首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
An attempt was made to estimate the number of Escherichia coli K-12 cells rendered permeable to antibiotics under Ca2+ treatment. The effect of cold factor and Ca2+ alone as well as the cell age on the induction of permeability and the energy dependence of the latter were also investigated. About 70-75% and more exponentially growing cells as a result of Ca2+ treatment became sensitive to actinomycin, rubomycin and olivomycin. This number was somewhat lower (40-50%) in sationary phase culture. A fraction (20-30%) of stationary phase cells appeared to be sensitive to antibiotics even without Ca2+ pretreatment. Preincubation of the cells in cold in the absence of Ca2+ cations did not induce the cell permeability. The transport of antibiotics inside the cell was not prevented by an uncoupler of oxidative phosphorylation --carbonylcyanid-m-chlorophenylhydrazone (CCCP). It is suggested that the cells which are rendered permeable to tested antibiotics represent the "compentent" cells capable to uptake molecules of exogenous DNA as well.  相似文献   

2.
The effect of various metabolic inhibitors (carbonylcyanid-m-chlorophenylhydrazone, nigericin, valinomycin, dicyclocarbodiimide, arsenate, NaF, etc.) and lipid-soluble synthetic ions (tetraphenylphosphonium bromide and tetraphenylboron sodium) on deoxyribonucleic acid (DNA) entry during transformation of Ca2+-treated Escherichia coli cells with plasmid DNA and on cell viability was investigated. In contrast to intact cells, Ca2+-treated E. coli cells were permeable to nigericin, valinomycin, and the other drugs tested. The inhibitors differentially affected [14C]proline active transport, and whereas some drugs inhibited transformation, the effects did not correlate with the effects on transport. The most potent inhibitors of transformation were nigericin, dicyclocarbodiimide, and tetraphenylboron sodium. Carbonylcyanid-m-chlorophenylhydrazone, tetraphenylphosphonium bromide, and valinomycin were relatively inactive. Tetraphenylboron sodium- and nigericin-treated cells bound were plasmid [14C]DNA in the deoxyribonuclease-resistant form than the control and other sample cells. Nevertheless, te penetration of exogenous plasmid DNA into the cell was greatly reduced, at least in case of nigericin. Unlike the other drugs, nigericin and dicyclocarbodiimide drastically affected the cell viability, the former within very short times of interaction. It is concluded that proton motive force does not play any significant role in DNA entry into Ca2+-treated E. coli cells. The results also suggest that adenosine 5'-triphosphate is not required for DNA entry either. The inhibitory effect of certain drugs is discussed in terms of structural perturbations induced by the drugs in cell envelope membranes.  相似文献   

3.
Ca2+ treatment renders the outer membrane of Escherichia coli reversibly permeable for macromolecules. We investigated whether Ca2+-induced uptake of exogenous protein into the periplasm occurs by mechanisms similar to Ca2+-induced uptake of DNA into the cytoplasm during transformation. Protein import through the outer membrane was monitored by measuring reconstitution of maltose transport after the addition of shock fluid containing maltose-binding protein. DNA import through the outer and inner membrane was measured by determining the efficiency of transformation with plasmid DNA. Both processes were stimulated by increasing Ca2+ concentrations up to 400 mM. Plasmolysis was essential for a high efficiency; reconstitution and transformation could be stimulated 5- and 40-fold, respectively, by a high concentration of sucrose (400 mM) in cells incubated with a suboptimal Ca2+ concentration (50 mM). The same divalent cations that promote import of DNA (Ca2+, Ba2+, Sr2+, Mg2+, and Ni2+) also induced import of protein. Ca2+ alone was found to be inefficient in promoting reconstitution; successive treatment with phosphate and Ca2+ ions was essential. Transformation also was observed in the absence of phosphate, but could be stimulated by pretreatment with phosphate. The optimal phosphate concentrations were 100 mM and 1 to 10 mM for reconstitution and transformation, respectively. Heat shock, in which the cells are rapidly transferred from 0 to 42 degrees C, affected the two processes differently. Incubation of cells at 0 degrees C in Ca2+ alone allows rapid entry of protein, but not of DNA. Transformation was observed only when exogenous DNA was still present during the heat shock. Shock fluid containing maltose-binding protein inhibited transformation (with 6 microgram of DNA per ml, half-maximal inhibition occurred at around 300 microgram of shock fluid per ml). DNA inhibited reconstitution (with 5 microgram of shock fluid per ml, half-maximal inhibition occurred at around 3 mg of DNA per ml).  相似文献   

