首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyethylene glycol (PEG) dehydrogenase in crude extracts of a PEG 20,000-utilizing mixed culture was purified 24 times by precipitation with ammonium sulfate, solubilization with laurylbetaine, and chromatography with diethylamino-ethyl-cellulose, hydroxylapatite, and Sephadex G-200. The purified enzyme was confirmed to be homogeneous by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The molecular weight of the enzyme, which appeared to consist of four identical subunits, was 2.4 X 10(5). The enzyme was stable below 35 degrees C and in the pH range of 7.5 to 9.0. The optimum pH and temperature of the activity were around 8.0 and 60 degrees C, respectively. The enzyme did not require any metal ions for activity and oxidized various kinds of PEGs, among which PEG 6,000 was the most active substrate. The apparent Km values for tetraethylene glycol and PEG 6,000 were about 10.0 and 3.0 mM, respectively.  相似文献   

2.
Polyethylene glycol (PEG) dehydrogenase in crude extracts of a PEG 20,000-utilizing mixed culture was purified 24 times by precipitation with ammonium sulfate, solubilization with laurylbetaine, and chromatography with diethylamino-ethyl-cellulose, hydroxylapatite, and Sephadex G-200. The purified enzyme was confirmed to be homogeneous by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The molecular weight of the enzyme, which appeared to consist of four identical subunits, was 2.4 X 10(5). The enzyme was stable below 35 degrees C and in the pH range of 7.5 to 9.0. The optimum pH and temperature of the activity were around 8.0 and 60 degrees C, respectively. The enzyme did not require any metal ions for activity and oxidized various kinds of PEGs, among which PEG 6,000 was the most active substrate. The apparent Km values for tetraethylene glycol and PEG 6,000 were about 10.0 and 3.0 mM, respectively.  相似文献   

3.
Polyethylene glycol (PEG) 4000-utilizing bacterium no. 203 was identified as a Flavobacterium species. 2, 6-Dichlorophenol-indophenol (DCIP)-dependent PEG dehydrogenase was constitutively formed in nutrient broth, glucose and PEG media. However, the enzyme formation was repressed in the presence of an excess amount (over 0.25%) of PEG 400 or 1000. PEG dehydrogenase was purified approximately 34 fold by precipitation with ammonium sulfate, solubilization with benzalkonium chloride, chromatography with DEAE-Toyopearl 650 M and hydroxylapatite and gel filtration on Toyopearl HW-55. The molecular weight of the purified PEG dehydrogenase was calculated to be approximately 2.20 × 105, a value which seemed to consist of four subunits with the same molecular weight of 5.70 × 104. The enzyme was stable below 40°C and in the pH range of 7.0 and 8.0. The optimum pH and temperature of the activity were around 8.0 and 40°C, respectively. The enzyme reduced DCIP and coenzyme Q1 and Q2. PEG dehydrogenase showed activity toward various PEG molecules (dimer-PEG 20,000). The apparent Km values for PEG 400, 1000, 4000 and 6000 were about 1.0, 1.7, 2.8 and 5.9 mM, respectively. The enzyme oxidized primary aliphatic alcohols of C3–C12, the corresponding aldehydes of C3–C7, aromatic alcohols and aldehydes, diols, etc. The enzyme was inactive on ethylene glycol, glycerol, secondary alcohols and sugar alcohols. The enzyme activity was strongly inhibited by sulfhydryl agents or heavy metals and 1, 4-benzoquinone. The purified enzyme showed absorption apectrum similar to that of PEG 6000 dehydrogenase which has already been reported to be a quinoprotein. The prosthetic group of the enzyme was extracted with methanol and identified as PQQ from its prosthetic group capability for glucose dehydrogenase and the fluorescence spectrum.  相似文献   

