首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In laboratory incubation experiments, application of a commercial formulation of the herbicide butachlor (N-butoxymethyl-2-chloro-2',6'-diethyl acetanilide) to three tropical rice soils, widely differing in their physicochemical characteristics, under flooded condition inhibited methane (CH4) production. The inhibitory effect was concentration dependent and most remarkable in the alluvial soil. Thus, following application of butachlor at 5, 10, 50 and 100 microg g(-1) soil, respectively, cumulative CH4 production in the alluvial soil was inhibited by 15%, 31%, 91% and 98% over unamended control. Since CH4 production was less pronounced in the sandy loam and acid sulfate soil, the impact of amendment with butchalor, albeit inhibitory, was less extensive than the alluvial soil. Inhibition of CH4 production in butachlor-amended alluvial soil was related to the prevention in the drop in redox potential as well as low methanogenic bacterial population especially at high concentrations of butachlor. CH4 oxidation was also inhibited in butachlor-amended alluvial soil with the inhibitory effect being more prevalent under flooded condition. Inhibition in CH4 oxidation was related to a reduction in the population of soluble methane monooxygenase producing methanotrophs. Results demonstrate that butachlor, a commonly used herbicide in rice cultivation, even at very low concentrations can affect CH4 production and its oxidation, thereby influencing the biogeochemical cycle of CH4 in flooded rice soils.  相似文献   

2.
Although CH 4 production is sensitive to temperature, it is not clear how temperature controls CH 4 production directly versus the production of organic substrates that methanogens convert into CH 4 . Therefore, this study was done to better understand how CH 4 production in rice paddy soil responded to temperature when the process was not limited by the availability of substrates. In a laboratory-incubation study using three Indian rice soils under flooded conditions, the effect of temperature on CH 4 production was examined. CH 4 production in acid sulphate, laterite, and alluvial soil samples under flooded conditions distinctly increased with increase in temperature from 15°C to 35°C. Laterite and acid sulphate soils produced distinctly less CH 4 than alluvial soils. CO 2 production increased with increase in temperature in all the soils. The readily mineralizable carbon C and Fe 2+ contents in soils were least at 15°C and highest at 35°C, irrespective of soil type. Likewise, a significant correlation existed between microbial population (methanogens and sulphate reducers) and CH 4 production. Comparing the temperature coefficients ( Q 10 ) for methane production within each soil type at low (15°C-25°C) and medium (25°C-35°C) temperature intervals revealed that these values were not uniform for both alluvial and laterite soils. But acid sulphate soil had Q 10 values that were near 2 at both temperature intervals. When these soil samples were amended with substrates (acetate, H 2 -CO 2 , and rice straw), there were stimulatory effects on methane production rates and consequently on the Q 10 values. The pattern of temperature coefficients was characteristic of the soil type and the nature of substrates used for amendment.  相似文献   

3.
《Geomicrobiology journal》2013,30(6):579-586
In a laboratory incubation study, effects of amendment with sodium salts of SO4 2?, Cl? and HCO3 ? either singly or as a mixture on CH4 production in a nonsaline alluvial soil under flooded condition were investigated. Methane production was considerable in the unamended alluvial soil, but was significantly inhibited following amendment with salts of different anions to raise the pore water EC to 8 dS·m?1. SO4 2? was the most inhibitory to CH4 production and the degree of inhibition followed the order SO4 2? > salt mixture > HCO3 ? > Cl?. Salt amendment did not adversely affect soil microbial activities as expressed in terms of soil redox potential (Eh) and soil pH. However, readily mineralizable carbon content, an indicator of substrate availability for methanogenic bacteria, differed significantly among the treatments. Most probable number estimates indicated that acetotrophic methanogenic bacterial population was lowest in Cl?-amended soils followed by SO4 2?-amendment with little or no changes in HCO3 ?-amended soils. The data suggested that the inhibition in methanogenesis in saline soils rich in sulphate as in coastal saline soils could be due to competitive inhibition of methanogens, while in inland soils, Cl? content could be a deciding factor.  相似文献   