4.
Net synthesis of adenosine 5'-triphosphate (ATP) in energy-depleted cells of Escherichia coli was observed when an inwardly directed protonmotive force was artificially imposed. In wild-type cells, ATP synthesis occurred whether the protonmotive force was dominated by the membrane potential (negative inside) or the pH gradient (alkaline inside). Formation of ATP did not occur unless the protonmotive force exceeded a value of 200 mV. Under these conditions, no ATP synthesis was found when cells were exposed to an inhibitor of the membrane-bound Ca2+- and Mg2+- stimulated adenosine triphosphatase (EC 3.6.1.3), dicyclohexylcarbodiimide, or to a proton conductor, carbonylcyanide-p-trifluoromethoxyphenyl-hydrazone. Adenosine triphosphatase-negative mutants failed to show ATP synthesis in response to either a membrane potential or a pH gradient. ATP synthesis driven by a protonmotive force was observed in a cytochrome-deficient mutant. These observations are consistent with the chemiosmotic hypothesis of Mitchell (1961, 1966, 1974).  相似文献   

5.
The mechanism for the extrusion of Na+ from Mycoplasma gallisepticum cells was examined. Na+ efflux from cells was studied by diluting 22Na+-loaded cells into an isoosmotic NaCl solution and measuring the residual 22Na+ in the cells. Uphill 22Na+ efflux was found to be glucose dependent and linear with time over a 60-s period and showed almost the same rate in the pH range of 6.5 to 8.0. 22Na+ efflux was markedly inhibited by dicyclohexylcarbodiimide (DCCD, 10 microM), but not by the proton-conducting ionophores SF6847 (0.5 microM) or carbonyl cyanide m-chlorophenylhydrazone (CCCP, 10 microM) over the entire pH range tested. An ammonium diffusion potential and a pH gradient were created by diluting intact cells or sealed membrane vesicles of M. gallisepticum loaded with NH4Cl into a choline chloride solution. The imposed H+ gradient (inside acid) was not affected by the addition of either NaCl or KCl to the medium. Dissipation of the proton motive force by CCCP had no effect on the growth of M. gallisepticum in the pH range of 7.2 to 7.8 in an Na+-rich medium. Additionally, energized M. gallisepticum cells were stable in an isoosmotic NaCl solution, even in the presence of proton conductors, whereas nonenergized cells tended to swell and lyse. These results show that in M. gallisepticum Na+ movement was neither driven nor inhibited by the collapse of the electrochemical gradient of H+, suggesting that in this organism Na+ is extruded by an electrogenic primary Na+ pump rather than by an Na+-H+ exchange system energized by the proton motive force.  相似文献   

