首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Contamination with the multidrug transporter AcrB represents a potential pitfall in the structural analysis of recombinant membrane proteins expressed in Escherichia coli, especially when high-throughput approaches are adopted. This can be a particular problem in two-dimensional (2-D) crystallization for electron cryomicroscopy since individual crystals are too small for compositional analysis. Using a broad ‘sparse matrix’ of buffer conditions typically used in 2-D crystallization, we have identified at least eight unique crystal forms of AcrB. Reference to images and projection maps of these different forms can greatly facilitate the early identification of false leads in 2-D crystallization trials of other membrane proteins of interest. We illustrate the usefulness of such data by highlighting two studies of membrane proteins in our laboratories. We show in one case (a bacterial sodium channel, NaChBac) how early crystallization ‘hits’ could be attributed to contaminating AcrB by comparison against our AcrB crystal image database. In a second case, involving a member of the monovalent cation/proton antiporter-1 family (MPSIL0171), a comparison with the observed AcrB crystal forms allowed easy identification of reconstituted AcrB particles, greatly facilitating the eventual purification and crystallization of the correct protein in pure form as ordered helical arrays. Our database of AcrB crystal images will be of general use in assisting future 2-D crystallization studies of other membrane proteins.  相似文献   

2.
The interaction of GroEL with non-native soluble proteins has been studied intensively and structure-function relationships have been established in considerable detail. Recently, we found that GroEL is also able to bind membrane proteins in the absence of detergents and deliver them to liposomes in a biologically active state. Here, we report that three well-studied membrane proteins (bacteriorhodopsin, LacY, and the bacteriophage lambda holin) bind asymmetrically to tetradecameric GroEL. Each of the membrane proteins was visualized in one of the center cavities of GroEL using single particle analysis.  相似文献   

3.
干旱胁迫下植物质膜功能蛋白研究现状   总被引:10,自引:4,他引:6  
介绍了植物质膜中3种主要的功能蛋白,质质膜H^ -ATPase、质膜Ca^ -ATPase、质膜氧化还原蛋白的基本性质和生理功能,并对近年来有关逆境下这些膜功能蛋白(酶)活性变化的研究进展进行综述,指出需要进一步研究的问题。  相似文献   

4.
Many protists use a H(+) gradient across the plasma membrane, the proton motive force, to drive nutrient uptake. This force is generated in part by the plasma membrane potential (DeltaPsi). We investigated the regulation of the DeltaPsi in Pneumocystis carinii using the potentiometric fluorescent dye bisoxonol. The steady state DeltaPsi in a buffer containing Na(+) and K(+) (standard buffer) was found to be -78+/-8 mV. In the absence of Na(+) and K(+) (NMG buffer) or Cl(-) (gluconate buffer), DeltaPsi was not significantly changed suggesting that cation and anion conductances do not play a significant role in the regulation of DeltaPsi in P. carinii. The DeltaPsi was also not affected by inhibitors of the Na(+)/K(+)-ATPase, ouabain (1 mM), and the K(+)/H(+)-ATPase, omeprazole (1 mM). In contrast, inhibitors of the plasma membrane H(+)-ATPase, dicyclohexylcarbodiimide (100 microM), N-ethylmaleimide (100 microM) and diethylstilbestrol (25 microM), significantly depolarized the DeltaPsi to -43+/-7, -56+/-5 and -40+/-12 mV, respectively. The data support that the plasma membrane H(+)-ATPase plays a significant role in the regulation of DeltaPsi in P. carinii.  相似文献   

