首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rice (Oryza sativa L.) Xa3/Xa26 gene, conferring race-specific resistance to bacterial blight disease and encoding a leucine-rich repeat (LRR) receptor kinase-like protein, belongs to a multigene family consisting of tandem clustered homologous genes, colocalizing with several uncharacterized genes for resistance to bacterial blight or fungal blast. To provide more information on the expressional and biochemical characteristics of the Xa3/Xa26 family, we analyzed the family members. Four Xa3/Xa26 family members in the indica rice variety Teqing, which carries a bacterial blight resistance gene with a chromosomal location tightly linked to Xa3/Xa26, and five Xa3/Xa26 family members in the japonica rice variety Nipponbare, which carries at least one uncharacterized blast resistance gene, were constitutively expressed in leaf tissue. The result suggests that some of the family members may be candidates of these uncharacterized resistance genes. At least five putative N-glycosylation sites in the LRR domain of XA3/XA26 protein are not glycosylated. The XA3/XA26 and its family members MRKa and MRKc all possess the consensus sequences of paired cysteines, which putatively function in dimerization of the receptor proteins for signal transduction, immediately before the first LRR and immediately after the last LRR. However, no homo-dimer between the XA3/XA26 molecules or hetero-dimer between XA3/XA26 and MRKa or MRKc were formed, indicating that XA3/XA26 protein might function either as a monomer or a hetero-dimer formed with other protein outside of the XA3/XA26 family. These results provide valuable information for further extensive investigation into this multiple protein family.  相似文献   

2.
3.
The plant specific LATERAL ORGAN BOUNDARIES (LOB) domain (LBD) gene family has a potential role in lateral organ development. Thirty-five LBD genes in a japonica rice (Nipponbare) (designated OsJLBD) and in an indica rice (9311) (designated OsILBD) were identified based on the current databases of the two rice subspecies. A new rice LBD gene with two LOB domains and two predicted coiled coil structures in both subspecies was found, which is not found in other plant species based on the current NCBI Genbank database. OsJLBD and OsILBD genes have similar chromosomal distribution pattern. Both OsJLBD and OsILBD genes can be divided into 7 subclasses (classes Ia-e, II and III (see )) and no subclass-specific expression pattern was observed. No introns have been predicted in all class Ie genes in both OsJLBD and OsILBD subfamilies. The genome and tandem duplication has contributed to the neofunctionalization and formation of new rice subclasses, but the mechanism of diploidization and limited tandem duplication have contributed to fewer LBD genes in rice than in Arabidopsis. Functional studies of genes in subclasses may help to determine whether special sequence structure (intron-exon, spacing characters of motifs) has caused special expression pattern of subclasses.  相似文献   

4.
Wang X  Tang H  Bowers JE  Feltus FA  Paterson AH 《Genetics》2007,177(3):1753-1763
Many genes duplicated by whole-genome duplications (WGDs) are more similar to one another than expected. We investigated whether concerted evolution through conversion and crossing over, well-known to affect tandem gene clusters, also affects dispersed paralogs. Genome sequences for two Oryza subspecies reveal appreciable gene conversion in the approximately 0.4 MY since their divergence, with a gradual progression toward independent evolution of older paralogs. Since divergence from subspecies indica, approximately 8% of japonica paralogs produced 5-7 MYA on chromosomes 11 and 12 have been affected by gene conversion and several reciprocal exchanges of chromosomal segments, while approximately 70-MY-old "paleologs" resulting from a genome duplication (GD) show much less conversion. Sequence similarity analysis in proximal gene clusters also suggests more conversion between younger paralogs. About 8% of paleologs may have been converted since rice-sorghum divergence approximately 41 MYA. Domain-encoding sequences are more frequently converted than nondomain sequences, suggesting a sort of circularity--that sequences conserved by selection may be further conserved by relatively frequent conversion. The higher level of concerted evolution in the 5-7 MY-old segmental duplication may reflect the behavior of many genomes within the first few million years after duplication or polyploidization.  相似文献   

