首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
V beta 3+ T cells are eliminated in Mls-2a mice carrying some, but not all, H-2 types. Analysis of AKXD and BXD recombinant inbred strains showed that Mls-2a (formerly Mlsc) was not the product of a single gene and suggested that at least two non-H-2 genes control V beta 3 levels. Studies of the progeny of a B10.BR x (C3H/HeJ x B10.BR)F1 backcross confirmed the existence of two V beta 3+ T cell deleting genes: one unlinked and one linked to Ly-7, which we propose be called Mls-2 and Mls-3, respectively. Mls-2a induces partial deletion of V beta 3+ T cells with a bias toward deleting CD4+ cells. It stimulates V beta 3+ hybrids and may be linked to Mtv-13 on chromosome 4. A third non-H-2 gene is implicated in enhancing the presentation of Mls-2a. Mls-3a causes elimination of all V beta 3+ T cells in H-2k and H-2d mice but poorly stimulates V beta 3+ hybrids.  相似文献   

2.
The role of T cell-mediated and humoral immunity to type II collagen has been well documented in collagen-induced arthritis (CIA). Previous work from our laboratory has indicated that genomic deletions of TCR V beta genes may play a role in CIA resistance in mice. This indicated a selectivity of TCR usage by autoreactive T cells in CIA in mice. Certain strains of mice, although having a normal genomic V beta TCR repertoire, can show clonal deletion of peripheral T cells that bear specific V beta gene products in their TCR. These clonally deleted T cells are reactive with self-Ag such as minor lymphocyte stimulation (Mls) Ag. An Mls-congenic strain, BALB.D2.Mlsa, which differs only at the Mls-1 a locus from BALB/c (Mls-1b), was used to examine the effect of clonal deletion of Mls-1a-reactive T cells in CIA. These two strains were crossed to three CIA-susceptible strains, B10.RIII (H-2r, Mls-1b), DBA/1 (H-2q, Mls-1a), and B10.Q (H-2q, Mls-1b), and the crosses were injected with type II collagen. A significantly decreased incidence of arthritis was observed in the (BALB.D2.Mlsa x B10.Q)F1 hybrids, compared with (BALB/c x B10.Q)F1 hybrids, upon immunization with chick type II collagen. The BALB.D2.Mlsa cross mice also had significantly lower levels of antimouse collagen antibodies. Flow cytometric analysis confirmed the clonal deletion of Mls-1a-reactive V beta 8.1, V beta 6, V beta 7, and V beta 9 subsets in the (BALB.D2.Mlsa x B10.Q)F1 hybrids. The study of H-2q/d mice in (BALB.D2.Mlsa x B10.Q) x B10.Q back-crosses demonstrated a significant correlation between CIA resistance and Mls-1a locus. On the other hand, B10.RIII crosses showed only a modest decrease in CIA incidence in the presence of Mls-1a. As expected, all the DBA/1 crosses had an equal incidence of CIA, which was somewhat less than that seen in DBA/1 mice themselves. These studies point out that the Mls-1a locus could play a role in decreasing CIA incidence by clonal deletion of T cells bearing specific V beta TCR, which may be involved in the pathogenesis of CIA. The influence of the clonal deletion of T cells on CIA, and hence the usage of specific V beta TCR by autoreactive anti-type II collagen T cells, however, depends not only on the source of the type II collagen and the MHC class II molecules involved but also on other background genes in mice.  相似文献   