4.
Reclaimed landscapes after oil sands mining have saline soils; yet, they are required to have similar biodiversity and productivity as the predisturbance nonsaline landscape. Given that many species in the boreal forest are not tolerant of salinity, we studied the effects of soil salinity on plant communities in natural saline landscapes to understand potential plant responses during the reclamation process. Vegetation–soil relationships were measured along transects from flooded wetlands to upland forest vegetation in strongly saline, slightly saline, nonsaline, and reclaimed boreal landscapes. In strongly saline landscapes, surface soil salinity was high (>10 dS/m) in flooded, wet‐meadow, and dry‐meadow vegetation zones as compared to slightly saline (<5 dS/m) and nonsaline (<2 dS/m) landscapes. Plant communities in these vegetation zones were quite different from nonsaline boreal landscapes and were dominated by halophytes common to saline habitats of the Great Plains. In the shrub and forest vegetation zones, surface soil salinity was similar between saline and nonsaline landscapes, resulting in similar plant communities. In strongly saline landscapes, soils remained saline at depth through the shrub and forest vegetation zones (>10 dS/m), suggesting that forest vegetation can establish over saline soils as long as the salts are below the rooting zone. The reclaimed landscape was intermediate between slightly saline and nonsaline landscapes in terms of soil salinity but more similar to nonsaline habitats with respect to species composition. Results from this study suggest it may be unrealistic to expect that plant communities similar to those found on the predisturbance landscape can be established on all reclaimed landscapes after oil sands mining.  相似文献   

5.
Effect of soil chloride level on cadmium concentration in sunflower kernels   总被引:9,自引:1,他引:8  
Understanding soil factors related to cadmium (Cd) uptake and accumulation in plants is important for development of agronomic technologies, and breeding strategy to produce low Cd crops. The objective of the study was to examine the effect of soluble salts (chloride and sulfate) and other soil factors on the Cd concentration in sunflower (Helianthus annuus L.) kernels. Commercial nonoilseed hybrid kernels and soils were sampled from 22 farmer's production fields in North Dakota and Minnesota. The sites sampled included saline and nonsaline variants from 7 soil series. Soils were sampled at four depths. Relationships between kernel Cd level and soil physical and chemical characteristics were examined. The soil pH covered a narrow range (7.3–8.1) at these sampled sites. Regression analysis showed that there was no correlation between kernel Cd and soil pH at any depth. The kernel Cd level was highly correlated with DTPA-extractable Cd in all 4 depths, and with clay content in sub-soils. Soil chloride and sulfate concentrations varied among soil series and within soil series. The absence of a statistically significant effect of soil sulfate level on kernel Cd concentration, indicated that soil sulfate levels did not affect Cd uptake by sunflower plants. However, soil chloride levels in sub-soil were correlated with kernel Cd. The most important soil factor was DTPA-extractable Cd. When chloride was included in the multiple regression equations, R square (R2) values improved significantly. These results demonstrate that soil chloride concentration is another important factor related to Cd uptake in sunflower plants.  相似文献   

6.
In anoxic paddy soil, rice straw is decomposed to CH(4) and CO(2) by a complex microbial community consisting of hydrolytic, fermenting, syntrophic and methanogenic microorganisms. Here, we investigated which of these microbial groups colonized the rice straw and which were localized in the soil. After incubation of rice straw in anoxic soil slurries for different periods, the straw pieces were removed from the soil, and both slurry and straw were studied separately. Although the potential activities of polysaccharolytic enzymes were higher in the soil slurry than in the straw incubations, the actual release of reducing sugars was higher in the straw incubations. The concentrations of fermentation products, mainly acetate and propionate, increased steadily in the straw incubations, whereas only a little CH(4) was formed. In the soil slurries, on the other hand, fermentation products were low, whereas CH(4) production was more pronounced. The production of CH(4) or of fermentation products in the separated straw and soil incubations accounted in sum for 54-82% of the CH(4) formed when straw was not removed from the soil. Syntrophic propionate degradation to acetate, CO(2) and H(2) was thermodynamically more favourable in the soil than in the straw fraction. These results show that hydrolysis and primary fermentation reactions were mainly localized on the straw pieces, whereas the syntrophic and methanogenic reactions were mainly localized in the soil. The percentage of bacterial relative to total microbial 16S rRNA content was higher on the straw than in the soil, whereas it was the opposite for the archaeal 16S rRNA content. It appears that rice straw is mainly colonized by hydrolytic and fermenting bacteria that release their fermentation products into the soil pore water where they are further degraded to CH(4). Hence, complete methanogenic degradation of straw in rice soil seems to involve compartmentalization.  相似文献   