4.
2, 6-Dichlorophenolindophenol (DCIP)-dependent polyethylene glycol (PEG) dehydrogenase activity was found in the particulate fractions of cell-free extracts prepared from PEG-utilizing bacteria (Pseudomonas and Flavobacterium species). This result suggested that PEG dehydrogenase is linked to the respiratory chain of each bacterium and that the enzyme plays a major role in the aerobic metabolism of PEG. Enzyme activities were strongly inhibited by 1, 4-benzoquinone. No metal ion was indispensable for the enzyme activities. Enzyme activities of PEG-utilizing bacteria were induced by PEG except for the activity of PEG 4000-utilizing Flavobacterium sp. no. 203 which had a constitutive enzyme. Although PEG-utilizing bacteria had different growth substrate specificities toward PEGs 200–20,000, their PEG dehydrogenases oxidized the same molecular wt. range of PEGs (dimer-20,000). Cell-free extracts of PEG 400-, 1000- or 4000-utilizing bacteria oxidized PEG 6000 and 20,000 though these bigger PEGs could not be utilized as the sole carbon and energy sources by the bacteria. Methanol, ethylene glycol and glycerol were not or only barely dehydrogenated by all the enzyme preparations.  相似文献   

5.
Thermostable a-amylase with temperature optimum at 80 °C, molecular mass 58 kDa and pI point 6.9 was purified from a catabolite resistant Bacillus licheniformis strain. The enzyme was sensitive to inhibition by metal ions and N-bromosuccinimide. The partition behaviour of this enzyme in aqueous two-phase systems (ATPS) of the polymer-polymer-water type was investigated and some effects of type, molecular weight and concentration of phase components were studied. Up to 100% retention in the bottom phase of polyethylene glycol 10,000—20,000/dextran 200 system was reached. Best partition conditions were obtained in PEG 10,000—20,000/polyvinyl alcohol 200 systems, where the partition coefficient K increased 750 times to 7.5. Simultaneous production and purification of a-amylase and serine proteinase in PEG-polymer-water ATPS were examined. In the system PEG 6,000/ficoll, up to 90% of the amylase was retained in the bottom phase, whereas about 95% of the total protein (K = 22.8) and 60—75% of the proteinase were in the top phase. Similar separation of the enzymes from laboratory supernatant was obtained in system PEG/Na2SO4.  相似文献   

6.
A strictly anaerobic, homoacetogenic bacterium was enriched and isolated from anoxic sewage sludge with polyethylene glycol (PEG) 1000 as sole source of carbon and energy, and was assigned to the genus Acetobacterium on the basis of morphological and physiological properties. The new isolate fermented ethylene glycol and PEG's with molecular masses of 106 to 1000 to acetate and small amounts of ethanol. The PEG-degrading activity was not destroyed by proteinase K treatment of whole cells. In cell-free extracts, a diol dehydratase and a PEG-degrading (ether-cleaving) enzyme activity were detected which both formed acetaldehyde as reaction product. The diol dehydratase enzyme was oxygen-sensitive and was stimulated 10–14 fold by added adenosylcobalamine. This enzyme was found mainly in the cytoplasmic fraction (65%) and to some extent (35%) in the membrane fraction. The ether-cleaving enzyme activity reacted with PEG's of molecular masses of 106 to more than 20000. The enzyme was measurable optimally in buffers of high ionic strength (4.0), was extremely oxygen-sensitive, and was inhibited by various corrinoids (adenosylcobalamine, cyanocobalamine, hydroxocobalamine, methylcobalamine). This enzyme was found exclusively in the cytoplasmic fraction. It is concluded that PEG is degraded by this bacterium inside the cytoplasm by a hydroxyl shift reaction, analogous to a diol dehydratase reaction, to form an unstable hemiacetal intermediate. The name polyethylene glycol acetaldehyde lyase is suggested for the responsible enzyme.Abbreviations EG ethylene glycol - DiEG diethylene glycol - TriEG triethylene glycol - TeEG tetraethylene glycol - PEG polyethylene glycol (molecular mass indicated)  相似文献   

7.
Methanogenic enrichments capable of degrading polyethylene glycol and ethylene glycol were obtained from sewage sludge. Ethanol, acetate, methane, and (in the case of polyethylene glycols) ethylene glycol were detected as products. The sequence of product formation suggested that the ethylene oxide unit [HO-(CH2-CH2-O-)xH] was dismutated to acetate and ethanol; ethanol was subsequently oxidized to acetate by a syntrophic association that produced methane. The rates of degradation for ethylene, diethylene, and polyethylene glycol with molecular weights of 400, 1,000, and 20,000, respectively, were inversely related to the number of ethylene oxide monomers per molecule and ranged from 0.84 to 0.13 mM ethylene oxide units degraded per h. The enrichments were shown to best metabolize glycols close to the molecular weight of the substrate on which they were enriched. The anaerobic degradation of polyethylene glycol (molecular weight, 20,000) may be important in the light of the general resistance of polyethylene glycols to aerobic degradation.  相似文献   