3.
Interactions between MHC class II genes and minor lymphocyte stimulating (Mls) associated products are responsible for clonally deleting self-reactive T cells in mice. Here we demonstrate the role of the intact I-A and I-E molecules as well as the individual A alpha and E alpha chains in the deletion of cells bearing the V beta 6 TCR. DBA/1 (H-2q, Mls-1a) mice were crossed with various inbred congenic, recombinant, and transgenic strains and the F1's were screened for V beta 6 expression. All I-E+ strains were fully permissive in deleting V beta 6+ T cells. I-E- strains expressing I-A b,f,s,k,p permitted only partial deletion, while I-Aq strains showed no deletion. Recombinant I-Aq and I-Af strains which expressed E kappa alpha chain in the absence of E beta chain showed a decrease in V beta 6+ T cells as compared to their H-2q and H-2f counterparts. Furthermore, transgenic mice expressing E kappa alpha Aq beta gene in an H-2q haplotype (E kappa alpha Aq beta?) gave similar results to that of the recombinants in deleting V beta 6 T-cells. The role of the 1-A molecule was also shown by the partial deletion of V beta 6+ T cells in H-2q mice expressing transgenic I-Ak molecules. These results demonstrate that the E alpha chain is important in the deletion of V beta 6 T-cells in Mls-1a mice. The role of A alpha chain is also implied by the permissiveness of E kappa alpha Aq beta but not Aq alpha Aq beta molecules in the deletion of V beta 6+ T cells.  相似文献   

4.
Sequential appearance of T cell subpopulations occurs in the thymocytes of irradiated C3H/He mice (H-2k, Mls-1b2a, Thy-1.2) after transplantation with bone marrow cells of AKR/J mice (H-2k, Mls-1a2b, Thy-1.1) (AKR----C3H chimeras). The donor-derived thymocytes of AKR----C3H chimeras on day 14 after bone marrow transplantation (BMT) contained a large number of blastlike CD4+CD8+ cells which represent relatively immature thymocytes, whereas those on day 21 after BMT consisted of small sized CD4+,CD8+ cells which represent a great part in normal thymocytes. To define the developmental stage at which clonal deletion of self-reactive T cells occurs in adult thymus, we followed the fate of V beta 6- or V beta 11-bearing T cells in the donor-derived thymocytes at the early stage of AKR----C3H chimeras. Mature thymocytes expressing high intensity of V beta 6 or V beta 11, which are involved in recognition of Mls-1a or MHC I-E gene products, respectively, were deleted from the donor-derived thymocytes on day 21. Immature thymocytes expressing low intensity of V beta 6 in CD3low thymocyte fraction decreased in proportion, whereas those expressing low intensity of V beta 11 rather increased in proportion in the donor-derived thymocytes of AKR----C3H chimeras from day 14 to day 21 after BMT. These results suggest that the clonal deletion of V beta 6-positive cells occurs just at the stage of immature CD3lowCD4+CD8+ cells, whereas the clonal deletion of V beta 11-positive cells may begin at the transitional stage from CD3lowCD4+CD8+ cells to CD3high single positive cells. Timing of negative selection of thymocytes may vary in distinct T cells capable of recognizing different self-Ag.  相似文献   

5.
Phenotypes and functions of T cells in the liver were studied after an i.p. inoculation with viable Listeria monocytogenes in mice. T cells in the liver of untreated C3H/HeN mice (C3H; H-2k, Mls-2a) contain Thy-1.2+TCR-alpha beta + cells as a majority and Thy-1.2+TCR-gamma delta + cells and Thy-1.2-TCR-gamma delta + cells as minorities. The liver of untreated C3H mice did not contain T cells expressing V beta 3 and V beta 11, which are potentially autoreactive against self-superantigens of Mls-2a and Dvbl, respectively. On days 3 to 6 after infection, Thy-1.2-CD4lowTCR-alpha beta + T cells or Thy-1.2-TCR-gamma delta + T cells increased significantly in number and proportion in the liver whereas T cells with these phenotypes were hardly detected in the spleen, lymph nodes, peripheral blood, and peritoneal cavity during the course of the infection. The Thy-1.2-CD4lowTCR-alpha beta T cells contained V beta 3 or V beta 11-bearing cells in high frequencies. The potentially autoreactive V beta 3- or V beta 11-bearing T cells disappeared from the liver on day 7 after infection. Furthermore, the V beta 3+ and V beta 11+ cells but not V beta 8+ cells disappeared after culture for 24 h at 37 degrees C. In vitro stimulation of liver T cells using anti-V beta 11 mAb showed no proliferative response. These results suggest that the potentially autoreactive clones with Thy-1.2-CD4low phenotypes, which increased in number after listerial infection, may be anergized after interaction with self-Ag and may be programmed to die. These potentially autoreactive clones induced in the liver of Listeria-infected mice may not be functionally relevant to the host defense against Listeria.  相似文献   

