首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Clostridium pasteurianum was grown in batch cultures on media with an initial iron concentration of 10 M. The uptake of iron and the synthesis of ferredoxin was followed. All the iron present in the medium was taken up by the cells before 50% of the final cell density was attained. The bacteria then continued to grow in the complete absence of exogenous iron. Ferredoxin was synthesized during growth until the exogenous iron concentration dropped below 1 M. During growth in the absence of iron ferredoxin was degraded with the result that at the end of growth the cells did not contain ferredoxin. The specific activity of the iron sulfur protein, pyruvate synthase (E.C. 1.2.7.1), remained constant during growth of C. pasteurianum in the absence of exogenous iron. This finding suggests that ferredoxin was used as an endogenous source of iron for the synthesis of essential iron proteins during periods of iron deprivation.The term ferredoxin degradation is used here to indicate that the ferredoxin content in the growing cells decreased more than could be accounted for by repeated cell division. Ferredoxin = holoferredoxin = protein containing iron and sulfide; apoferredoxin = protein free of iron and sulfide  相似文献   

2.
Identification of molybdoproteins in Clostridium pasteurianum.   总被引:6,自引:4,他引:2       下载免费PDF全文
Cells of Clostridium pasteurianum whose N source is switched from NH3 to N2 accumulate large amounts of molybdenum beginning 1.5 h before the detection of nitrogenase activity. Anaerobic multiphasic gel electrophoresis and anion-exchange chromatography were used to identify the molybdoproteins and molybdenum-containing components present in N2-fixing cells. In addition to molybdate, six distinct 99Mo-labeled species were detected, i.e., a membrane fragment, the MoFe protein of nitrogenase, formate dehydrogenase, a Mo "binding-storage" protein, a 30-kilodalton molybdoprotein, and a low-molecular-weight molybdenum species. Of these, the MoFe protein, formate dehydrogenase, and the Mo binding-storage protein were present in more than one zone because of complex formation with other proteins, partial denaturation, and variation in the amount of Mo bound to the protein, respectively. In addition to the six proteins, a soluble "free" Mo cofactor in the cytosol was detected by showing that it reconstituted nitrate reductase activity in crude extracts of the Neurospora crassa mutant nit-1.  相似文献   

3.
4.
The role of Mo in the activity and synthesis of the nitrogenase components of Clostridium pasteurianum has been studied by observing the competition of Mo with its structural analogue W. Clostridial cells when fixing N2 appeared strictly dependent upon the available Mo, showing maximal N2-fixing activity at molybdate concentrations in the media of 10 muM. Cells grown in media with 3 times 10(-6) muM Mo, although showing good growth, had only 15% as much N2-fixing activity. In the presence of W the synthesis of both nitrogenase components, molybdoferredoxin and azoferredoxin, was affected. Attempts to produce nitrogenase in W-grown cells by addition of high molybdenum to the media in the presence of inhibitors of protein synthesis showed that Mo incorporation into a possible inactive preformed apoenzyme did not occur. Unlike other molybdoenzyme-containing cells, in which W either is incorporated in place of Mo to yield inactive protein or initiates the production of apoprotein, C. pasteurianum forms neither a tungsten substituted molybdoferredoxin nor an apoprotein. It is concluded that in C. pasteurianum molybdenum is an essential requirement for both the biosynthesis and activity of its nitrogenase.  相似文献   

5.
6.
7.
An intracellular invertase was induced in cultures of Clostridium pasteurianum utilizing sucrose as its carbon source for growth. This enzyme synthesis could be repressed by the addition of fructose of a sucrose-growing culture. In contrast, invertase activity was not affected by the addition of glucose to sucrose-growing cells and this enzyme could be induced in a glucose-metabolizing culture by the addition of sucrose. This enzyme was purified 10.5-fold over the induced lese, EC 3.2.1.26) by substrate-specificity studies. Invertase had a pH optimum of 6.5 and an apparent Km of 79.5 mM for sucrose, and required high concentration of potassium phosphate for maximum activity. Invertase was completely inactivated by a 2-min heat treatment at 60 degrees C. This enzyme was strongly inhibited by p-hydroxymercuribenzoate (pCMB) and weakly inhibited by 5,5'-dithiobis(2-nitrobenzoic acid), while cysteine could substantially reverse pCMB) inhibition, suggesting that sulfhydryl group(s) were necessary for invertase activity.  相似文献   