8.
Bacterial oxidation of polyethylene glycol.   总被引:13,自引:8,他引:5       下载免费PDF全文
The metabolism of polyethylene glycol (PEG) was investigated with a synergistic, mixed culture of Flavobacterium and Pseudomonas species, which are individually unable to utilize PEGs. The PEG dehydrogenase linked with 2,6-dichlorophenolindophenol was found in the particulate fraction of sonic extracts and catalyzed the formation of a 2,4-dinitrophenylhydrazine-positive compound, possibly an an aldehyde. The enzyme has a wide substrate specificity towards PEGs: from diethylene glycol to PEG 20,000 Km values for tetraethylene glycol (TEG), PEG 400, and PEG 6,000 were 11, 1.7, and 15 mM, respectively. The metabolic products formed from TEG by intact cells were isolated and identified by combined gas chromatography-mass spectrometry as triethylene glycol and TEG-monocarboxylic acid plus small amounts of TEG-dicarboxylic acid, diethylene glycol, and ethylene glycol. From these enzymatic and analytical data, the following metabolic pathway was proposed for PEG: HO(CH2CH2O)nCH2CH2OH leads to HO(CH2CH2O)nCH2CHO leads to HO(CH2CH2O)nCH2COOH leads to HO(CH2CH2O)n-1CH2CH2OH.  相似文献   

9.
α-Chymotrypsin was chemically modified with methoxypoly(ethylene glycol) (PEG) of different molecular weights (700, 2,000, and 5,000 Da) and the amount of polymer attached to the enzyme was varied systematically from 1 to 9 PEG molecules per enzyme molecule. Upon PEG conjugation, enzyme catalytic turnover (k cat) decreased by 50% and substrate affinity was lowered as evidenced by an increase in the K M from 0.05 to 0.19 mM. These effects were dependent on the amount of PEG bound to the enzyme but were independent of the PEG size. In contrast, stabilization toward thermal inactivation depended on the PEG molecular weight with conjugates with the larger PEGs being more stable.  相似文献   

10.
NB8 DNA ligase from an extract of Thermus thermophilus HB8 could catalyze blunt-end ligation in the presence of high concentration of polyethylene glycols (PEG) or in the presence of polyamines. In the presence of high molecular weight PEG 20,000, 6,000, or 1,000 (8-28%), the enzyme catalyzed blunt-end intermolecular joining to yield linear oligomers, but no circular DNA forms. But in the presence of low molecular PEG 400, 200 (8-80%), or the monomer, ethylene glycol (16-80%), the circular forms were also detected by intramolecular ligation. In the presence of polyamines, the blunt-end ligation products were linear oligomers and the optimum concentrations were as follows: caldopentamine (0.05 mM), thermine (0.1-0.2 mM), spermine (0.2 mM), thermospermine (0.4 mM), and sperminediol (0.75 mM). Spermidine and putrescine were less capable of producing oligomers. PEG and polyamines elevated the ligation temperature by HB8 DNA ligase. The optimum temperature of blunt-end ligation was about 65 degrees C.  相似文献   

11.
Neither Flavobacterium sp. nor Pseudomonas sp. grew on a polyethylene glycol (PEG) 6000 medium containing the culture filtrate of their mixed culture on PEG 6000. The two bacteria did not grow with a dialysis culture on a PEG 6000 medium. Flavobacterium sp. grew well on a dialysis culture containing a tetraethylene glycol medium supplemented with a small amount of PEG 6000 as an inducer, while poor growth of Pseudomonas sp. was observed. Three enzymes involved in the metabolism of PEG, PEG dehydrogenase, PEG-aldehyde dehydrogenase and PEG-carboxylate dehydrogenase (ether-cleaving) were present in the cells of Flavobacterium sp. The first two enzymes were not found in the cells of Pseudomonas sp. PEG 6000 was degraded neither by intact cells of Flavobacterium sp. nor by those of Pseudomonas sp., but it was degraded by their mixture. Glyoxylate, a metabolite liberated by the ether-cleaving enzyme, inhibited the growth of the mixed culture. The ether-cleaving enzyme was remarkably inhibited by glyoxylate. Glyoxylate was metabolized faster by Pseudomonas sp. than by Flavobacterium sp., and seemed to be a key material for the symbiosis.  相似文献   