6.
The mechanisms of cyclophosphamide (CP)-induced tolerance were investigated by comparing with those of neonatally induced tolerance. When C3H/He Slc (C3H; H-2k, Mls-1b) mice were given i.v. either AKR/J Sea (AKR; H-2k, Mls-1a) or (AKR x C3H)F1 (AKC3F1; H-2k, Mls-1a/b) spleen cells and treated i.p. with CP 2 days later, a long-lasting skin allograft tolerance to AKR was induced in each case without any signs of graft-vs-host disease (GVHD). However, typical signs of GVHD were observed in the C3H mice neonatally tolerized with AKR spleen cells, but not in those tolerized with AKC3F1 spleen cells. The expression of TCR V beta 6, which is strongly correlated with the reactivity to Mls-1a Ag (of donor AKR origin), in the periphery was quite different between the two types of tolerant C3H mice. Namely, in the lymph nodes of the C3H mice tolerized with AKR spleen cells and CP, only CD4(+)-V beta 6+, but not CD8(+)-V beta 6+, T cells selectively disappeared, whereas both of them were abrogated in the lymph nodes of the C3H mice neonatally tolerized of AKR. By contrast, in the thymus of the two types of tolerant C3H mice, both CD4+CD8- and CD4-CD8+ single-positive thymocytes expressing TCR V beta 6 were clonally deleted, suggesting that the thymic involvement was the same in each type of tolerance. These results suggest that the preferential disappearance of the CD4(+)-V beta 6+ T cells (of host origin) and the effector T cells of GVHD (of donor origin) occurred only in the periphery of the C3H mice tolerized with AKR spleen cells plus CP and was attributable to the destruction of Ag-stimulated T cells by the CP treatment. In contrast, the intrathymic clonal deletion of immature V beta 6+ T cells was a common mechanism for both of the tolerance induction systems.  相似文献   

7.
We have studied the relationship between major histocompatibility complex (MHC)-restricted antigen recognition and alloreactivity by examining T cell receptor (TCR) alpha and beta gene expression in cytochrome c-specific, Ek alpha:Ek beta (Ek)-restricted helper T cell clones derived from B10.A mice. The clones could be segregated on the basis of four distinct alloreactivity patterns. Clones cross-reactive for three different allogeneic la molecules (As alpha:As beta [As], Ab alpha:Ab beta [Ab], Ek alpha: Eb beta [Eb]) expressed the same V alpha and V beta gene segments, generating the distinct alloreactive specificities via unique V alpha-J alpha and V beta-D beta-J beta joining events. Ek alpha:Es beta (Es)-alloreactive B10.A clones expressed the same V alpha, J alpha, and V beta segments as an Es-restricted, Ek-alloreactive, cytochrome c-specific, H-2-congenic B10.S(9R) clone. This homology between TCRs mediating allorecognition of la molecules and recognition of the same la molecules as restriction elements associated with nominal antigen suggests that MHC-restricted recognition and allorecognition represent differences in the affinity of the TCR-MHC molecule interaction.  相似文献   

8.
In cyclophosphamide (CP)-induced tolerance, a long lasting skin allograft tolerance was established in many H-2-identical strain combinations without graft vs host disease. Destruction of donor-reactive T cells of host origin, followed by intrathymic clonal deletion of these cells, has been revealed to be the chief mechanisms of this system. Here, we studied the fate of host-reactive populations in donor-derived T cells of C3H/He (C3H) (H-2k, Mls-1b, Mls-2a) mice rendered CP-induced tolerant to AKR/J (AKR) (H-2k, Mls-1a, Mls-2b), by assessing AKR-derived Thy-1.1+ T cells bearing TCR V beta 3 that are specifically reactive with Mls-2a-encoded Ag of the recipient C3H mice. In the AKR-derived Thy-1.1+ lymph node cells of the C3H mice that had been treated with AKR spleen cells plus CP, CD4(+)-V beta 3+ T cells were obviously decreased by day 10 after the CP treatment. At this stage, the Thy-1.1+ T cells were not detected in the C3H thymus, suggesting that the obvious decrease of CD4(+)-V beta 3+ T cells of AKR origin was not due to intrathymic clonal deletion in the recipient C3H mice. Therefore, the destruction of the host-reactive mature T cells of donor origin, as well as that of the donor-reactive mature T cells of host origin, occurred by the CP treatment at the induction phase. Furthermore, after the establishment of intrathymic mixed chimerism in the recipient C3H mice, V beta 3+ T cells were not detected among the Thy-1.1+ T cells of AKR origin in the mixed chimeric thymus, suggesting that the host-reactive immature T cells repopulated from the injected donor hematopoietic cells were clonally deleted in the recipient thymus. These two mechanisms appear to prevent graft vs host disease in CP-induced tolerance.  相似文献   