5.
在最近完成测序的水稻籼稻和粳稻两个亚种基因组中,各找到564和519个较为可靠的tRNA基因,进一步证实了于2002年发表的基于基因组序列草图的分析结果。修正的摆动假设,即至少需要46种tRNA基因才能译出61种可能的反密码子,在这两个亚种中均准确成立。在这46种tRNA中,有些在籼稻和粳稻中的序列均全同。有18种水稻tRNA与拟南芥中的相应序列全同。在籼稻基因组序列中还发现了384个5S rRNA基因,一批17S和5.8S rRNA基因以及一个25S rRNA基因。这些rRNA基因的不完备是由于它们通常以串接阵列形式存在于异染色质区域,而后者在全基因组霰弹法测序中不易完整测出。在tRNA和rRNA基因序列之间发现了多处互补片段,这将有助于研究它们的进化和相互作用。  相似文献   

6.
Many studies have shown genotypic differences in Cadmium (Cd) accumulation among rice cultivars, and concentrations in shoots and grains are generally higher in indica rice cultivars than in japonica rice cultivars, but the mechanism remains unknown. The main objective of this study was to investigate differences in heavy metal accumulation between rice subspecies through the analysis of 46 indica cultivars and 30 japonica cultivars. At the seedling stage, the mean Cd concentrations in the shoots of indica subspecies were significantly higher than those in japonica subspecies (1.22-fold), but this pattern was not observed in the roots. At the filling stage, the mean Cd concentrations in the shoots and spikes of indica subspecies were 1.66- and 2.14-fold higher than the respective concentrations in japonica subspecies. At the harvest stage, the mean Cd concentrations in the shoots and brown rice of indica subspecies were 1.61- and 2.27-fold higher than the respective concentrations in japonica subspecies. These results indicate that root-to-shoot and shoot-to-grain translocation, rather than Cd absorption in the roots, may be the key processes that determine the differences in Cd accumulation among rice subspecies. Gene expression analysis revealed that overall, the expression levels of the Cd transporter gene OsNramp1 notably increased (22.46-fold), but the expression levels of OsHMA2, OsHMA3 and OsNRAMP5 were not significantly changed at the seedling stage in the 76 cultivars exposed to Cd; the expression levels of OsNramp1 were positively correlated with the Cd concentrations in spikes at the filling stage. In addition, a significant difference was observed in the expression levels of OsNramp1 between the indica and japonica subspecies, which may explain the higher Cd concentrations in roots but lower Cd concentrations in spikes and brown rice for the japonica subspecies. Together, these results demonstrate that OsNramp1 may be the most important gene among the four selected genes in the promotion of Cd uptake by roots and transfer of Cd into spikes and eventually into brown rice.  相似文献   

7.
Sun X  Wang GL 《PloS one》2011,6(3):e16079
LRR-kinases constitute the largest subfamily of receptor-like kinases in plants and regulate a wide variety of processes related to development and defense. Through a reiterative process of sequence analysis and re-annotation, we identified 309 LRR-kinase genes in the rice genome (Nipponbare). Among them, 127 genes in the Rice Annotation Project Database and 85 in Refseq of NCBI were amended (in addition, 62 LRR-kinase genes were not annotated in Refseq). The complete set of LRR-kinases was characterized. These LRR-kinases were classified into five groups according to phylogenetic analysis, and the genes in groups 1, 2, 3 and 4 usually have fewer introns than those in group 5. The introns in the LRR domain, which are highly conserved in regards to their positions and configurations, split the first Leu or other amino residues at this position of the 'xxLxLxx' motif with phase 2 and usually separate one or more LRR repeats exactly. Tandemly repeated LRR motifs have evolved from exon duplication, mutation and exon shuffling. The extensive distribution and diversity of the LRR-kinase genes have been mainly generated by tandem duplication and mutation after whole genome duplication. Positive selection has made a limited contribution to the sequence diversity after duplication, but positively selected sites located in the LRR domain are thought to involve in the protein-protein interaction.  相似文献   