5.
Gastric H+,K+-ATPase, an ATP-driven proton pump responsible for gastric acidification, is a molecular target for anti-ulcer drugs. Here we show its cryo-electron microscopy (EM) structure in an E2P analog state, bound to magnesium fluoride (MgF), and its K+-competitive antagonist SCH28080, determined at 7 Å resolution by electron crystallography of two-dimensional crystals. Systematic comparison with other E2P-related cryo-EM structures revealed that the molecular conformation in the (SCH)E2·MgF state is remarkably distinguishable. Although the azimuthal position of the A domain of the (SCH)E2·MgF state is similar to that in the E2·AlF (aluminum fluoride) state, in which the transmembrane luminal gate is closed, the arrangement of transmembrane helices in the (SCH)E2·MgF state shows a luminal-open conformation imposed on by bound SCH28080 at its luminal cavity, based on observations of the structure in the SCH28080-bound E2·BeF (beryllium fluoride) state. The molecular conformation of the (SCH)E2·MgF state thus represents a mixed overall structure in which its cytoplasmic and luminal half appear to be independently modulated by a phosphate analog and an antagonist bound to the respective parts of the enzyme. Comparison of the molecular conformations revealed that the linker region connecting the A domain and the transmembrane helix 2 (A-M2 linker) mediates the regulation of luminal gating. The mechanistic rationale underlying luminal gating observed in H+,K+-ATPase is consistent with that observed in sarcoplasmic reticulum Ca2+-ATPase and other P-type ATPases and is most likely conserved for the P-type ATPase family in general.  相似文献   

6.
Vacuolar ATPases (V-ATPases) are important for many cellular processes, as they regulate pH by pumping cytosolic protons into intracellular organelles. The cytoplasm is acidified when V-ATPase is inhibited; thus we conducted a high-throughput screen of a chemical library to search for compounds that acidify the yeast cytosol in vivo using pHluorin-based flow cytometry. Two inhibitors, alexidine dihydrochloride (EC(50) = 39 μM) and thonzonium bromide (EC(50) = 69 μM), prevented ATP-dependent proton transport in purified vacuolar membranes. They acidified the yeast cytosol and caused pH-sensitive growth defects typical of V-ATPase mutants (vma phenotype). At concentrations greater than 10 μM the inhibitors were cytotoxic, even at the permissive pH (pH 5.0). Membrane fractions treated with alexidine dihydrochloride and thonzonium bromide fully retained concanamycin A-sensitive ATPase activity despite the fact that proton translocation was inhibited by 80-90%, indicating that V-ATPases were uncoupled. Mutant V-ATPase membranes lacking residues 362-407 of the tether of Vph1p subunit a of V(0) were resistant to thonzonium bromide but not to alexidine dihydrochloride, suggesting that this conserved sequence confers uncoupling potential to V(1)V(0) complexes and that alexidine dihydrochloride uncouples the enzyme by a different mechanism. The inhibitors also uncoupled the Candida albicans enzyme and prevented cell growth, showing further specificity for V-ATPases. Thus, a new class of V-ATPase inhibitors (uncouplers), which are not simply ionophores, provided new insights into the enzyme mechanism and original evidence supporting the hypothesis that V-ATPases may not be optimally coupled in vivo. The consequences of uncoupling V-ATPases in vivo as potential drug targets are discussed.  相似文献   

7.
盐胁迫对小麦根质膜ATPase活性的影响   总被引:8,自引:2,他引:6  
以小麦为实验材料,研究了盐胁迫对根质膜H^ —ATPase、Ca^2 —ATPase活性及H^ —ATPase蛋白表达的影响。结果显示:50、100、150mmol/L的NaCl处理72h后,小麦根质膜H^ —ATPase、Ca^2 —ATPase活性均降低。100mmol/L NaCl对质膜ATPase活性的抑制程度随处理时间的延长而增强,在处理24h后,H^ —ATPase和Ca^2 —ATPase的活性分别降为对照的72%和75%,而处理72h后,酶活性分别减小到对照的50%和48%。50、100、150mmol/L的NaCl直接作用于提取的质膜微囊,H^ —ATPase的活性分别降低约5%、8%和16%。Western blotting分析结果显示100mmol/L NaCl处理72h后,质膜H^ —ATPase的含量与对照比有所减少。本研究表明:盐胁迫抑制小麦根质膜H^ —ATPase、Ca^2 —ATPase的活性,酶含量的减少可能是盐胁迫导致质膜H^ —ATPase活性降低的原因。  相似文献   