9.
We determined if self-reactive T cells are able to escape thymic tolerance in autoimmune New Zealand mice. T cells utilizing V beta 17a and V beta 11 encoded receptors have been shown to be clonally eliminated in nonautoimmune mice expressing I-E because of their potential self-reactivity. Similarly, V beta 8.1+ and V beta 6+ T cells are tolerized in the thymus of nonautoimmune mice that express Mls-1a. These T cell subsets were quantitated in the lymph nodes and spleens of (NZB x NZW)F1 and (NZB x SWR)F1 mice. In young mice from both autoimmune strains, deletion was similar to that observed in control animals matched for I-Ed and Mls-1a expression. Furthermore, older female autoimmune mice with elevated levels of IgG antinuclear antibodies and severe lupus-like renal disease did not demonstrate evidence of a global tolerance defect. We also found that the levels of residual V beta 17a+ cells in MHC-matched control F1 strains were further reduced by up to 80% in autoimmune (NZB x SWR)F1 mice. The greater in vivo elimination corresponded to an enhanced ability of NZB spleen cells, compared with other H-2d spleen cells, to stimulate V beta 17a+ hybridomas in vitro. The increased stimulation in culture could not be attributed to quantitative differences in I-E Ag expression. The results suggest that autoreactive T cells have been eliminated in these autoimmune mice by normal mechanisms of self-tolerance. Furthermore, the data demonstrate the existence of an NZB minor locus not present in other H-2d strains that influences T cell repertoire and enhances stimulation of T cells potentially reactive to self class II MHC Ag.  相似文献   

