首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genotoxicity is one of the important endpoints for risk assessment of environmental chemicals. Many short-term assays to evaluate genotoxicity have been developed and some of them are being used routinely. Although these assays can generally be completed within a short period, their throughput is not sufficient to assess the huge number of chemicals, which exist in our living environment without information on their safety. We have evaluated three commercially available in silico systems, i.e., DEREK, MultiCASE, and ADMEWorks, to assess chemical genotoxicity. We applied these systems to the 703 chemicals that had been evaluated by the Salmonella/microsome assay from CGX database published by Kirkland et al. We also applied these systems to the 206 existing chemicals in Japan that were recently evaluated using the Salmonella/microsome assay under GLP compliance (ECJ database). Sensitivity (the proportion of the positive in Salmonella/microsome assay correctly identified by the in silico system), specificity (the proportion of the negative in Salmonella/microsome assay correctly identified) and concordance (the proportion of correct identifications of the positive and the negative in Salmonella/microsome assay) were increased when we combined the three in silico systems to make a final decision in mutagenicity, and accordingly we concluded that in silico evaluation could be optimized by combining the evaluations from different systems. We also investigated whether there was any correlation between the Salmonella/microsome assay result and the molecular weight of the chemicals: high molecular weight (>3000) chemicals tended to give negative results. We propose a decision tree to assess chemical genotoxicity using a combination of the three in silico systems after pre-selection according to their molecular weight.  相似文献   

2.
The genotoxicity of river water and sediment including interstitial water was evaluated by microscreen phage-induction and Salmonella/microsome assays. Different processes used to fractionate the sediment sample were compared using solvents with different polarities. The results obtained for mutagenic activity using the Salmonella/microsome test were negative in the water and interstitial water samples analysed using the direct concentration method. The responses in the microscreen phage-induction assay showed the presence of genotoxic or indicative genotoxic activity for at least one water sample of each site analysed using the same concentration method. Similar results were obtained for interstitial water samples, i.e. absence of mutagenic activity in the Salmonella/microsome test and presence of genotoxic activity in the microscreen phage-induction assay. Metal contamination, as evidenced by the concentrations in stream sediments, may also help explain some of these genotoxic results. Stream sediment organic extracts showed frameshift mutagenic activity in the ether extract detected by Salmonella/microsome assay. The concentrates evaluated by microscreen phage-induction assay identified the action of organic compounds in the non-polar, medium polar and polar fractions. Thus, the microscreen phage-induction assay has proven to be a more appropriate methodology than the Salmonella/microsome test to analyse multiple pollutants in this ecosystem where both organic compounds and heavy metals are present.  相似文献   

3.
3 ketone solvents (methyl ethyl ketone (MEK), methyl isobutyl ketone (MiBK), and isophorone) were tested for potential genotoxicity. The assays of MEK and MiBK included the Salmonella/microsome (Ames) assay, L5178Y/TK+/- mouse lymphoma (ML) assay, BALB/3T3 cell transformation (CT) assay, unscheduled DNA synthesis (UDS) assay, and micronucleus (MN) assay. Only the ML, UDS, and MN assays were conducted on samples of isophorone. No genotoxicity was found for MEK or isophorone. The presence of a marginal response only at the highest, cytotoxic concentration tested in the ML assay, the lack of reproducibility in the CT assay, and clearly negative results in the Ames assay, UDS and MN assays, suggest that MiBK is unlikely to be genotoxic in mammalian systems.  相似文献   

4.
Genotoxicity of emodin was studied in the Salmonella/microsome assay, the sister-chromatid exchange (SCE) assay and the hypoxanthine-guanine-phosphoribosyltransferase (HGPRT) forward mutation assay with V79 Chinese hamster cells. In the Salmonella/microsome assay, emodin was found to be positive in TA97, TA100 and TA1537 in the presence of liver homogenate. In TA1537 a weak direct mutagenicity was also observed. In both mammalian test systems, no genotoxicity was found either with or without metabolic activation.  相似文献   