8.
9.
10.
11.
An intrinsic ATPase inhibitor and 9-kDa protein are regulatory factors of mitochondrial ATP synthase in Saccharomyces cerevisiae. A gene encoding the ATPase inhibitor was isolated from a yeast genomic library with synthetic oligonucleotides as hybridization probes and was sequenced. The deduced amino acid sequence showed that the precursor protein contains an amino-terminal presequence of 22 amino acid residues. Mutant strains that did not contain the inhibitor and/or the 9-kDa protein were constructed by transformation of cells with their in vitro disrupted genes. The disruption of the chromosomal copy in recombinant cells was verified by Southern blot analysis, and the absence of the proteins in the mutant cells was confirmed by Western blot analysis. All the mutants could grow on a nonfermentable carbon source and the oxidative phosphorylation activities of their isolated mitochondria were the same as that of normal mitochondria. However, an uncoupler, carbonylcyanide-m-chlorophenylhydrazone, induced marked ATP hydrolysis in the inhibitor-deficient mitochondria, but not in normal mitochondria. These observations suggest that the ATPase inhibitor inhibits ATP hydrolysis by F1F0-ATPase only when the membrane potential is lost.  相似文献   

12.
The growth constant and Y (sucrose) (grams of cells per mole of sucrose) for NH(3)-grown cultures of Clostridium pasteurianum were 1.7 times those of N(2)-grown cultures, whereas the rate of sucrose utilized per gram of cells per hour was similar for both conditions. The Y (sucrose) of chemostat cultures grown on limiting NH(3) under argon at generation times equal to those of N(2)-fixing cultures was less than that of cultures grown on excess NH(3), but cells of NH(3)-limited cultures contained the N(2)-fixing system in high concentration. The concentration of the N(2)-fixing system in whole cells, when measured with adenosine triphosphate (ATP) nonlimiting, was more than twofold greater than the amount needed for the N(2) actually fixed. Thus, energy production from sucrose, and not the concentration of the N(2)-fixing system nor the maximal rate at which N(2) could be fixed, was the limiting factor for growth of N(2)-fixing cells. Either NH(3) or some product of NH(3) metabolism partially regulated the rate of sucrose metabolism since, when cultures fixing N(2), growing on NH(3), or growing on limiting NH(3) in the absence of N(2) were deprived of their nitrogen source, the rate of sucrose catabplism decreased. Calculations showed that the rate of ATP production was the growth rate-limiting factor in cells grown on N(2), and that the increased sucrose requirement of N(2)-fixing cultures in part reflected the energy demand of N(2) fixation. Calculations indicated that whole cells require about 20 moles of ATP for the fixation of 1 mole of N(2) to 2 moles of NH(3).  相似文献   

13.
The interaction between hydrogenases from either Desulfovibrio desulfuricans or Clostridium pasteurianum and electron donors methyl viologen or polymeric viologens was examined. Extracts from each organism contained a single gel electophoretic band of active hydrogenase. The hydrogenase of D. desulfuricans was much more stable than that of Cl. pasteurianum. With methyl viologen apparent Km and Vm values were 0.5 mM and 0.62 mumole H2/min per milligram protein for the Cl. pasteurianum and 0.7 and 6.2 mumole H2/min per milligram protein, respectively, for the D. desulfuricans enzyme. The hydrogenases bound the polymeric viologens more tightly than methyl viologen, more so for the enzyme of D. desulfuricans than for Cl. pasteurianum. Maximal rate of hydrogen production was less with the polymeric than with methyl viologen. The results suggest that the D. desulfuricans enzyme in conjunction wiion than that from Cl. pasteurianum.  相似文献   