10.
Experimental autoimmune myasthenia gravis (EAMG) is an important model for testing current concepts in autoimmunity and novel immunotherapies for autoimmune diseases. The EAMG autoantigen, acethylcholine receptor (AChR), is structurally and immunologically complex, a potential obstacle to the application of therapeutic strategies aimed at oligoclonal T cell populations. Inasmuch as we had previously shown that the clonal heterogeneity of T cell epitope recognition in EAMG was unexpectedly limited, we examined TCR V beta expression. AChR primed lymph node T cells and established AChR reactive T cell clones from EAMG-susceptible C57BL/6 (B6; H-2b, Mls-1b) mice showed preferential utilization of the TCR V beta 6 segment of the TCR. After in vivo priming and in vitro restimulation for 7 days with AChR or a synthetic peptide bearing an immunodominant epitope, V beta 6 expressing lymph node cells (LNC) were expanded several-fold, accounting for up to 75% of recovered viable CD4+ cells. The LNC of B6.C-H-2bm12 (bm12; H-2bm12, Mls-1b) mice, which proliferated in response to AChR but not to the B6 immunodominant peptide, failed to expand V beta 6+ cells. Inasmuch as nonimmune bm12 and B6 animals had similar numbers of V beta 6+ LNC (4-5%), this suggested that structural requirements for TCR recognition of Ag/MHC complexes dictated V beta usage. Results concerning peptide reactivity and V beta 6 expression among T cells from (B6 x bm12)F1 animals also suggested that structure-function relationships, rather than negative selection or tolerance, accounted for the strain differences between B6 and bm12. To examine the potential effects of thymic negative selection of V beta 6+ cells on the T cell response to AChR, CB6F1 (H-2bxd, Mls-1b; V beta 6-expressing) and B6D2F1 (H-2bxd, Mls-1axb; V beta 6-deleting) strains were analyzed for AChR and peptide reactivity and V beta 6 expression. Both F1 strains responded well to AChR but the response of B6D2F1 mice to peptide was significantly reduced compared to CB6F1. Short and long term cultures of peptide-reactive B6D2F1 LNC showed no expansion of residual V beta 6+ cells, although similar cultures of CB6F1 LNC were composed of more than 60% V beta 6+ cells. The results from the F1 strains further indicated that the T cell repertoire for peptide was highly constrained and that non-V beta 6 expressing cells could only partially overcome Mls-mediated negative selection of V beta 6+ TCR capable of recognizing peptide.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
We have characterized CD4-CD8- double negative (DN) thymocytes that express TCR-alpha beta and represent a minor thymocyte subpopulation expressing a markedly skewed TCR repertoire. We found that DN TCR-alpha beta + thymocytes resemble mature T cells in that they (a) are phenotypically CD2hiCD5hiQa2+HSA-, (b) appear late in ontogeny, and (c) are susceptible to cyclosporin A-induced maturation arrest. In addition, we found that DNA sequences 5' to the CD8 alpha gene were demethylated relative to their germline state, suggesting that DN TCR-alpha beta + thymocytes are derived from cells that had at one time expressed their CD8 alpha gene locus. Because DN TCR-alpha beta + thymocytes are known to express an unusual TCR repertoire with significant overexpression of V beta 8, we were interested in examining the possible role played by self-Ag in shaping their TCR repertoire. It has been suggested that DN TCR-alpha beta + thymocytes are derived from potentially self-reactive thymocytes that have escaped clonal deletion by down-regulating their surface expression of CD4 and/or CD8 determinants. However, apparently inconsistent with such an hypothesis, we found that the frequency of DN thymocytes expressing various anti-self TCR (V beta 6, V beta 8.1, V beta 11, V beta 17a) were not increased in strains expressing their putative self-Ag, but instead were either unaffected or significantly reduced in those strains. With regard to V beta 8 expression among DN TCR-alpha beta + thymocytes, V beta 8 overexpression in DN TCR-alpha beta + thymocytes appeared to be independent of, and superimposed on, the developmental appearance of the basic DN thymocyte repertoire. Even though V beta 8 overexpression appeared to be generated by a mechanism distinct from that generating the rest of the DN TCR-alpha beta + thymocyte repertoire, we found that super-Ag against which V beta 8 TCR react introduced into the neonatal differentiation environment also significantly reduced, rather than increased, the frequency of DN TCR-alpha beta + V beta 8+ thymocytes. Thus, the present study is consistent with DN TCR-alpha beta + thymocytes being mature cells derived from CD8+ precursors, and documents that their TCR repertoire can be influenced, at least negatively, by either self-Ag or Ag introduced into the neonatal differentiation environment. However, we found no evidence to support the hypothesis that DN TCR-alpha beta + thymocytes are enriched in cells expressing TCR reactive against self-Ag.  相似文献   

12.
H-2b class I-restricted, TNP-specific CTL clones were obtained by limiting dilution cloning of either short term polyclonal CTL lines or spleen cells of TNP-immunized mice directly ex vivo. Sequence analyses of mRNA coding for TCR alpha- and beta-chains of 11 clones derived from CTL lines from individual C57BL/6 mice revealed that all of them expressed unique but clearly nonrandom receptor structures. Five alpha-chains (45%) employed V alpha 10 gene elements, and four of those (36%) were associated with J beta 2.6-expressing beta-chains. The alpha-chains from these four TCR, moreover, contained an acidic amino acid in position 93 of their N or J region-determined sequences. Clones isolated directly from spleen cells carried these types of receptors at lower frequency, 27% V alpha 10 and 19% J beta 2.6, indicating that bulk in vitro cultivation on Ag leads to selection for these particular receptors. However, even in TNP-specific CTL cloned directly ex vivo, V alpha 10 usage was increased about fivefold over that in Ag-independently activated T cells in H-2b mice (4 to 5%). The selection for V alpha 10/J beta 2.6-expressing cells was obtained repeatedly in other TNP-specific CTL lines from C57BL/6 mice but not in FITC-specific CTL from the same strain or in TNP-specific CTL lines from B10.BR (H-2k) or B10.D2 (H-2d) mice. We conclude from this (a) that the selection for V alpha 10/J beta 2.6+ T cells is driven by the complementarity of these receptors to a combination of TNP and MHC epitopes and (b) that predominant receptor structures reflect the existence of a surprisingly limited number of "T cell-relevant" hapten determinants on the surface of covalently TNP-modified cells.  相似文献   