5.
The performance of a battery of three of the most commonly used in vitro genotoxicity tests--Ames+mouse lymphoma assay (MLA)+in vitro micronucleus (MN) or chromosomal aberrations (CA) test--has been evaluated for its ability to discriminate rodent carcinogens and non-carcinogens, from a large database of over 700 chemicals compiled from the CPDB ("Gold"), NTP, IARC and other publications. We re-evaluated many (113 MLA and 30 CA) previously published genotoxicity results in order to categorise the performance of these assays using the response categories we established. The sensitivity of the three-test battery was high. Of the 553 carcinogens for which there were valid genotoxicity data, 93% of the rodent carcinogens evaluated in at least one assay gave positive results in at least one of the three tests. Combinations of two and three test systems had greater sensitivity than individual tests resulting in sensitivities of around 90% or more, depending on test combination. Only 19 carcinogens (out of 206 tested in all three tests, considering CA and MN as alternatives) gave consistently negative results in a full three-test battery. Most were either carcinogenic via a non-genotoxic mechanism (liver enzyme inducers, peroxisome proliferators, hormonal carcinogens) considered not necessarily relevant for humans, or were extremely weak (presumed) genotoxic carcinogens (e.g. N-nitrosodiphenylamine). Two carcinogens (5-chloro-o-toluidine, 1,1,2,2-tetrachloroethane) may have a genotoxic element to their carcinogenicity and may have been expected to produce positive results somewhere in the battery. We identified 183 chemicals that were non-carcinogenic after testing in both male and female rats and mice. There were genotoxicity data on 177 of these. The specificity of the Ames test was reasonable (73.9%), but all mammalian cell tests had very low specificity (i.e. below 45%), and this declined to extremely low levels in combinations of two and three test systems. When all three tests were performed, 75-95% of non-carcinogens gave positive (i.e. false positive) results in at least one test in the battery. The extremely low specificity highlights the importance of understanding the mechanism by which genotoxicity may be induced (whether it is relevant for the whole animal or human) and using weight of evidence approaches to assess the carcinogenic risk from a positive genotoxicity signal. It also highlights deficiencies in the current prediction from and understanding of such in vitro results for the in vivo situation. It may even signal the need for either a reassessment of the conditions and criteria for positive results (cytotoxicity, solubility, etc.) or the development and use of a completely new set of in vitro tests (e.g. mutation in transgenic cell lines, systems with inherent metabolic activity avoiding the use of S9, measurement of genetic changes in more cancer-relevant genes or hotspots of genes, etc.). It was very difficult to assess the performance of the in vitro MN test, particularly in combination with other assays, because the published database for this assay is relatively small at this time. The specificity values for the in vitro MN assay may improve if data from a larger proportion of the known non-carcinogens becomes available, and a larger published database of results with the MN assay is urgently needed if this test is to be appreciated for regulatory use. However, specificity levels of <50% will still be unacceptable. Despite these issues, by adopting a relative predictivity (RP) measure (ratio of real:false results), it was possible to establish that positive results in all three tests indicate the chemical is greater than three times more likely to be a rodent carcinogen than a non-carcinogen. Likewise, negative results in all three tests indicate the chemical is greater than two times more likely to be a rodent non-carcinogen than a carcinogen. This RP measure is considered a useful tool for industry to assess the likelihood of a chemical possessing carcinogenic potential from batteries of positive or negative results.  相似文献   

6.
The potential genotoxic effects of several pure secondary metabolites produced by fungi used as biological control agents (BCAs) were studied with the Ames Salmonella/microsome mutagenicity assay and the Vitotox test, with and without metabolic activation. A complete set of Salmonella tester strains was used to avoid false negative results. To detect possible mutagenic and/or cytotoxic effects of fungal secondary metabolites due to synergistic action, crude extracts and fungal cell extracts of the BCAs were also examined. Although the sensitivity of the methods varied depending on the metabolite used, clearly no genotoxicity was observed in all cases. The results of the two assays are discussed in the light of being used in a complementary fashion for a convincing risk-assessment evaluation of fungal BCAs and their secondary metabolites.  相似文献   

7.
The mutagenic activity of 11 sesquiterpenoid unsaturated dialdehydes in the V79/HGPRT assay has been determined, and is compared with previously published data on the mutagenicity of the same compounds towards Ames Salmonella strains. One compound, isovelleral, is a potent mutagen in both assays, while six compounds, which are positive in the Ames Salmonella/microsome assay, show no significant activity in this study. One compound, acetylmerulidial, is negative in the Ames Salmonella/microsome assay but significantly although weakly mutagenic in the V79/HGPRT assay. The remaining three compounds are inactive in both assays. The study is part of a general investigation of quantitative structure-activity relationships for unsaturated dialdehydes, a class of natural occurring compounds known for their potent and numerous biological activities.  相似文献   