7.
Production and consumption processes in soils contribute to the global cycles of many trace gases (CH4, CO, OCS, H2, N2O, and NO) that are relevant for atmospheric chemistry and climate. Soil microbial processes contribute substantially to the budgets of atmospheric trace gases. The flux of trace gases between soil and atmosphere is usually the result of simultaneously operating production and consumption processes in soil: The relevant processes are not yet proven with absolute certainty, but the following are likely for trace gas consumption: H2 oxidation by abiontic soil enzymes; CO cooxidation by the ammonium monooxygenase of nitrifying bacteria; CH4 oxidation by unknown methanotrophic bacteria that utilize CH4 for growth; OCS hydrolysis by bacteria containing carbonic anhydrase; N2O reduction to N2 by denitrifying bacteria; NO consumption by either reduction to N2O in denitrifiers or oxidation to nitrate in heterotrophic bacteria. Wetland soils, in contrast to upland soils are generally anoxic and thus support the production of trace gases (H2, CO, CH4, N2O, and NO) by anaerobic bacteria such as fermenters, methanogens, acetogens, sulfate reducers, and denitrifiers. Methane is the dominant gaseous product of anaerobic degradation of organic matter and is released into the atmosphere, whereas the other trace gases are only intermediates, which are mostly cycled within the anoxic habitat. A significant percentage of the produced methane is oxidized by methanotrophic bacteria at anoxic-oxic interfaces such as the soil surface and the root surface of aquatic plants that serve as conduits for O2 transport into and CH4 transport out of the wetland soils. The dominant production processes in upland soils are different from those in wetland soils and include H2 production by biological N2 fixation, CO production by chemical decomposition of soil organic matter, and NO and N2O production by nitrification and denitrification. The processes responsible for CH4 production in upland soils are completely unclear, as are the OCS production processes in general. A problem for future research is the attribution of trace gas metabolic processes not only to functional groups of microorganisms but also to particular taxa. Thus, it is completely unclear how important microbial diversity is for the control of trace gas flux at the ecosystem level. However, different microbial communities may be part of the reason for differences in trace gas metabolism, e.g., effects of nitrogen fertilizers on CH4 uptake by soil; decrease of CH4 production with decreasing temperature; or different rates and modes of NO and N2O production in different soils and under different conditions.  相似文献   

8.
新疆玛纳斯流域非农业种植地盐碱性空间变异特征   总被引:1,自引:0,他引:1  
魏阳  丁建丽  王飞  邹杰  蔡亮红 《生态学报》2016,36(23):7655-7666
土壤盐渍化是导致干旱区土地退化的主要原因之一,也是影响干旱区可持续发展和环境改善的基本问题。充分挖掘不同分类体系下盐渍土空间变异性可以为实施开垦或恢复生态措施提供科学依据。以干旱区开垦近50a的玛纳斯流域为研究区,在不同分类体系下,以土壤盐度,p H值,离子类型为指标,分析该区域非农业种植地(弃耕地,盐碱地,裸地,沙地)盐渍土类型的空间分布特征。结果表明:(1)研究区68%的样本属于非盐渍化,不同类型的盐渍土主要以链状分布于泉水溢出带-冲积平原-干三角洲地带,由南向北,区域整体盐分大致遵循先升高后降低再升高趋势,半方差函数分析土壤盐分呈现弱变异,说明这种分布情况是受随机(人为)因素的影响;而p H整体由南向北递增,传统统计学和地统计学的分析结果都表明土壤碱化呈现中等变异,受结构(自然)因素和随机(人为)因素的共同影响。表层土壤除在溢出带为氯化物型盐渍土外,其他地区自南向北由硫酸-氯化物型逐渐变为氯化-硫酸盐型和硫酸盐土、苏打盐土,离子的半方差函数拟合模型结果均是弱变异和中等变异,与美国盐度实验室分类体系的变异性结果相同,此类分布特征也是结构因素和随机因素共同作用的结果。(2)分析五种典型地貌的盐渍土分布,方差分析结果表明,5种地貌类型均呈现盐分表聚特征,碱化度则由南向北递增;其中盐碱特征最为显著的是泉水溢出带。泉水溢出带的盐土垂直方向的变化趋势为由表层至深层,盐土类型由硫酸-氯化物盐土变为氯化盐土;冲积平原和干三角洲样点处全剖面为氯化物-硫酸盐土,冲积洪积扇和沙漠地区则包含所有阴离子盐土类型。对玛纳斯流域盐渍土特性的空间异质性进行分析,可以为下一步有针对性地治理与改善土壤盐渍化提供科学依据。  相似文献   