8.
Transmembrane stretch M2C from the bacterial K+-translocating protein KtrB is unusually long. In its middle part, termed M2C2, it contains several small and polar amino acids. This region is flanked by the two α-helices M2C1 and M2C3 and may form a flexible gate at the cytoplasmic side of the membrane controlling K+ translocation. In this study, we provide experimental evidence for this notion by using continuous wave and pulse EPR measurements of single and double spin-labeled cysteine variants of KtrB. Most of the spin-labeled residues in M2C2 were shown to be immobile, pointing to a compact structure. However, the high polarity revealed for the microenvironment of residue positions 317, 318, and 327 indicated the existence of a water-accessible cavity. Upon the addition of K+ ions, M2C2 residue Thr-318R1 (R1 indicates the bound spin label) moved with respect to M2B residue Asp-222R1 and M2C3 residue Val-331R1 but not with respect to M2C1 residue Met-311R1. Based on distances determined between spin-labeled residues of double-labeled variants of KtrB in the presence and absence of K+ ions, structural models of the open and closed conformations were developed.  相似文献   

9.
In eukaryotic endomembrane systems, Qabc-SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) on one membrane and R-SNARE on the opposing membrane assemble into a trans-QabcR-SNARE complex to drive membrane fusion. However, it remains ambiguous whether pairing of Qabc- and R-SNAREs mediates membrane fusion specificity. Here, we explored the fusion specificity of reconstituted proteoliposomes bearing purified SNAREs in yeast vacuoles and other organelles. We found that not only vacuolar R-SNARE Nyv1p but also the non-cognate R-SNAREs, endosomal Snc2p, and endoplasmic reticulum-Golgi Sec22p caused efficient fusion with vacuolar Qabc-SNAREs. In contrast, their fusion is blocked completely by replacing vacuolar Qc-SNARE Vam7p with the non-cognate endosomal Tlg1p and Syn8p, although these endosomal Qc-SNAREs fully retained the ability to form cis-SNARE complexes with vacuolar SNAREs in solution and on membranes. Thus, our current study establishes that an appropriate assembly of Qabc-SNAREs is crucial for regulating fusion specificity, whereas R-SNARE itself has little contribution to specificity.  相似文献   

10.
A complete reconstitution system for membrane integration of the simplest protein was developed by means of defined factors. A mutant version of Pf3 coat protein, 3L-Pf3 coat, requires neither signal recognition particle/Sec factors nor a membrane potential for its integration into the cytoplasmic membrane of Escherichia coli. Although 3L-Pf3 coat is spontaneously integrated into liposomes composed of phospholipids, diacylglycerol completely blocks such spontaneous integrations at a physiological level. Under the conditions where spontaneous integration does not occur, 3L-Pf3 coat integration was absolutely dependent on a novel integration-stimulating factor. Combination of the PURE system, an in vitro translation system composed of the purified factors involved in translation in E. coli, with liposomes containing the highly purified integration-stimulating factor revealed multiple cycles of 3L-Pf3 coat integration, achieving the complete reconstitution of membrane integration. Based on the function of the factor, we propose that the factor is named MPIase (Membrane Protein Integrase).  相似文献   

11.
The ATP- and pyrophosphate-dependent proton pumps from tonoplast-enriched vesicles prepared from Rubus hispidus cell cultures were solubilized in the presence of polyoxyethylene(9,10)p-t-octylphenol (Triton X-100) and reconstituted into liposomes of soybean phospholipids, using Bio-Beads SM-2 to remove the detergent. The specific activity of the two pumps was greatly increased by the solubilization-reconstitution procedure. Identical characteristics were found for pyrophosphate-dependent proton transport in native and reconstituted vesicles. On the other hand, the ATP-dependent proton transport of the reconstituted vesicles was no longer inhibited by KNO3.  相似文献   