8.
The genotoxicity and mutagenicity of several kinds of quinone pigments from pathogenic fungi were examined by means of the hepatocyte primary culture (HPC)/DNA repair test and of Ames test with TA98 and TA100. Clear genotoxicity of the two quinone chemicals, xanthomegnin and luteosporin were observed in the HPC/DNA repair test, though definite mutagenicity was not detected in the Salmonella microsome test. These two pigments are thus suspected to be genotoxic carcinogens.  相似文献   

9.
The genotoxicity of river water and sediment including interstitial water was evaluated by microscreen phage-induction and Salmonella/microsome assays. Different processes used to fractionate the sediment sample were compared using solvents with different polarities. The results obtained for mutagenic activity using the Salmonella/microsome test were negative in the water and interstitial water samples analysed using the direct concentration method. The responses in the microscreen phage-induction assay showed the presence of genotoxic or indicative genotoxic activity for at least one water sample of each site analysed using the same concentration method. Similar results were obtained for interstitial water samples, i.e. absence of mutagenic activity in the Salmonella/microsome test and presence of genotoxic activity in the microscreen phage-induction assay. Metal contamination, as evidenced by the concentrations in stream sediments, may also help explain some of these genotoxic results. Stream sediment organic extracts showed frameshift mutagenic activity in the ether extract detected by Salmonella/microsome assay. The concentrates evaluated by microscreen phage-induction assay identified the action of organic compounds in the non-polar, medium polar and polar fractions. Thus, the microscreen phage-induction assay has proven to be a more appropriate methodology than the Salmonella/microsome test to analyse multiple pollutants in this ecosystem where both organic compounds and heavy metals are present.  相似文献   

10.
Various substituted aniline derivatives were tested for genotoxicity in several short-term tests in order to examine the hypothesis that a substitution at both ortho positions (2,6-disubstitution) could prevent genotoxicity due to steric hindrance of an enzymatic activation to electrophilic intermediates. In the Salmonella/microsome assay, 2,6-dialkylsubstituted anilines and 2,4,6-trimethylaniline (2,4,6-TMA) were weakly mutagenic in strain TA100 when 20% S9 mix was used, although effects were small compared to those of 2,4-dimethylaniline and 2,4,5-trimethylaniline (2,4,5-TMA). In Drosophila melanogaster, however, 2,4,6-TMA and 2,4,6-trichloroaniline (TCA) were mutagenic in the wing spot test at 2-3 times lower doses than 2,4,5-TMA. In the 6-thioguanine resistance test in cultured fibroblasts, 2,4,6-TMA was again mutagenic at lower doses than 2,4,5-TMA. Two methylene-bis-aniline derivatives were also tested with the above methods: 4,4'-methylene-bis-(2-chloroaniline) (MOCA) was moderately genotoxic in all 3 test systems whereas 4,4'-methylene-bis-(2-ethyl-6-methylaniline) (MMEA) showed no genotoxicity at all. DNA binding studies in rats, however, revealed that both MOCA and MMEA produced DNA adducts in the liver at levels typically found for moderately strong genotoxic carcinogens. These results indicate that the predictive value of the in vitro test systems and particularly the Salmonella/microsome assay is inadequate to detect genotoxicity in aromatic amines. Genotoxicity seems to be a general property of aniline derivatives and does not seem to be greatly influenced by substitution at both ortho positions.  相似文献   

11.
Ever since the introduction of the Salmonella typhimurium mammalian microsome mutagenicity assay (the ‘Ames test’) over three decades ago, there has been a constant development of additional genotoxicity assays based upon the use of genetically engineered microorganisms. Such assays rely either on reversion principles similar to those of the Ames test, or on promoter–reporter fusions that generate a quantifiable dose-dependent signal in the presence of potential DNA damaging compounds and the induction of repair mechanisms; the latter group is the subject of the present review. Some of these assays were only briefly described in the scientific literature, whereas others have been developed all the way to commercial products. Out of these, only one, the umu-test, has been fully validated and ISO- and OECD standardized. Here we review the main directions undertaken in the construction and testing of bacterial-based genotoxicity bioassays, including the attempts to incorporate at least a partial metabolic activation capacity into the molecular design. We list the genetic modifications introduced into the tester strains, compare the performance of the different assays, and briefly describe the first attempts to incorporate such bacterial reporters into actual genotoxicity testing devices.  相似文献   