13.
Intrathymic tolerance results in elimination of T cells bearing self-reactive TCR V beta regions in mice expressing certain combinations of I-E and minor lymphocyte stimulatory (Mls) phenotypes. To determine if autoimmune strains of mice have a defect in intrathymic deletion of self-reactive TCR V beta regions, expression of V beta 3, V beta 6, V beta 8.1, and V beta 11 were examined in lpr/lpr and +/+ strains of mice; MRL/MpJ(H-2K, I-E+, Mlsb,), C57BL/6J(H-2b, I-E-, Mlsb,), C3H/HeJ(H-2k, I-E+, Mlsc), AKR/J(H-2k, I-E+, Mlsa); and in autoimmune NZB/N(H-2d, I-E+, Mlsa) and BXSB(H-2b, I-E-, Mlsb) mice. The results suggest that, during intrathymic development, self-reactive T cells are deleted in autoimmune strains of mice as found in normal control strains of mice. However, the TCR V beta repertoire is skewed in autoimmune strains compared to normal strains of mice. For example, MRL-lpr/lpr mice, but not other lpr/lpr strains, had increased expression of V beta 6 relative to expression in control MRL(-)+/+ mice, which is associated with collagen-induced arthritis. These data are consistent with a model of normal affinity for negative selection of self-reactive T cells in the thymus of autoimmune strains of mice followed by expansion of autoreactive T cell clones in the peripheral lymphoid organs. The peripheral lymphoid organs of lpr/lpr mice contain an expanded population of abnormal CD4-, CD8-, 6B2+ T cells. Elimination of self-reactive peripheral T cells suggests that these abnormal cells are derived from a CD4+ subpopulation in the thymus. Flow cytometry analysis of peripheral lymph node T cells from MRL-lpr/lpr mice reveal three populations of CD4+ T cells expressing low, intermediate and high intensity of B220 (6B2). This supports the hypothesis that in lpr/lpr mice, self-reactive CD4+ T cells are eliminated in the thymus, and that these cells lose expression of CD4 and acquire expression of 6B2 in the periphery.  相似文献   

14.
Transgenic mice expressing a T cell receptor heterodimer specific for a fragment of pigeon cytochrome c plus an MHC class II molecule (I-Ek) have been made. We find that H-2k alpha beta transgenic mice have an overall increase in the number of T cells and express a 10-fold higher fraction of cytochrome c-reactive cells than H-2b mice. Surface staining of thymocytes indicates that in H-2b mice, T cell development is arrested at an intermediate stage of differentiation (CD4+8+, CD310). Analyses of mice carrying these T cell receptor genes and MHC class II I-E alpha constructs indicate that his developmental block can be reversed in H-2b mice by I-E expression on cortical epithelial cells of the thymus. These data suggest that a direct T cell receptor-MHC interaction occurs in the thymus in the absence of nominal antigen and results in the enhanced export of T cells, consistent with the concept of "positive selection".  相似文献   