6.
The effect of energy deprivation and H2O2 on the contraction, shape, and intracellular free Ca2+ concentration of myocardial muscle cells was investigated using suspensions of freshly isolated, electrically stimulated rat ventricle heart cells. The mitochondrial uncoupling agent carbonyl cyanide m-chlorophenylhydrazone (CCCP) was used to decrease the rate of ATP synthesis. At 0.9 mM extracellular Ca2+, CCCP (0.25 microM) reduced the number of contracting cells by 50% after 5 min, and the number of rod-shaped cells by 40% after 10 min. The effects of CCCP were associated with a substantial decrease in measured cellular ATP concentrations. The deleterious effect of exposure of myocytes to CCCP for periods of up to 5 min was enhanced by an increase in the extracellular Ca2+ concentration, but markedly reduced in the absence of electrical stimulation. Verapamil protected myocytes from the deleterious effects of CCCP during the first 5 min but not at later times. In the presence of 46 mM extracellular K+, CCCP caused a marked increase in the myoplasmic free Ca2+ concentration (measured using quin2). This effect was inhibited by verapamil and was not observed in the absence of K+-induced depolarization. Exposure of myocytes to H2O2 (0.5 mM) caused a substantial decrease both in the number of cells which exhibited normal end-to-end synchronous contraction and in the total number of cells which contracted either partially or fully. The effects of H2O2 were more pronounced at higher concentrations of the peroxide, with longer times of exposure to the agent, and at higher concentrations of extracellular Ca2+, and were partially reversed by dimethyl sulfoxide. The results indicate that both ATP deprivation and H2O2, possibly through the generation of free radicals, cause substantial and rapid damage to cardiac myocytes and induce the movement of additional Ca2+ across the sarcolemma to the myoplasm. In the case of ATP deprivation, this initially occurs through voltage-operated channels.  相似文献   

7.
Methanogenic bacteria are considered to couple methane formation with the synthesis of ATP by a chemiosmotic mechanism. This hypothesis was tested with Methanobacterium thermoautotrophicum. Methane formation from H2 and CO2 (2.5 - 3 mumol X min-1 X mg cells-1) by cell suspensions of this organism resulted in the formation of an electrochemical proton potential (delta mu H +) across the cytoplasmic membrane of 230 mV (inside negative) and in the synthesis of ATP up to an intracellular concentration of 5 - 7 nmol/mg. The addition of ionophores at concentrations which completely dissipated delta mu H + without inhibiting methane formation did not result in an inhibition of ATP synthesis. It thus appears that delta mu H + across the cytoplasmic membrane is not the driving force for the synthesis of ATP in M. thermoautotrophicum.  相似文献   

8.
The mechanism of divalent Ca2+ cation induction of Escherichia coli competence is still not fully understood, though it is a common method for introducing recombinant DNA into bacterial cells in gene engineering. Quantum dots (QDs), as a new fluorescent probe of being applied in biology research, have aroused great interest. In this paper, we explored the mechanism of E. coli competence development using QDs for the first time. Results showed that water-soluble QDs of diameter 3-4 nm could go into competent cells, but could not enter noncompetent cells. This result was further confirmed using atomic force microscopy and DNA transforming experiments, suggesting that nonphysiological, high concentrations of Ca2+ enhanced the penetrability of cell membranes so that QDs, which cannot enter cells normally due to their greater diameter (3-4 nm), can do so easily into competent cells. Therefore, we believe that, at least for E. coli, the mechanism of Ca2+-induced competence development is mediated physicochemically rather than physiologically.  相似文献   

9.
The protonophores carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) and carbonyl cyanide m-chlorophenylhydrazone (CCCP) stimulated the synthesis of 14C-catecholamines from [14C]tyrosine in cultured bovine adrenal medullary cells. The stimulatory effect of CCCP but not of FCCP was partially dependent on extracellular Ca2+. CCCP but not FCCP increased the influx of 45Ca2+ to the cells. When cells were incubated with either CCCP or FCCP (0.01-0.2 microgram/ml), the intracellular pH fell from 7.2 to 6.3-6.5 and catecholamine synthesis increased. Tyrosine hydroxylase activity in a soluble fraction prepared from cultured adrenal medullary cells was measured after incubation of the cells with FCCP or CCCP. Although FCCP did not affect the activity of the enzyme, CCCP caused a stable activation of it which was dependent on extracellular Ca2+. Since the optimal pH of soluble tyrosine hydroxylase is around 6.0 in adrenal medullary cells, FCCP may increase the synthesis of catecholamines by shifting the intracellular pH toward it. In addition to this mechanism, CCCP may enhance the synthesis of catecholamines by a Ca2+-dependent mechanism.  相似文献   