12.
The effects of polyethylene glycol (PEG) of different molecular weights (400, 2000, 6000, 12,000, 20,000, and 35,000) on the conformational stability and catalytic activity of alpha-chymotrypsin in 60% ethanol were studied. The inactivation caused by the organic solvent was not influenced by PEG 400. However, the PEGs with higher molecular weights up to 35,000 increased the stability of the enzyme, but this alpha-chymotrypsin stabilizing effect was molecular weight-independent. With increase of the molecular weight of PEG, a more stable tertiary structure of the enzyme was observed.  相似文献   

13.
Three ethoxylated glycosides, tetraethylene glycol beta-D-glucoside, tetraethylene glycol beta-D-xyloside, and methoxy triethyleneglycol beta-D-glucoside, were prepared via almond beta-glucoside-catalyzed (trans)glycosylation carried out in supersaturated solutions of glucose or p-nitrophenyl beta-D-xyloside and the respective polyethylene glycols. The products were isolated and further modified by enzymatic esterification with Candida antarctica and Mucor miehei lipases. The latter enzyme showed a much greater selectivity for the primary hydroxyl group on the polyethylene glycol chain of the glucoside substrate, thus enabling us to obtain exclusively the corresponding monoester, omega-O-oleoyl tetraethylene glycol beta-D-glucoside. Novozyme was used for the preparative synthesis of two other monoesters, 6-O-oleoyl (methoxy triethyleneglycol) beta-D-glucoside and omega-O-oleoyl tetraethylene glycol beta-D-xyloside. Two diesters, di-oleoyl tetraethylene glycol beta-D-glucoside and tetraethylene-bis(6-0-oleoyl glucoside) were also synthesized in good yields using this lipase. Copyright 1998 John Wiley & Sons, Inc.  相似文献   

14.
The characteristics of an aqueous two-phase system for the overproduction of extracellular enzyme through α-amylase fermentation by Bacillus amyloliquefaciens were investigated. With higher molecular weight of polyethylene glycol (PEG) or lower molecular weight of dextran, the partition coefficient of α-amylase was increased. α-Amylase biosynthesis was increased when PEG 6000 was included in the medium compared to the medium without PEG. Phosphate addition to the PEG-dextran system improved the partition coefficient of α-amylase, but deactivated α-amylase severely. By using sodium sulfate instead of phosphate, α-amylase deactivation was negligible, and high partitioning of the enzyme in the top phase was obtained.  相似文献   

15.
Payne, W. J. (University of Georgia, Athens), and R. L. Todd. Flavin-linked dehydrogenation of ether glycols by cell-free extracts of a soil bacterium. J. Bacteriol. 91:1533-1536. 1966.-Cell-free extracts of bacterium TEG-5 grown on tetraethylene glycol dehydrogenated a variety of ether glycols and nonylphenoxy and secondary alcohol ethoxy derivatives. Nicotinamide nucleotides did not serve as electron acceptors, but ferricyanide was effective. Dialysis of crude extract depressed activity with tetraethylene glycol, which was restored then by flavine adenine dinucleotide (FAD) or boiled extract supernatant fluid (BES) but not by other flavins. Precipitatation of extract protein at pH 4.0 at 80% ammonium sulfate saturation dissociated FAD and yielded an inactive fraction. Activity was restorable by FAD and BES but not by other flavins. Ethylene glycol was not dehydrogenated by the acid ammonium sulfate fraction with FAD. Atabrine inhibited tetraethylene glycol oxidation, and the inhibition was relieved by FAD but not by other flavins. Tergitols which have sulfated ethoxy side chains on secondary alcohols were not dehydrogenated, but those with free ethoxy side chains on identical alcohols were.  相似文献   