15.
In addition to Mlsa (Mls-1a) and Mlsc (Mls-2a, Mls-3a), we and others have recently described a third set of stimulatory minor lymphocyte stimulating (Mls) determinants, which are ligands for "I-E related" V beta, V beta 5, V beta 11, and V beta 12. Although all V beta associated with the recognition of the conventional Mls determinants are, in general, uniformly deleted in those animals expressing relevant Mls, expression of Mlsf-related V beta reveals various deletion patterns among different strains. Here we describe extensive genetic studies to evaluate the relationship among the self-Ag responsible for clonal deletion of T cells bearing Mlsf-related V beta by using antibodies specific for TCR V beta chain. In addition, a panel of T cell clones specific for the Mlsf determinant were generated and employed to analyze the determinant specificity, which is recognized by Mlsf-reactive T cells in vitro as well as the role of class II molecules in T cell recognition of the Mlsf determinants. The results of these two independent approaches provide evidence that the Mlsf system is composed of a set of gene products that reveal a unique polymorphism in the induction of clonal deletion in vivo and in T cell activation in vitro. One of these gene products causes almost complete deletion of the self-Mlsf reactive T cell repertoire in vivo and elicits a strong proliferative response to Mlsf-specific T cell clones. Expression of the other gene products results in the clonal deletion of only part of the Mlsf-reactive T cell repertoire. Furthermore, the response pattern of Mlsf-specific clones to intra-MHC recombinant inbred strains and the inhibition pattern of these clones by anti-class II antibody suggested that although expression of the I-E molecule is essential for T cell recognition of Mlsf determinants, the A beta gene may also contribute to the efficient presentation of Mlsf determinants by forming unique class II E alpha A beta molecules.  相似文献   

16.
Mice of strain B6, but not AKR/J, respond to immunization with Torpedo acetylcholine receptor (AChR) by manifesting in vitro an Ag-specific T lymphocyte proliferative response. Our analysis of (AKR x B6)F1 mice reveals that the T cell unresponsiveness of AKR/J is inherited as a dominant trait, possibly associated with expression of the Mls-1a allele. Mice derived from backcrossing (AKR x B6)F1 x B6 were selected for H-2b homozygosity and were classified as Mls-1a or Mls-1b according to the relative numbers of peripheral blood T cells that expressed the TCR V beta 6 gene product. After challenge by injection with AChR in CFA, lymph node cells from mice classified as having less than 2% of V beta 6+ peripheral T cells had low responsiveness to AChR, whereas mice with greater than 7% V beta 6+ peripheral T cells had high T cell responsiveness to AChR. These results are consistent with the notion that regulation of the T cell repertoire by Mls loci may be a determinant of susceptibility to autoimmunity.  相似文献   

17.
Analysis of TCR of a series of CD4-8- (double negative; DN) alpha beta T cell lines induced with IL-3 revealed that their V gene usage was biased for V alpha 4 and V beta 2. This has been confirmed in the primary short-term cultures. Thus, IL-3 induced the generation of DN alpha beta T cells with predominant V beta 2 gene expression from the CD4+/CD8+ T cell-depleted spleen or bone marrow (BM) cells of both normal and nude BALB/c mice within 10 days. It was further indicated that the V beta 2+ beta-chain genes contained few junctional N regions in both IL-3-induced primary DN alpha beta T cells and continuous lines. Search for the in vivo counterpart of in vitro IL-3-induced DN alpha beta T cells revealed that BM, but not spleens, of normal BALB/c and B6 mice did contain a significant proportion of DN alpha beta T cells, and that the majority of them expressed V beta 2+ beta-chain genes with few junctional N regions. The presence of V beta 2+ DN alpha beta T cells was similarly observed in the BM of BALB/c nude mice, but their proportion varied markedly among various strains of mice, which was not linked to H-2 haplotypes. The results indicated that V beta 2+ DN alpha beta T cells in the BM represented one of the thymus-independent T cell populations, whose development was under the major histocompatibility Ag complex-unlinked genetic control. TCR of these T cells were shown to be functional as judged by the proliferative response to anti-V beta 2 antibody. Taken together, present results suggested that IL-3 could induce differentiation and/or proliferation of DN alpha beta T cells with uniquely limited repertoire, which existed preferentially in BM in vivo, and implied the possible involvement of extrathymic endogenous ligands as a positive selection force.  相似文献   