12.
The genotoxicity of zinc was examined in 4 short-term mutagenicity assays. Zinc acetate produced dose-related positive responses in the L5178Y mouse lymphoma assay and an in vitro cytogenetic assay with Chinese hamster ovary cells, but was negative in the Salmonella mutation assay and did not induce unscheduled DNA synthesis in primary cultures of rat hepatocytes. Zinc-2,4-pentanedione produced frameshift mutations in Salmonella tester strains TA1538 and TA98, but did not induce unscheduled DNA synthesis in primary cultures of rat hepatocytes. The effect of ligand binding of zinc in the in vitro test systems is discussed.  相似文献   

13.
From a literature survey, 86 chemicals are tabulated that have been evaluated in 121 assays for their clastogenic effects in Zea mays. Eighty-one of the 86 chemicals are reported as giving a positive reaction (i.e. causing chromosome aberrations). Of these, 36 are reported positive with a dose response. In addition, 32 assays have been recorded for 7 types of radiation, all of which reacted positively. The results of 126 assays with 63 chemicals and 12 types of radiation tested for the inductions of gene mutations are tabulated, as well as 63 chemicals and/or radiation in combined treatments. Three studies reported positive results for mutations on Zea mays seed sent on space flights. The Zea mays (2n=20) assay is a very good plant bioassay for assessing chromosome damage both in mitosis and meiosis and for somatic mutations induced by chemicals and radiations. The carcinogenicity and Salmonella assays correlate in all cases. The maize bioassay has been shown to be as sensitive and as specific an assay as other plant genotoxicity assays, such as Hordeum vulgare, Vicia faba, Crepis capillaris, Pisum sativum, Lycopersicon esculentum and Allium cepa and should be considered in further studies in assessing clastogenicity. Tests using Zea mays can be made for a spectrum of mutant phenotypes of which many are identifiable in young seedlings.  相似文献   

14.
This research examined the quality of water-before and after distribution-of four drinking-water production plants located in Northern Italy, two of which collected water from local aquifers and two from the River Po. A battery of genotoxicity assays for monitoring drinking-water was performed to assess the quality of the water produced by the treatment plants under study. Three different sampling stations were selected at each plant, one right at the outlet of the treatment plant and two along with the distribution pipelines. Raw river water was also sampled and analysed as a control. The water samples (500 l) were concentrated on silica C18 cartridges and the extracts were tested in in vitro mutagenicity assays (Salmonella/microsome assay with strains TA 98 and TA 100; SOS Chromotest with Escherichia coli strain PQ37); gene conversion, point mutation and mitochondrial DNA mutability assays with the diploid Saccharomyces cerevisiae strain D7 and a toxicity test using the bioluminescent bacterium Vibrio fischeri (Microtox). The Microtox test and the mitochondrial DNA mutability assay showed the greatest sensitivity towards toxic or mutagenic substances in the water extracts considered. The results show that this battery of short-term tests is applicable in the routine monitoring of drinking-water quality before and after distribution.  相似文献   

15.
A simple substructure-based approach was developed to determine whether a short-term assay under development is related mechanistically to the endpoint it seeks to predict. Thus, substructures associated with mutagenicity in Salmonella are also present in carcinogens and agents active in other mutagenicity and genotoxicity assays.When applied to test results obtained with an Escherichia coli strain designed to identify oxidative mutagens, there was no significant association with either carcinogens or mutagens and genotoxicants detected by other systems. There was, however, a significant association between alerts for oxidative mutagenesis and chemicals capable of inducing allergic contact dermatitis (ACD) in humans.  相似文献   

16.
The ability of plant genotoxicity assays to predict carcinogenicity   总被引:3,自引:0,他引:3  
A number of assays have been developed which use higher plants for measuring mutagenic or cytogenetic effects of chemicals, as an indication of carcinogenicity. Plant assays require less extensive equipment, materials and personnel than most other genotoxicity tests, which is a potential advantage, particularly in less developed parts of the world. We have analyzed data on 9 plant genotoxicity assays evaluated by the Gene-Tox program of the U.S. Environmental Protection Agency, using methodologies we have recently developed to assess the capability of assays to predict carcinogenicity and carcinogenic potency. All 9 of the plant assays appear to have high sensitivity (few false negatives). Specificity (rate of true negatives) was more difficult to evaluate because of limited testing on non-carcinogens; however, available data indicate that only the Arabidopsis mutagenicity (ArM) test appears to have high specificity. Based upon their high sensitivity, plant genotoxicity tests are most appropriate for a risk-averse testing program, because although many false positives will be generated, the relatively few negative results will be quite reliable.  相似文献   

