higher N-content. Overall, our results suggest that it is feasible to convert algal cultures deficient in lipids, such as nuisance algae obtained from natural blooms, into liquid fuels by thermochemical methods. As such, pyrolysis technologies being developed for lignocellulosic biomass may be directly applicable to algal feedstocks as well.  相似文献   

15.
Biofuels can play an important role in decreasing the use of fossil fuels, in particular in the transport sector, which absorbs about 30 % of the EU energy requirements. This review illustrates the motivations behind biofuel development, the government incentives and regulations and the current approaches on sustainable biomass conversion in Europe, and provides an overview on the major steps involved in thermochemical processes and on the issues challenging their deployment at large scale, with particular emphasis on the pyrolysis of biomass and bio-oil upgrading using conventional oil refinery settings. Distribution of sustainable biofuels in Europe and future prospects towards achieving success of transport biofuels were also addressed. The literature suggests that importing biofuels and increasing the cost of CO2 to at least €60/t CO2 will be necessary to meet the renewable obligation targets in the EU. Algae represent the future feedstock for biofuels but currently are limited by their high production costs and high N content. Pyrolysis is cost competitive compared to other technologies such as fermentation and gasification, but the quality of bio-oils requires upgrading mainly to lower their oxygen content and enhance their thermal stability. The recent advances in bio-oil upgrading using catalytic cracking and hydro-treating are very promising for the future deployment of advanced biofuels in the coming decades. However, significant investments in applied research and demonstration are still required to meet the 2020/2030 biofuel targets.  相似文献   

16.
The low temperature microwave activation of biomass has been investigated as a novel, energy efficient route to bio-oils. The properties of the bio-oil produced were considered in terms of fuel suitability. Water content, elemental composition and calorific value have all been found to be comparable to and in many cases better than conventional pyrolysis oils. Compositional analysis shows further differences with conventional pyrolysis oils including simpler chemical mixtures, which have potential as fuel and chemical intermediates. The use of simple additives, e.g. HCl, H2SO4 and NH3, affects the process product distribution, along with changes in the chemical composition of the oils. Clearly the use of our low temperature technology gives significant advantages in terms of preparing a product that is much closer to that which is required for transport fuel applications.  相似文献   

17.
用氧弹热值仪测定了生长在硫和氟复合污染环境和相对洁净环境下的9种木本植物幼苗叶片热值。结果表明,植物叶片的基础干重热值、灰分含量因种类不同而有差异,其中热值较高的(大于19.00kJ g^-1)植物有铁冬青(Ilex rotunda)、华润楠(Machilus chinensis)和仪花(Lysidice rhodostegia),热值中等的(介于18.00-19.00kJ g^-1)植物有复羽叶栾树(Koelreuteria bipinnata)、环榕(Ficus annulata)、乐昌含笑(Michelia chapensis)、小叶榕(Ficus microcarpa)和红花油茶(Camellia semiserrata),热值低的(低于18.00kJ g^-1)种类有火焰木(Spathodea campanulata)。大气污染导致复羽叶栾树、华润楠和铁冬青幼苗叶片基础干重热值增加,仪花、含笑、小叶榕、火焰木和红花油茶幼苗叶片基础干重热值下降,环榕基础干重热值则维持相对稳定。Pearson相关系数分析表明,9种植物幼苗叶片去灰分热值与叶片自身C/N比、叶片灰分含量的相关性均不显著,但污染胁迫下植物幼苗叶片热值相对波动程度与其对污染物的抗性有关,提示叶片热值可以作为植物幼苗对硫和氟复合污染的敏感性指标。  相似文献   

18.
Polyhydroxyalkanoates (PHAs) production from low value substrates and/or byproducts represents an economical and environmental promising alternative to established industrial manufacture methods. Bio-oil resulting from the fast-pyrolysis of chicken beds was used as substrate to select a mixed microbial culture (MMC) able to produce PHA under feast/famine conditions. In this study a maximum PHA content of 9.2% (g/g cell dry weight) was achieved in a sequencing batch reactor (SBR) operated for culture selection. The PHA obtained with bio-oil as a carbon source was a copolymer composed by 70% of hydroxybutyrate (HB) and 30% of hydroxyvalerate (HV) monomers. Similar results have been reported by other studies that use real complex substrates for culture selection indicating that bio-oil can be a promising feedstock to produce PHAs using MMC. To the best of our knowledge this is the first study that demonstrated the use of bio-oil resulting from fast pyrolysis as a possibly feedstock to produce short chain length polyhydroxyalkanoates.  相似文献   

19.
The pyrolysis of wheat and barley spent grains resulting from bio-ethanol and beer production respectively was investigated at temperatures between 460 and 540 °C using an activated alumina bed. The results showed that the bio-oil yield and quality depend principally on the applied temperature where pyrolysis at 460 °C leaves a bio-oil with lower nitrogen content in comparison with the original spent grains and low oxygen content. The viscosity profile of the spent grains indicated that activated alumina could promote liquefaction and prevent charring of the structure between 400 and 460 °C. The biochar contains about 10-12% of original carbon and 13-20% of starting nitrogen resulting very attractive as a soil amendment and for carbon sequestration. Overall, value can be added to the spent grains opening a new market in bio-fuel production without the needs of external energy. The bio-oil from spent grains could meet about 9% of the renewable obligation in the UK.  相似文献   

20.
A comparative study on the composition, biodiesel production and fuel properties of non-edible oils from Euphorbia lathyris L. (EL), Sapium sebiferum L. (SS), and Jatropha curcas L. (JC) was conducted. Under optimal conditions, the FAME content and yield of the three oils were greater than 97.5 wt.% and 84.0%, respectively. The best biodiesel was produced from EL due to its high monounsaturation (82.66 wt.%, Cn: 1), low polyunsaturation (6.49 wt.%, Cn: 2, 3) and appropriate proportion of saturated components (8.78 wt.%, Cn: 0). Namely, EL biodiesel possessed a cetane number of 59.6, an oxidation stability of 10.4 h and a cold filter plug point of -11 °C. However, the cetane number (40.2) and oxidative stability (0.8 h) of dewaxed SS kernel oil (DSSK) biodiesel were low due to the high polyunsaturation (72.79 wt.%). In general, the results suggest that E. lathyris L. is a promising species for biodiesel feedstock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号