9.
In this study, microcosms were used to investigate the influence of temperature (4 and 28 degrees C) and water content (45% and 90% WHC) on microbial communities and activities in carbon-rich fen soil. Bacterial, archaeal and denitrifier community composition was assessed during incubation of microcosms for 12 weeks using terminal restriction fragment length polymorphism (T-RFLP) profiling of 16S rRNA and nitrous oxide reductase (nosZ) genes. In addition, microbial and denitrifier abundance, potential denitrification activity and production of greenhouse gases were measured. No detectable changes were observed in prokaryote or denitrifier abundance. In general, cumulatively after 12 weeks more carbon was respired at the higher temperature (3.7 mg CO(2) g(-1) soil), irrespective of the water content, whereas nitrous oxide production was greater under wet conditions (98-336 microg N(2)O g(-1) soil). After an initial lag phase, methane emissions (963 microg CH(4) g(-1) soil) were observed only under warm and wet conditions. T-RFLP analyses of bacterial 16S rRNA and nosZ genes revealed small or undetectable community changes in response to temperature and water content, suggesting that bacterial and denitrifying microbial communities are stable and do not respond significantly to seasonal changes in soil conditions. In contrast, archaeal microbial community structure was more dynamic and was strongly influenced by temperature.  相似文献   

10.
Influence of repeated application of the nitrification inhibitor dicyandiamide (DCD), on CH(4) production and associated microflora in a flooded alluvial soil, was investigated in a laboratory incubation study. Application of DCD at the time of soil incubation resulted in a substantial reduction in CH(4) production (31% over that of untreated control). Second repeat application of DCD, on the contrary, annulled the inhibitory effect on CH(4) production, restoring it to the level of unamended soil. Application of the third dose of DCD maintained CH(4) production almost to the same extent as that of second application. The alleviation of the initial inhibitory effect of DCD on CH(4) production was linked to the enhanced degradation of DCD following its repeated application to the flooded soil. Admittedly, abatement of the initial inhibitory effect of DCD on CH(4) production in soil repeatedly amended with DCD was also related to the inhibition of CH(4)-oxidizing bacterial population and noticeable stimulation of heterotrophic bacterial population. Results suggest that repeat application of DCD with fertilizer-N to flooded rice soils might not be effective in controlling CH(4) production under field condition.  相似文献   

11.
In anoxically incubated slurries of Italian rice field soil, CH(4) production is initiated after a lag phase during which ferric iron and sulfate are reduced. The production of CH(4) was affected by the size of soil aggregates used for the preparation of the soil slurry. Rates of CH(4) production were lowest with small aggregates (<50 and 50-100 μm), were highest with aggregates of 200-2000 μm size and were intermediate with aggregates of 2000-15000 μm size. The different amounts of CH(4) accumulated were positively correlated to the concentrations of acetate, propionate and caproate that transiently accumulated in the slurries prepared from different aggregate sizes and also to the organic carbon content. The addition of organic debris that was collected from large-size aggregates to the aggregate size fractions <200 and <50 μm resulted in an increase of CH(4) production to amounts that were comparable to those measured in unamended aggregates of 200-2000 μm size, indicating that CH(4) production in the different aggregate size fractions was limited by substrate. The distribution of archaeal small-subunit rRNA genes in the different soil aggregate fractions was analyzed by terminal restriction fragment length polymorphism which allowed seven different archaeal ribotypes to be distinguished. Ribotype-182 (consisting of members of the Methanosarcinaceae and rice cluster VI), ribotype-389 (rice cluster I and II) and ribotype-820 (undigested DNA, rice cluster IV and members of the Methanosarcinaceae) accounted for >20, >30 and >10% of the total, respectively. The other ribotypes accounted for <10% of the total. The relative quantity of the individual ribotypes changed only slightly with incubation time and was almost the same among the different soil aggregate fractions. Ribotype-389, for example, slightly decreased with time, whereas ribotype-182 slightly increased. At the end of incubation, the relative quantity of ribotype-182 seemed to be slightly higher in soil fractions with larger than with smaller aggregates, whereas it was the opposite with ribotype-80 (Methanomicrobiaceae) and ribotype-88 (Methanobacteriaceae). Ribotype-280 (Methanosaetaceae and rice cluster V), ribotype-375 (rice cluster III), ribotype-389 and ribotype-820, on the other hand, were not much different among the different soil aggregate size fractions. However, the differences were not significant relative to the errors encountered during the extraction of polymerase chain reaction (PCR)-amplifiable DNA from soil. In conclusion, soil aggregate size and incubation time showed a strong effect on the function but only a small effect on the structure of the methanogenic microbial community.  相似文献   