17.
Genotoxicity of polycyclic aromatic hydrocarbons in Escherichia coli PQ37.   总被引:2,自引:0,他引:2  
In the present investigation, 32 polycyclic aromatic hydrocarbons (PAHs) were tested for genotoxicity in E. coli PQ37 using the standard tube assay of the SOS chromotest. PAHs such as benzo[ghi]fluoranthene, benzo[j]fluoranthene, benzo[a]pyrene, chrysene, dibenzo[a,l]pyrene, fluoranthene and triphenylene exhibited high genotoxicity when incubated in the presence of an exogenous metabolic activation mixture. The results were compared to those obtained with the Salmonella/microsome test.  相似文献   

18.
The phenolic compound, hydroxychavicol (HC), present in betel leaf, was synthesized and tested for its antimutagenic effect against the mutagenicity of the 2 tobacco-specific N-nitrosamines (TSNA), N′-nitrosonornicotine (NNN) and 4-(nitrosomethylamino)-1-(3-pyridyl)-1-butanone (NNK), in 2 different test systems, viz. the Ames Salmonella/microsome assay and the micronucleus test using Swiss male mice. We are reporting the synthesis of HC of a high degree of purity. We observed that HC suppressed the mutagenic effects of NNN and NNK in both test systems used. These results indicate that HC may have a role to play in reducing the risk of oral cancer in betel quid with tobacco chewers.  相似文献   

19.
Two isothiocyanates (ITCs) commonly found in human diet, allyl isothiocyanate (AITC) and phenethyl isothiocyanate (PEITC), were tested for genotoxic effects in a battery of assays: Salmonella/microsome assay with TA 98 and TA 100, differential DNA repair assay with E. coli and micronucleus (MN) induction assay with human derived Hep G2 cells. Albeit to a different degree, both ITCs induced genotoxic effects in all test systems. AITC was more genotoxic in bacterial test systems than in Hep G2 cells; in contrast, the effect of PEITC was stronger in Hep G2 cells. In in vivo assays with E. coli indicators in which mice were exposed to relatively high doses of the compounds (90 and 270 mg/kg), AITC induced moderate but significant effects; PEITC failed to induce significant effects in any of the organs. To find out the reason for the weak genotoxicity of AITC and PEITC under in vivo test conditions, we exposed E. coli indicator cells to the test substances in the absence or presence of rat liver homogenate (with and without cofactors), bovine serum albumin (BSA) and human saliva. All of them markedly attenuated the genotoxicity of AITC and PEITC, implying that the test substances are detoxified by direct non-enzymatic binding to proteins. Additional experiments carried out on the mechanistic aspects of AITC and PEITC-induced genotoxicity showed that the compounds induce the formation of thiobarbituric acid reactive substances (TBARS) in Hep G2 cells. Furthermore, in in vitro assays with E. coli, radical scavengers reduced the differential DNA damage induced by AITC and PEITC. The latter two findings give a clue that reactive oxygen species might be involved in the genotoxic effect of the ITCs. Although ITCs have been repeatedly advocated as very promising anticancer agents, the data presented here indicate that the compounds are genotoxic, and probably carcinogenic, in their own right.  相似文献   

20.
Styles JA  Clark H  Festing MF  Rew DA 《Cytometry》2001,44(2):153-155
BACKGROUND: The evaluation of the safety of drugs and other chemicals is an important aspect of toxicology work. The mouse micronucleus assay is a standard in vivo genotoxicity assay. Chromosomal damage is an indicator of genotoxicity, which manifests in the formation of micronuclei in polychromatic erythrocytes from bone marrow and in peripheral blood erythrocytes. The assay is laborious to perform by manual counting. The laser scanning cytometer allows automated and rapid quantitation of cellular and subcellular fluorescence in monodisperse cell samples on a microscope slide. The object of this study was to evaluate the application of this new technology in the mouse micronucleus genotoxicity assay. Materials and Methods One hundred forty-four mice of various strains were dosed with combinations of carcinogens and antioxidants. Duplicate blood films were prepared 3 days later. One set of slides was stained with acridine orange, and the proportion of micronucleated erythrocytes was counted in 5,000 cells per slide. The duplicates were stained with propidium iodide (40 microg/ml). Five thousand cells per sample were examined using a laser scanning cytometer. The proportion of micronucleated erythrocytes was measured. RESULTS: A coefficient of correlation of 0.96 was found between the data from the two assays. The automation of the assay on the LSC produced a considerable time saving and efficiency gain. CONCLUSIONS: We conclude that with further development, laser scanning cytometry is likely to become the preferred modality for the performance of standard genotoxicity assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号