8.
The molecular evolution of cultivated rice Oryza sativa L. has long been a subject of rice evolutionists. To investigate genetic diversity within and differentiation between the indica and japonica subspecies, 22 accessions of indica and 35 of japonica rice were examined by five microsatellite loci from each chromosome totalling 60 loci. Mean gene diversity value in the indica rice (H=0.678) was 1.18 times larger than in the japonica rice (H=0.574). Taking the sampling effect into consideration, average allele number in the indica rice was 1.40 times higher than that in the japonica rice (14.6 vs 10.4 per variety). Chromosome-based comparisons revealed that nine chromosomes (1, 2, 3, 4, 5, 8, 9, 10 and 11) harboured higher levels of genetic diversity within the indica rice than the japonica rice. An overall estimate of F(ST) was 0.084-0.158, indicating that the differentiation is moderate and 8.4-15.8% of the total genetic variation resided between the indica and japonica groups. Our chromosome-based comparisons further suggested that the extent of the indica-japonica differentiation varied substantially, ranging from 7.62% in chromosome 3 to 28.72% in chromosome 1. Cluster analyses found that most varieties formed merely two clusters for the indica and japonica varieties, in which two japonica varieties and five indica varieties were included in the counterpart clusters, respectively. The 12 chromosome-based trees further showed that 57 rice varieties cannot be clearly clustered together into either the indica or japonica groups, but displayed relatively different clustering patterns. The results suggest that the process of indica japonica differentiation may have proceeded through an extensive contribution by the alleles of the majority in the rice genome.  相似文献   

9.
mPing是水稻中第一个被鉴定出的有活性的MITE类转座子,为了探索mPing在水稻粳稻品种日本晴和籼稻品种93-11基因组中的分布差异,本研究首先运用Southern杂交的方法初步检测m Ping在两个亚种中拷贝数的差异,然后通过同源性探寻方法发现,m Ping在水稻亚种日本晴和93-11基因组中拷贝数分别为52和14,并且日本晴基因组中的m Ping均为m Ping-1,93-11中m Ping-1的拷贝数为3,m Ping-2的拷贝数为11。通过分析m Ping上下游5 kb侧翼序列发现m Ping在日本晴和93-11中分别与23和3个已知基因相关联。本研究为阐明以m Ping的分布多样性为主要原因的粳稻和籼稻之间的遗传差异提供初步理论基础。  相似文献   

10.
The barley Rdg2a locus confers resistance to the leaf stripe pathogen Pyrenophora graminea and, in the barley genotype Thibaut, it is composed of a gene family with three highly similar paralogs. Only one member of the gene family (called as Rdg2a) encoding for a CC-NB-LRR protein is able to confer resistance to the leaf stripe isolate Dg2. To study the genome evolution and diversity at the Rdg2a locus, sequences spanning the Rdg2a gene were compared in two barley cultivars, Thibaut and Morex, respectively, resistant and susceptible to leaf stripe. An overall high level of sequence conservation interrupted by several rearrangements that included three main deletions was observed in the Morex contig. The main deletion of 13,692 bp was most likely derived from unequal crossing over between Rdg2a paralogs leading to the generation of a chimeric Morex rdg2a gene which was not associated to detectable level of resistance toward leaf stripe. PCR-based analyses of genic and intergenic regions at the Rdg2a locus in 29 H. vulgare lines and one H. vulgare ssp. spontaneum accession indicated large haplotype variability in the cultivated barley gene pool suggesting rapid and recent divergence at this locus. Barley genotypes showing the same haplotype as Thibaut at the Rdg2a locus were selected for a Rdg2a allele mining through allele re-sequencing and two lines with polymorphic nucleotides leading to amino acid changes in the CC-NB and LRR encoding domains, respectively, were identified. Analysis of nucleotide diversity of the Rdg2a alleles revealed that the polymorphic sites were subjected to positive selection. Moreover, strong positively selected sites were located in the LRR encoding domain suggesting that both positive selection and divergence at homologous loci are possibly representing the molecular mechanism for the generation of high diversity at the Rdg2a locus in the barley gene pool.  相似文献   