10.
Redistribution of cytosolic free Ca2+ following Ca2+ influx into the cytoplasm was studied in single smooth muscle cells isolated from guinea-pig urinary bladder. Voltage-clamped cells were loaded with a low-affinity fluorophore Indo-1FF. A decay of free intracellular Ca2+ ([Ca2+]i) after the termination of the depolarizing pulse (1 s from -50 mV to +20 mV) was fitted with a single exponential and the effect of various substances on the time constant was compared. At a holding potential of +80 mV the [Ca2+]i decay was 1.56 times slower compared to that at -50 mV suggesting the presence of a voltage-dependent process redistributing Ca2+. In the presence of cyclopiazonic acid (CPA, 10 microM), an inhibitor of sarco(endo)plasmatic Ca2+ pump (SERCa), the [Ca2+]i decay was 3.93 times slower than that in the absence of the inhibitor. Introduction of a polycation Ruthenium Red (RR) (20 microM), an inhibitor of the mitochondrial Ca2+ uniporter, into a cell or collapsing a transmitochondrial H+ gradient with the protonophore CCCP (2 microM) slowed down the [Ca2+]i decay 6.05-fold and 9.78-fold, respectively. The apparent amplitude of [Ca2+]i increments was also increased by CCCP. Increasing H+ buffering power in the intracellular solution from 10 mM to 40 mM of HEPES greatly reduced the effect of CCCP on [Ca2+]i decay. A further increase in HEPES concentration to 100 mM eliminated the effects of CCCP both on the time course of [Ca2+]i decay and on the amplitude of [Ca2+]i increment. Perfusion of RR together with 100 mM HEPES into the cytoplasm was without effect on the decay time course of [Ca2+]i. The effect of CPA on [Ca2+]i decay was also reduced in cells loaded with 100 mM HEPES; the time constant in the presence of CPA was slowed down by a factor of 2.18. Application of 10 mM Na(+)-butyrate to the cells loaded with 10 mM HEPES resulted in a slowing down of [Ca2+]i decay: the time constant was increased by a factor of 5.84. Measurement of intracellular pH with SNARF-1 confirmed cytoplasmic acidification during application of Na(+)-butyrate and CCCP. It is concluded that the contribution of mitochondrial Ca2+ uptake to the rapid [Ca2+]i decay is much less than could be extrapolated from action of protonophores in these smooth muscle cells. The results also demonstrate the importance of intracellular pH for Ca2+ handling in the cytoplasm of smooth muscle cells.  相似文献   

11.
Ca2+-dependent phospholipases A require Ca2+ concentrations in the millimolar range for optimal activity toward artificial substrates. Because Ca2+-dependent phospholipases A2 degrade the phospholipids of Escherichia coli, treated with the membrane-active antibiotic polymixin B equally well with and without added Ca2+ (Weiss, J., Beckerdite-Quagliata, S., and Elsbach, P. (1979) J. Biol. Chem. 254, 11010-11014), we have examined the possibility that intramembrane Ca2+ can provide the Ca2+ needed for phospholipase action. We studied the effect of Ca2+ depletion on the hydrolysis of the phospholipids of polymixin B-killed E. coli by 1) added pig pancreas phospholipase A2 in E. coli S17 (a phospholipase A-lacking mutant) and 2) endogenous Ca2+-dependent phospholipase A1 in the parent strain E. coli S15. Transfer of E. coli from nutrient broth (Ca2+ concentration approximately 3 X 10(-5) M) to Ca2+-depleted medium (Ca2+ concentration less than 10(-6)M) reduced polymixin B-induced hydrolysis by 50-75%, in parallel with a reduction of bacterial Ca2+ from 19.6 +/- 2.8 to 3.9 +/- 0.6 nmol (mean +/- standard error) per 3 X 10(10) bacteria. The bacterial Ca2+ content was repleted and the sensitivity of the bacterial phospholipids to hydrolysis by both exogenous phospholipase A2 (E. coli S17) and endogenous phospholipase A (E. coli S15) was restored by adding Ca2+ back to the suspensions. Complete restoration occurred at low Ca2+ levels in the reaction mixture (3 X 10(-5) - 10(-4) M) and required time, suggesting that hydrolysis was restored because bacterial Ca2+ stores were gradually replenished and not because extracellular Ca2+ concentrations were raised to levels that were still at least 10X lower than needed for optimal phospholipase A activity. This conclusion is supported by the finding that Ca2+ depletion or addition caused respectively decreased and increased release of lipopolysaccharides by EGTA (ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid), suggesting that the bacterial Ca2+ pool bound to lipopolysaccharides in the outer membrane shrinks or expands depending on extracellular Ca2+ levels. Thus, the cationic membrane-disruptive polymixin B, thought to compete with Mg2+ and Ca2+ for the same anionic sites on lipopolysaccharides, may liberate the Ca2+ near where the phospholipids are exposed to phospholipase.  相似文献   