12.
Geochemical and microbial evidence points to anaerobic oxidation of methane (AOM) likely coupled with bacterial sulfate reduction in the hypersaline groundwater of the Dead Sea (DS) alluvial aquifer. Groundwater was sampled from nine boreholes drilled along the Arugot alluvial fan next to the DS. The groundwater samples were highly saline (up to 6300 mm chlorine), anoxic, and contained methane. A mass balance calculation demonstrates that the very low δ13CDIC in this groundwater is due to anaerobic methane oxidation. Sulfate depletion coincident with isotope enrichment of sulfur and oxygen isotopes in the sulfate suggests that sulfate reduction is associated with this AOM. DNA extraction and 16S amplicon sequencing were used to explore the microbial community present and were found to be microbial composition indicative of bacterial sulfate reducers associated with anaerobic methanotrophic archaea (ANME) driving AOM. The net sulfate reduction seems to be primarily controlled by the salinity and the available methane and is substantially lower as salinity increases (2.5 mm sulfate removal at 3000 mm chlorine but only 0.5 mm sulfate removal at 6300 mm chlorine). Low overall sulfur isotope fractionation observed (34ε = 17 ± 3.5‰) hints at high rates of sulfate reduction, as has been previously suggested for sulfate reduction coupled with methane oxidation. The new results demonstrate the presence of sulfate‐driven AOM in terrestrial hypersaline systems and expand our understanding of how microbial life is sustained under the challenging conditions of an extremely hypersaline environment.  相似文献   

13.
The hypothesis that inoculation of transplants with vesicular-arbuscular mycorrhizal (VAM) fungi before planting into saline soils alleviates salt effects on growth and yield was tested on lettuce (Lactuca sativa L.) and onion (Allium cepa L.). A second hypothesis was that fungi isolated from saline soil are more effective in counteracting salt effects than those from nonsaline soil. VAM fungi from high- and low-salt soils were trap-cultured, their propagules quantified and adjusted to a like number, and added to a pasteurized soil mix in which seedlings were grown for 3–4 weeks. Once the seedlings were colonized by VAM fungi, they were transplanted into salinized (NaCl) soil. Preinoculated lettuce transplants grown for 11 weeks in the saline soils had greater shoot mass compared with nonVAM plants at all salt levels [2 (control), 4, 8 and 12 dS m–1] tested. Leaves of VAM lettuce at the highest salt level were significantly greener (more chlorophyll) than those of the nonVAM lettuce. NonVAM onions were stunted due to P deficiency in the soil, but inoculation with VAM fungi alleviated P deficiency and salinity effects; VAM onions were significantly larger at all salt levels than nonVAM onions. In a separate experiment, addition of P to salinized soil reduced the salt stress effect on nonVAM onions but to a lesser extent than by VAM inoculation. VAM fungi from the saline soil were not more effective in reducing growth inhibition by salt than those from the nonsaline site. Colonization of roots and length of soil hyphae produced by the VAM fungi decreased with increasing soil salt concentration. Results indicate that preinoculation of transplants with VAM fungi can help alleviate deleterious effects of saline soils on crop yield.  相似文献   