18.
The specificity and TCR gene usage of a panel of sperm whale myoglobin (SpWMb)-reactive T cell clones from DBA/2 mice have previously been characterized, to study structure-function relationships between components of the ternary complex consisting of Ag, TCR, and MHC class II molecules, whose interaction leads to Th cell activation. These DBA/2 clones were specific for epitopes within the residue 110 to 121 region of SpWMb, in the context of the mixed isotype molecule E alpha dA beta d, and expressed the TCR V beta 8.2 gene element. SpWMb-specific T cell hybridomas from the H-2d-congenic B10.D2 mouse strain, which differs from the DBA/2 strain only in the non-MHC background, were generated and compared with the T cell hybridomas from DBA/2 mice, in order to investigate the influence of non-MHC genes on the specificity of the T cell response to the 110-121 epitope. V beta usage by these hybridomas was very homogeneous; three of three DBA/2 and eight of nine B10.D2 hybridomas specific for the 110-121 epitope, in the context of the mixed isotype molecule E alpha dA beta d, expressed the V beta 8.2 gene product. Nucleotide and amino acid sequences of D beta, J beta, and N regions were also similar. One 110-121/E alpha dA beta d-specific B10.D2 hybridoma used V beta 7, a V beta that is clonally deleted in DBA/2 mice. These experiments suggest that a similar set of TCR beta genes are used to respond to a given epitope, regardless of non-MHC background, and they support the hypothesis that, despite great variability between individuals in their non-MHC background genes, human HLA-associated diseases might result from the formation of a particular ternary complex consisting of a shared MHC molecule, a common "disease-associated" epitope, and a shared TCR.  相似文献   

19.
Intracerebral infection of certain strains of mice with Theiler's virus results in chronic immune-mediated demyelination in spinal cord. We used mouse mutants with deletion of the V beta class of TCR genes to examine the role of TCR genes in this demyelinating disease which is similar to multiple sclerosis. Quantitative analysis of spinal cord lesions demonstrated a markedly increased number and extent of demyelinated lesions in persistently infected RIII S/J mice which have a massive deletion of the TCR V beta-chain (V beta 5.2, V beta 8.3, V beta 5.1, V beta 8.2, V beta 5.3, V beta 8.1, V beta 13, V beta 12, V beta 11, V beta 9, V beta 6, V beta 15, V beta 17) compared with B10.RIII mice which are of identical MHC haplotype (H-2r) but have normal complement of V beta TCR genes. In contrast, infection of C57L (H-2b) or C57BR (H-2k) mice which have deletion of the V beta TCR genes (V beta 5.2, V beta 8.3, V beta 5.1, V beta 8.2, V beta 5.3, V beta 8.1, V beta 13, V beta 12, V beta 11, and V beta 9) resulted in few demyelinating lesions. Genetic segregation analysis of (B10.RIII x RIII S/J) x RIII S/J backcrossed mice and (B10.RIII x RIII S/J) F2 mice demonstrated correlation of increased susceptibility to demyelination with deletion of TCR V beta genes. The increase in number of demyelinating lesions correlated with increase in number of virus-Ag+ cells in spinal cord. These experiments provide strong evidence that the structural diversity at the TCR beta-complex can influence susceptibility to virus-induced demyelination.  相似文献   

20.
The effects of quantitative differences in class II cell surface expression have been difficult to address in intact animals. This study uses several lines of H-2s/s mice carrying an A beta k transgene that differ significantly in terms of class II cell surface expression. Due to inefficient chain pairing, mice carrying 60 to 65 copies of this transgene express only low levels of A alpha s/A beta k on the cell surface, and cell surface expression of the endogenous A alpha s/A beta s complex (and total Ia) is severely reduced (to 7-15% control levels). The significant decrease in class II cell surface expression in the thymic cortex of these mice did not affect the frequency of peripheral T cells expressing at least 10 distinct TCR V beta chains. However, T cell proliferative responses to the A alpha s/A beta s-restricted peptide MBP 89-101 were abrogated in high copy number A beta k mice. Experiments using bone marrow chimeras demonstrated that both inefficient Ag presentation and failure to positively select appropriate T cells contributed to this lack of response. Inefficient Ag presentation was clearly the dominant defect, and the density of class II cell surface expression required for positive selection appeared to be quite low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号