12.
Non-induced HL-60 cells (N-IND) and HL-60 cells induced to differentiate with 2 microM retinoic acid (IND) were electropermeabilized with electrical discharges, and the intracellular Ca2+ stores were measured in each type of cell. Both N-IND and IND cells accumulate Ca2+ in the presence of ATP after electropermeabilization. The Ca2+ is stored in at least two different compartments; accumulation in one of the compartments is inhibited by oligomycin and CCCP, and it is not releasable by Ins(1,4,5)P3. The maximal accumulation of Ca2+ by the Ins(1,4,5)P3 sensitive pool is about 0.3 nmol/10(6) cells and 0.9 nmol/10(6) cells for the N-IND and for the IND cells, respectively, and the half-maximal value occurs at a free Ca2+ concentration of 0.23 microM and 0.63 microM, respectively. The oligomycin + CCCP sensitive pool hardly accumulates any Ca2+ at this level of free Ca2+, but at higher free [Ca2+] (greater than microM) its maximal capacity is 80-100-fold higher than the Ins(1,4,5)P3-sensitive pool (about 17-18 nmol/10(6) cells). It is concluded that at physiological free Ca2+ concentrations, the non-mitochondrial Ca2+ pool is regulating the intracellular free Ca2+ in N-IND and IND HL-60 cells, and that this Ca2+ pool can be mobilized by Ins(1,4,5)P3. Furthermore, the capacity of this pool increases about 3-fold when the cells are induced to differentiate with retinoic acid.  相似文献   

13.
Cavinton at a concentration of 10(-7)-10(-5) M was found to have a dose-dependent relaxing effect on bovine cerebral artery smooth muscles, without changing the resting potential and membrane resistance. Smooth muscles of the rabbit portal vein and guinea-pig taenia coli were insensitive to low cavinton concentrations. The results are consistent with the hypothesis that relaxing action of cavinton is due to the blocking of Ca2+ ions influx into the cells of cerebral artery through receptor-operated calcium channels. At higher concentrations (exceeding 10(-5) M) cavinton exerts nonspecific influence on the smooth muscles under study, inhibiting their excitability and decreasing membrane resistance resulting in the attenuation of tetanic contractions in the smooth muscles of the portal vein and taenia coli.  相似文献   

14.
Proton motive force is not obligatory for growth of Escherichia coli.   总被引:13,自引:6,他引:7       下载免费PDF全文
When 50 microM carbonyl cyanide-m-chlorophenyl hydrazone (CCCP), a protonophore, was added to growth medium containing glucose at pH 7.5, Escherichia coli TK1001 (trkD1 kdpABC5) started exponential growth after 30 min; the generation time was 70 min at 37 degrees C. Strain AS1 (acrA), another strain derived from E. coli K-12, also grew in the presence of 50 microM CCCP under the same conditions, except that the lag period was ca. 3 h. When this strain was grown in the presence of 50 microM CCCP and then transferred to fresh medium containing 50 microM CCCP, cells grew without any lag. Neither a membrane potential nor a pH gradient was detected in strain AS1 cells growing in the presence of CCCP. When either succinate or lactate was substituted for glucose, these strains did not grow in the presence of 50 microM CCCP. Thus, it is suggested that E. coli can grow in the absence of a proton motive force when glucose is used as an energy source at pH 7.5.  相似文献   