14.
Laboratory-scale soil microcosms containing different soils were permeated with CH(inf4) for up to 6 months to investigate their capacity to develop a methanotrophic community. Methane emissions were monitored continuously until steady states were established. The porous, coarse sand soil developed the greatest methanotrophic capacity (10.4 mol of CH(inf4) (middot) m(sup-2) (middot) day(sup-1)), the greatest yet reported in the literature. Vertical profiles of O(inf2), CH(inf4), and methanotrophic potential in the soils were determined at steady state. Methane oxidation potentials were greatest where the vertical profiles of O(inf2) and CH(inf4) overlapped. A significant increase in the organic matter content of the soil, presumably derived from methanotroph biomass, occurred where CH(inf4) oxidation was greatest. Methane oxidation kinetics showed that a soil community with a low methanotrophic capacity (V(infmax) of 258 nmol (middot) g of soil(sup-1) (middot) h(sup-1)) but relatively high affinity (k(infapp) of 1.6 (mu)M) remained in N(inf2)-purged control microcosms, even after 6 months without CH(inf4). We attribute this to a facultative, possibly mixotrophic, methanotrophic microbial community. When purged with CH(inf4), a different methanotrophic community developed which had a lower affinity (k(infapp) of 31.7 (mu)M) for CH(inf4) but a greater capacity (V(infmax) of 998 nmol (middot) g of soil(sup-1) (middot) h(sup-1)) for CH(inf4) oxidation, reflecting the enrichment of an active high-capacity methanotrophic community. Compared with the unamended control soil, amendment of the coarse sand with sewage sludge enhanced CH(inf4) oxidation capacity by 26%; K(inf2)HPO(inf4) amendment had no significant effect, while amendment with NH(inf4)NO(inf3) reduced the CH(inf4) oxidation capacity by 64%. In vitro experiments suggested that NH(inf4)NO(inf3) additions (10 and 71 (mu)mol (middot) g of soil(sup-1)) inhibited CH(inf4) oxidation by a nonspecific ionic effect rather than by specific inhibition by NH(inf4)(sup+).  相似文献   

15.
Aerobic grasslands may consume significant amounts of atmospheric methane (CH4). We aimed (i) to assess the spatial and temporal variability of net CH4 fluxes from grasslands on aerobic sandy soils, and (ii) to explain the variability in net CH4 fluxes by differences in soil moisture content and temperature. Net CH4 fluxes were measured with vented closed flux chambers at two sites with low N input on sandy soils in the Netherlands: (i) Wolfheze, a heather grassland, and (ii) Bovenbuurtse Weilanden, a grassland which is mown twice a year. Spatial variability of net CH4 fluxes was analysed using geostatistics. In incubation experiments, the effects of soil moisture content and temperature on CH4 uptake capacity were assessed. Temporal variability of net CH4 fluxes at Wolfheze was related to differences in soil temperature (r2 of 0.57) and soil moisture content (r2 of 0.73). Atmospheric CH4 uptake was highest at high soil temperatures and intermediate soil moisture contents. Spatial variability of net CH4 fluxes was high, both at Wolfheze and at Bovenbuurtse Weilanden. Incubation experiments showed that, at soil moisture contents lower than 5% (w/w), CH4 uptake was completely inhibited, probably due to physiological water stress of methanotrophs. At soil moisture contents higher than 50% (w/w), CH4 uptake was greatly reduced, probably due to the slow down of diffusive CH4 and O2 transport in the soil, which may have resulted in reduced CH4 oxidation and possibly some CH4 production. Optimum soil moisture contents for CH4 uptake were in the range of 20 – 35% (w/w), as prevailing in the field. The sensitivity of CH4 uptake to soil moisture content may result in short-term variability of net atmospheric CH4 uptake in response to precipitation and evapotranspiration, as well as in long-term variability due to changing precipitation patterns as a result of climate change.  相似文献   

16.
The potential activity of methane production was determined in the vertical profiles of the peat deposits of three bogs in Tver oblast, which were representative of the boreal zone. In the minerotrophic fen, the rates of methane production measured throughout the profile did not change significantly with depth and comprised 3-6 ng CH4-C g(-1) h(-1). In ombrotrophic peat bogs, the rate did not exceed 5 ng CH4-C g(-1) h(-1) in the upper layer of the profile (up to 1.5 m) and increased to 15-30 ng CH4-C g(-1) h(-1) in the deep layers of the peat deposits. The distribution of fermentative microorganisms and methanogens in the profiles of peat deposits was uniform in all the studied bogs. In bog water samples, the presence of butyrate (up to 14.1 mg l(-1)) and acetate (up to 2.4 mg l(-1)) was revealed throughout the whole profile; in the upper 0.5-m layer of the ombrotrophic bogs, formate (up to 8.9 mg l(-1)) and propionate (up to 0.3 mg l(-1)) were detected as well. The arrangement of local maxima of the fatty acid content and methanogenic activity in the peat deposits, as well as the decrease in the acetate concentrations during summer, support the hypothesis that the initial substrates for methanogenesis come from the upper peat layers. It was established that the addition of sulfate and nitrate inhibits methane production in peat samples: the changes in the concentrations, recorded in situ, may also influence the methane content in peat layers.  相似文献   