16.
Two anaerobic bacteria were isolated from polyethylene glycol (PEG)-degrading, methanogenic, enrichment cultures obtained from a municipal sludge digester. One isolate, identified as Desulfovibrio desulfuricans (strain DG2), metabolized oligomers ranging from ethylene glycol (EG) to tetraethylene glycol. The other isolate, identified as a Bacteroides sp. (strain PG1), metabolized diethylene glycol and polymers of PEG up to an average molecular mass of 20,000 g/mol [PEG 20000; HO-(CH2-CH2-O-)nH]. Both strains produced acetaldehyde as an intermediate, with acetate, ethanol, and hydrogen as end products. In coculture with a Methanobacterium sp., the end products were acetate and methane. Polypropylene glycol [HO-(CH2-CH2-CH2-O-)nH] was not metabolized by either bacterium, and methanogenic enrichments could not be obtained on this substrate. Cell extracts of both bacteria dehydrogenated EG, PEGs up to PEG 400 in size, acetaldehyde, and other mono- and dihydroxylated compounds. Extracts of Bacteroides strain PG1 could not dehydrogenate long polymers of PEG (greater than or equal to 1,000 g/mol), but the bacterium grew with PEG 1000 or PEG 20000 as a substrate and therefore possesses a mechanism for PEG depolymerization not present in cell extracts. In contrast, extracts of D. desulfuricans DG2 dehydrogenated long polymers of PEG, but whole cells did not grow with these polymers as substrates. This indicated that the bacterium could not convert PEG to a product suitable for uptake.  相似文献   

17.
Two anaerobic bacteria were isolated from polyethylene glycol (PEG)-degrading, methanogenic, enrichment cultures obtained from a municipal sludge digester. One isolate, identified as Desulfovibrio desulfuricans (strain DG2), metabolized oligomers ranging from ethylene glycol (EG) to tetraethylene glycol. The other isolate, identified as a Bacteroides sp. (strain PG1), metabolized diethylene glycol and polymers of PEG up to an average molecular mass of 20,000 g/mol [PEG 20000; HO-(CH2-CH2-O-)nH]. Both strains produced acetaldehyde as an intermediate, with acetate, ethanol, and hydrogen as end products. In coculture with a Methanobacterium sp., the end products were acetate and methane. Polypropylene glycol [HO-(CH2-CH2-CH2-O-)nH] was not metabolized by either bacterium, and methanogenic enrichments could not be obtained on this substrate. Cell extracts of both bacteria dehydrogenated EG, PEGs up to PEG 400 in size, acetaldehyde, and other mono- and dihydroxylated compounds. Extracts of Bacteroides strain PG1 could not dehydrogenate long polymers of PEG (greater than or equal to 1,000 g/mol), but the bacterium grew with PEG 1000 or PEG 20000 as a substrate and therefore possesses a mechanism for PEG depolymerization not present in cell extracts. In contrast, extracts of D. desulfuricans DG2 dehydrogenated long polymers of PEG, but whole cells did not grow with these polymers as substrates. This indicated that the bacterium could not convert PEG to a product suitable for uptake.  相似文献   

18.
Enzymatic production of cyclodextrins (CDs) from soluble starch was studied using either Bacillus macerans or Bacillus ohbensis cyclomaltodextrin glucanotransferase (CGTase). The production yield of CDs was found to be increased up to 1.5–2 times by the addition of low molecular weight polyethylene glycol (PEG 400) or polypropylene glycol (PPG 425) to the reaction medium. Such results were interpreted as being due to a conformational change of the substrate as well as reduction of hydrolytic activity of the enzyme in the presence of these additives.  相似文献   

19.
Summary Inorganic sulfate salts are used to form aqueous two-phase systems with polyethylene glycol (PEG) for enzyme purification. Two enzymes, L-aspartase and fumarase produced byEscherichia coli are efficiently separated into different phases in spite of the high degree of similarity in molecular weight and amino acid sequence between them. The ratio of L-aspartase to fumarase in the PEG-rich phase is more than sixty (60) times the ratio before extraction. A high degree of purification in a single extraction step can be achieved by careful selections of PEG molecular weight, pH, cation of the salts, and sodium chloride levels. Cations of sulfate-containing salts in the following order: NH 4 + >Na+>Mg2+ tend to increase the partition of L-aspartase in the PEG-rich phase. The maximal degree of enzyme purification is obtained by using PEG 4000 and ammonium sulfate as a phase system at a stable pH for both enzymes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号