15.
1. Study has been made of the effects of a variety of metabolic inhibitors and divalent cations (Ni2+ and Mn2+), normally after 5 min exposure, on the biphasic uptake of inorganic phosphate (Pi) exhibited by phosphate-deprived cells of Escherichia coli, strains AB3311 (Reeves met-) and CBT302 (a (Ca2+ + Mg2+)-ATPase-deficient mutant). 2. In AB3311 cells cyanide (1-10 mM) produced comparable reductions in phosphate uptake to anaerobiosis, but in both instances significant uptake was maintained. Examination of intracellular Pi concentrations showed that, despite these inhibitions, Pi is still concentrated 130 times compared to 394 times under aerobic conditions. Arsenate (100 muM) and iodoacetate (100 muM pre-exposed 15 min) both abolished anaerobic-supported uptake. Under aerobic conditions the former eliminated primary uptake while the latter reduced both phases of uptake 60%. The uncouplers, dinitrophenol (100-1000 muM) and carbonyl cyanide m-chlorophenyl hydrazone (CCCP) (50muM) produced very significant, but not complete inhibitions of both phases of uptake. Inhibitions by iodoacetate and dinitrophenol were additive while dithiothreitol protected against the effects of 50-250 mum CCCP. N,N'-Dicyclo-hexylcarbodiimide (DCCD), the potent inhibitor of membrane-bound (Ca2+ + Mg2+)-ATPase, at 10(-3) M caused significant inhibitions of aerobic- (approx. 60%) and anaerobic- (approx. 80%) supported uptakes thus suggesting some obligatory requirement for this ATPase. 3. CBT302 cells, like AB3311, supported Pi transport both aerobically and anaerobically. CCCP (50muM) reduced the primary uptake similarly to AB3311 cells, but the secondary uptake was less affected. DCCD (10(-5)-10(-3) M), as expected, showed no effects in contrast to AB3311 cells. 4. In AB3311 cells Ni2+ (10 mM) caused significant but different reductions of secondary (70%) and primary (33%) phases of phosphate uptake. Mn2+ (10 mM) showed a greater differential effect with the primary uptake being minimally affected and the secondary uptake being abolished (97%). Partial relief of these inhibitions by Mg2+ (10 mM), suggested that these ions compete with Mg2+ transport. High voltage electrophoresis studies showed that Ni2+ cause intensification in the labelling from 32Pi (i.e. during Pi uptake) of hexose phosphates and a reduction in the labelling of complex molecules left at the origin. With Mn2+, labelling of fructose 1,6-diphosphate was reduced, the triose phosphate area was intensified and an unknown area (X) was intensely labelled. When Mn2+ was combined with anaerobiosis, phosphate uptake though diminished in rate exceeded after 16 min the plateau level of uptake under aerobic conditions with Mn2+ present.  相似文献   

16.
An artificially produced electrochemical potential difference for protons (portonmotive force) provided the energy for the transport of galactosides in Escherichia coli cells which were depleted of their endogenous energy reserves. The driving force for the entry of protons was provided by either a transmembrane pH gradient or a membrane potential. The pH gradient across the membrane was created by acidifying the external medium. The membrane potential (inside negative) was established by the outward diffusion of potassium (in the presence of valinomycin) or by the inward diffusion of the permeant thiocyanate ion. The magnitude of the electrochemical potential difference for protons agreed well with magnitude of the chemical potential difference of the lactose analog, thiomethylgalactoside. The observations are consistent with the view that the carrier-mediated entry of each galactoside molecule is accompanied by the entry of one proton.  相似文献   