17.
18.
Turnover of glucose and acetate in the presence of active reduction of nitrate, ferric iron and sulfate was investigated in anoxic rice field soil by using [U-(14)C]glucose and [2-(14)C]acetate. The turnover of glucose was not much affected by addition of ferrihydrite or sulfate, but was partially inhibited (60%) by addition of nitrate. Nitrate addition also strongly reduced acetate production from glucose while ferrihydrite and sulfate addition did not. These results demonstrate that ferric iron and sulfate reducers did not outcompete fermenting bacteria for glucose at endogenous concentrations. Nitrate reducers may have done so, but glucose fermentation may also have been inhibited by accumulation of toxic denitrification intermediates (nitrite, NO, N(2)O). Addition of nitrate resulted in complete inhibition of CH(4) production from [U-(14)C]glucose and [2-(14)C]acetate. However, addition of ferrihydrite or sulfate decreased the production of (14)CH(4) from [U-(14)C]glucose by only 70 and 65%, respectively. None of the electron acceptors significantly increased the production of (14)CO(2) from [U-(14)C]glucose, but all increased the production of (14)CO(2) from [2-(14)C]acetate. Uptake of acetate was faster in the presence of either nitrate, ferrihydrite or sulfate than in the unamended control. Addition of ferrihydrite and sulfate reduced (14)CH(4) production from [2-(14)C]acetate by 83 and 92%, respectively. Chloroform completely inhibited the methanogenic consumption of acetate. It also inhibited the oxidation of acetate, completely in the presence of sulfate, but not in the presence of nitrate or ferrihydrite. Our results show that, besides the possible toxic effect of products of nitrate reduction (NO, NO(2)(-) and N(2)O) on methanogens, nitrate reducers, ferric iron reducers and sulfate reducers were active enough to outcompete methanogens for acetate and channeling the flow of electrons away from CH(4) towards CO(2) production.  相似文献   

19.
长期施肥对水稻土土壤有机碳矿化的影响   总被引:23,自引:0,他引:23  
以湖南省3个国家级稻田肥力变化长期定位监测点的土壤为材料,通过室内分析和培养试验,研究了不同施肥处理下土壤有机碳矿化特征及土壤总有机碳、微生物量碳和水溶性有机碳对土壤有机碳矿化的影响.结果表明:3个监测点各施肥处理的土壤CO2累积排放量为448.64~1 516.77 μg·g-1,CH4累积排放量为15.60~33.34 μg·g-1,在58 d的培养期内土壤有机碳矿化量占总有机碳的3.59%~5.57%;不同处理CO2的产生速率均在前期保持较高水平,之后迅速下降,后期较慢并趋于平稳,CH4的产生速率表现为先缓慢升高后迅速降低的变化趋势;化肥配施有机肥处理显著增加了CO2和CH4的累积排放量;不同施肥处理土壤有机碳矿化量与总有机碳、微生物量碳和水溶性有机碳含量之间的相关性达到了极显著水平,而与矿化量所占土壤总有机碳的比例无明显相关关系.  相似文献   

20.
This study explores whether male and hermaphrodite plants of Phillyrea angustifolia (Oleaceae) show physiological and structural differences at the leaf level under severe water stress driven by drought and soil salinity. Leaf traits were measured in summer, at the height of the summer drought period, in male and hermaphrodite plants from two adjacent sites under contrasting soil salinity levels. Male plants from the saline site had significantly higher leaf proline content compared to males from the nonsaline site. By contrast, leaf proline levels were similarly low in hermaphrodite plants from both sites. On the other hand, hermaphrodite plants from the saline site had higher leaf stomatal frequency than hermaphrodites from the nonsaline site, whereas this parameter did not differ for male plants across sites. Such differences could be interpreted as the result of two different solutions to the same selective pressure in the androdioecious shrub P. angustifolia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号