14.
R K Singhal  I S Krishnan  R D Dua 《Biochemistry》1989,28(19):7928-7935
Clostridium pasteurianum possesses a high level of glutamate synthase (EC 1.4.1.14) activity and cell yield when grown on 4 mM ammonium chloride and molasses as the sole nitrogen and carbon sources, respectively. The enzyme activity is stabilized by addition of alpha-ketoglutarate, EDTA, and 2-mercaptoethanol. Ammonium sulfate precipitation and single-step combined gel and ion-exchange chromatography followed by fractional dialysis yield a homogeneous protein with 40% recovery of the glutamate synthase activity. The native enzyme (Mr congruent to 590,000) gives five different subunits (as dimers) upon SDS gel electrophoresis. The enzyme has been characterized for pH and temperature optimum, substrate specificity, Kmapp values, energy of activation, half-life, and thermal stabilization. Metal ions and citric acid cycle metabolites do not affect the enzyme activity. Glutamate synthase shows fluorescence maximum at 370 nm when excited at 280 nm. The fluorescence is quenched upon the addition of NADH. Spectroscopic examination of the enzyme gave absorption maximum at 280 and none at 380 and 440 nm, indicating the absence of iron and flavin. The absence of iron and flavin was also confirmed by atomic absorption, chemical analysis, and fluoroscopy, respectively. The C. pasteurianum enzyme differs from that of other aerobic bacterial sources.  相似文献   

15.
The carbon monoxide (CO) dehydrogenase activity band from Clostridium pasteurianum was shown to contain nickel by in situ activity staining of polyacrylamide gels. However, the majority of the nickel in cell extracts was found to electrophorese independently of CO dehydrogenase. Comparative analysis with Clostridium thermoaceticum demonstrated that, although the majority of nickel was accounted for in CO dehydrogenase in anaerobic extracts, the metal dissociated from the enzyme when inactivated by oxidation.  相似文献   

16.
17.
1. The granulose of Clostridium pasteurianum ATCC 6013 is degraded when the organism is incubated in a medium containing no utilizable source of carbon and energy. 2. Mobilization of the polyglucan does not occur in the presence of exogenous glucose. 3. Breakdown of granulose is effected by a constitutively synthesized alpha-1,4-polyglucan phosphorylase. 4. Partial (530-fold) purification of this granulose phosphorylase was facilitated by its being loosely bound to the native granules of its substrate polyglucan. 5. The enzyme (pH optimum 6.4) was assayed both (a) in the degradative direction, K(m) for P(i)=2.2mm, and (b) in the synthetic direction, K(m) for glucose 1-phosphate=0.05mm. No requirement for bivalent cations was evidenced. 6. Granulose phosphorylase was inhibited by various nucleotide sugars; GDP-glucose, ADP-glucose (K(i)=20mum) and UDP-glucose (K(i)=60mum) were particularly potent competitive inhibitors. ATP, NADP(+) and NADPH (at 1mm) were less effective inhibitors, whereas AMP was slightly stimulatory. 7. It would appear that granulose mobilization is favoured under conditions of low adenylate energy charge, but is prevented under conditions of ;glucose excess' chiefly by ADP-glucose-mediated inhibition of granulose phosphorylase.  相似文献   

18.
A small collection of clostridia was surveyed for type II restriction endonucleases. Enzymes were detected in two organisms. Clostridium pasteurianum ATCC 6013 contains an isoschizomer of ThaI (FnuDII) [5'-CGCG-3'] and preliminary evidence suggests that cleavage generates blunt-ended fragments. Clostridium thermohydrosulfuricum DSM 568 contains an isoschizomer of MboI (Sau3A) [5'-GATC-3'] that is inactive on dam methylated substrates. The DNA of this latter organism shows dam methylation.  相似文献   

19.
20.
Abstract Pyrophosphatase (PPiase) specific activities were much higher in anaerobic cultures of Escherichia coli (0.54 units) than in Clostridium pasteurianum (0.067 units) and Clostridium thermoaceticum (0.017 units) (1 unit = 1 μ mole PPi hydrolyzed/min per mg cell dry wt.), and were fairly constant throughout the growth of all three organisms. Conversely, intracellular levels of pyrophosphate (PPi) were very low and constant in E. coli throughout growth (0.3 mM), while those of C. pasteurianum and C. thermoaceticum were higher (1.44 and 0.8 mM, respectively) and peaked sharply during mid log-phase of growth. PPiase and intracellular PPi remained relatively constant in E. coli when grown aerobically or anaerobically, and when growth was in medium containing PPi as the sole source of supplemental phosphorus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号