17.
An alkalo- and halotolerant aerobic microorganism has been isolated which, according to microbiological data and the ribosomal 5S-RNA sequence, is a Bacillus similar, but not identical, to B. licheniformis and B. subtilis. The microorganism termed as Bacillus FTU proved to be resistant to the protonophorous uncoupler CCCP. The fast growth of Bacillus FTU in the presence of CCCP was shown to require high Na+ concentrations in the medium. A procedure has been developed to exhaust endogenous respiratory substrates in Bacillus FTU cells so that fast oxygen consumption by the cells was observed only upon addition of an exogenous respiratory substrate. The exhausted cells were found to oxidize ascorbate in the presence of TMPD in a cyanide-sensitive fashion. Ascorbate oxidation was coupled to the uphill Na+ extrusion stimulated by CCCP and a penetrating weak base, diethylamine (DEA), as well as by valinomycin with or without DEA. The operation of the Bacillus FTU terminal oxidase resulted in the generation of delta psi which, in a Na+ medium, was slightly decreased by CCCP and strongly by CCCP + DEA. In a K+ medium CCCP discharged delta psi even without DEA. Ascorbate oxidation was competent in ATP synthesis which was resistant to CCCP in the Na+ medium and sensitive to CCCP in the K+ medium. CCCP + DEA were inhibitory in both media. The data obtained indicate that there is a Na+-motive terminal oxidase in Bacillus FTU. It is suggested that delta microNa formed by the oxidase can be utilized by an Na+-driven ATP-synthase.  相似文献   

18.
Dependence of the red blood cell calcium pump on the membrane potential   总被引:4,自引:0,他引:4  
(1) It is shown that the rate of calcium extrusion from intact human red cells is faster at a membrane potential of approximately +50 mV (inside) than at approximately -50 mV. (2) The positive potential applied was the chloride potential of KCl cells in a K-gluconate medium when the Ca2+ sensitive K+ channel was blocked by 0.3mM quinidine. The negative potential resulted from the high K+ permeability in Ca2+ loaded cells (the cells were loaded to a Ca2+ activity in the cell water of about 50 microM). (3) It is further demonstrated that the Ca2+ affinity of the pump ATPase is decreased both at the internal (high affinity) and external (low affinity) site by increasing the proton concentration. Acidification thus inhibits internally and stimulates externally. (4) An indirect effect of the membrane potential on the pump activity via the accompanying pH shifts on either side of the membrane could be ruled out by choosing Ca2+ concentrations which are fully activating at the internal Ca2+ binding site at pH 6.5 and not yet inhibitory at the external Ca2+ binding site at pH 8. (5) The result is compatible with the assumption that the human red cell Ca-pump is exchanging Ca2+ for protons, yet is electrogenic by virtue of a stoichiometry of 1H+:1Ca2+ for this exchange.  相似文献   

19.
A general mechanism of the nucleic acids transport through bacterial membranes during genetic transformation, transfection, viral infection and bacterial conjugation, has been developed. The uptake of nucleic acid occurs due to the symport with H+ ions down to an electrochemical potential gradient ("minus" inside) generated by respiration or ATP hydrolysis within recipient cells. The nucleic acid anions of non--lethal viruses are extruded from the negatively charged host cell cytoplasm by electrostatic repulsion. The difference of electrochemical potentials between the conjugating cells cytoplasms is considered as a driving force for the transport of DNA from the donor to the recipient cell.  相似文献   

20.
Escherichia coli K-12 cells grown to early and late exponential, and early and late stationary phases were treated with CA2+ and analysed for the ability of exogenous 14C-DNA uptake and genetic transformation. DNA-membrane complexes were detected detected by isopicnic centrifugation of cell lysates in sucrose density gradient. It is found that 1) during all the tested phases of the growth cycle, E. coli cells attain the ability of enhanced DNA uptake after Ca2+ treatment; 2) exogenous and host DNAs are associated with the cell membrane during all tested growth phases; 3) nevertheless, the ability to form transformants is strongly time-dependent: the cells can be transformed during logarithmic phase only; 4) Ca2+ protects exogenous DNA against its degradation by bovine pancreatic DNAase. The peculiarities of Ca2+-induced competence, actual and possible interference of Ca2+ at different transformation steps are briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号