11.
12.
13.
14.
He Z  Zhai W  Wen H  Tang T  Wang Y  Lu X  Greenberg AJ  Hudson RR  Wu CI  Shi S 《PLoS genetics》2011,7(6):e1002100
Genealogical patterns in different genomic regions may be different due to the joint influence of gene flow and selection. The existence of two subspecies of cultivated rice provides a unique opportunity for analyzing these effects during domestication. We chose 66 accessions from the three rice taxa (about 22 each from Oryza sativa indica, O. sativa japonica, and O. rufipogon) for whole-genome sequencing. In the search for the signature of selection, we focus on low diversity regions (LDRs) shared by both cultivars. We found that the genealogical histories of these overlapping LDRs are distinct from the genomic background. While indica and japonica genomes generally appear to be of independent origin, many overlapping LDRs may have originated only once, as a result of selection and subsequent introgression. Interestingly, many such LDRs contain only one candidate gene of rice domestication, and several known domestication genes have indeed been "rediscovered" by this approach. In summary, we identified 13 additional candidate genes of domestication.  相似文献   

15.
16.
亚洲栽培稻的祖先是普通野生稻,已成为世界公认的观点,然而亚洲栽培稻的2个亚种:粳稻和籼稻是一次起源还是二次起源仍存在很大争议,其起源地是国内还是国外依然是国际学者间争论的焦点。本文通过对184份亚洲栽培稻和203份普通野生稻3段基因序列cox3、cox1、orf 224和2段基因间序列ssv-39/178、rps2-trnfM的多样性研究,验证了以下观点:1)粳稻起源于中国,籼稻起源于中国和国外;2)亚洲栽培稻的起源为二次起源,即普通野生稻存在偏籼和偏粳2种类型,亚洲栽培稻的2个亚种籼稻和粳稻在进化过程中分别由偏籼型的普通野生稻和偏粳型的普通野生稻进化而来。  相似文献   

17.
应用微卫星标记鉴别水稻籼粳亚种   总被引:57,自引:2,他引:55  
应用70个微卫星标记分析了3个籼稻测验种和3个粳稻测验种的多态性,发现其中36个标记可以区分籼粳测验种。再以18个籼粳品种进一步筛选,找到了分布于12条染色体的21个籼粳特异性微卫星标记。在这21个标记中,20个在籼粳亚种间带型相异,其中7个在亚种内带型一致,13个在亚种内带型不一致;1个标记在12个籼稻品种和1个粳稻品种检测到相同的带型,其余11个粳稻品种具有另一种带型。微卫星标记和RFLP标记检测籼粳亚种不仅具有一致性,而且还有互补性。 Abstract:Six indica and japonica testers were assayed using 70 microsatellite markers.Thirty-six markers distinguishing indicas from japonicas were detected.By further-screening among 18 indica and japonica varieties,21 markers distributed on 12 rice chromosomes were found to be indica-japonica differentiated.No indica varieties shared same patterns with any japonica varieties at 20 marker loci,of which identical patterns were observed within subspecies at 7 loci while within-subspecies variations were observed at 13 loci.At the remaining locus,12 indica and 1 japonica varieties had the same allele,while other 11 japonica varieties had another allele.It also showed that SSLP was not only consistent,but also complementary,to RFLP for the subspecies identification.  相似文献   

18.
19.
为了研究籼粳亚种基因调控序列的总体特性,我们利用籼粳稻以及拟南芥基因组和全长mRNA序列获取了大量高可信度的调控序列,通过这些序列,分析了水稻基因调控序列顺式作用元件(信号)的数量、分布以及与GC含量的关系等.研究结果表明:一些信号在水稻基因调控序列中发生显著的数量变化,同时一些信号数量在水稻与拟南芥基因间存在明显差异, 这说明这两种单双子叶植物间信号的使用上存在偏好,同时水稻不同类型基因以及特有与非特有基因间在信号的使用上也存在差异.这些差异信号的分布直接导致了调控序列GC含量的波动.本研究没有发现水稻籼粳两个亚种间在调控序列方面(顺式调节因子和GC含量等)存在明显差异.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号