12.
Electron microscopy of two-dimensional (2D) crystals has demonstrated potential for structure determination of membrane proteins. Technical limitations in large-scale crystallization screens have, however, prevented a major breakthrough in the routine application of this technology. Dialysis is generally used for detergent removal and reconstitution of the protein into a lipid bilayer, and devices for testing numerous conditions in parallel are not readily available. Furthermore, the small size of resulting 2D crystals requires electron microscopy to evaluate the results and automation of the necessary steps is essential to achieve a reasonable throughput. We have designed a crystallization block, using standard microplate dimensions, by which 96 unique samples can be dialyzed simultaneously against 96 different buffers and have demonstrated that the rate of detergent dialysis is comparable to those obtained with conventional dialysis devices. A liquid-handling robot was employed to set up 2D crystallization trials with the membrane proteins CopA from Archaeoglobus fulgidus and light-harvesting complex II (LH2) from Rhodobacter sphaeroides. For CopA, 1 week of dialysis yielded tubular crystals and, for LH2, large and well-ordered vesicular 2D crystals were obtained after 24 h, illustrating the feasibility of this approach. Combined with a high-throughput procedure for preparation of EM-grids and automation of the subsequent negative staining step, the crystallization block offers a novel pipeline that promises to speed up large-scale screening of 2D crystallization and to increase the likelihood of producing well-ordered crystals for analysis by electron crystallography.  相似文献   

13.
The plant plasma-membrane H+-ATPase (EC 3.6.1.35) contains a C-terminal autoinhibitory domain whose displacement from the catalytic site is caused by treatment of intact plant tissue with the phytotoxin fusicoccin (FC). The FC-induced activation of the H+-ATPase was proposed to involve a direct interaction of 14-3-3 proteins with the H+-ATPase. By analysing plasma membranes derived from leaves of Commelina communis L., direct biochemical evidence has now been obtained for a complex between the C-terminus of the H+-ATPase and a 14-3-3 dimer. Stabilization of this complex was achieved by FC treatment in vivo or in vitro. Furthermore, the C-terminal domain of the H+-ATPase in association with a 14-3-3 dimer is essential for the creation of a functional FC-binding complex. Received: 1 August 1998 / Accepted: 15 September 1998  相似文献   

14.
Abstract: The features of Ca2+ fluxes, the importance of the Ca2+ pump‐mediated H+/Ca2+ exchanges at plasmalemma level, and the possible involvement of Ca2+‐ATPase activity in ABA‐induced changes of H+ fluxes were studied in Egeria densa leaves. The results presented show that, while in basal conditions no net Ca2+ flux was evident, a conspicuous Ca2+ influx (about 1.1 ìmol g?1 FW h?1) occurred. The concomitant efflux of Ca2+ was markedly reduced by treatment with 5 íM eosin Y (EY), a specific inhibitor of the Ca2+‐ATPase, that completely blocked the transport of Ca2+ after the first 20 ‐ 30 min. The decrease in Ca2+ efflux induced by EY was associated with a significant increase in net H+ extrusion (?ÄH+) and a small but significant cytoplasmic alkalinization. The shift of external [Ca2+] from 0.3 to 0.2 mM (reducing Ca2+ uptake by about 30 %) and the hindrance of Ca2+ influx by La3+ were accompanied by progressively higher ?ÄH+ increases, in agreement with a gradual decrease in the activity of a mechanism counteracting the Ca2+ influx by an nH+/Ca2+ exchange. The ABA‐induced decreases in ?ÄH+ and pHcyt were accompanied by a significant increase in Ca2+ efflux, all these effects being almost completely suppressed by EY, in line with the view that the ABA effects on H+ fluxes are due to activation of the plasmalemma Ca2+‐ATPase. These results substantially stress the high sensitivity and efficacy of the plasmalemma Ca2+ pump in removing from the cytoplasm the Ca2+ taken up, and the importance of the contribution of Ca2+ pump‐mediated H+/Ca2+ fluxes in bringing about global changes of H+ fluxes at plasmalemma level.  相似文献   

15.
The structural study of transient nucleoprotein complexes by electron microscopy is hampered by the coexistence of multiple interaction states leading to an heterogeneous image population. To tackle this problem, we have investigated the controlled immobilization of double stranded DNA molecules and of nucleoprotein complexes onto a support suitable for cryo-electron microscopy observation. The DNA was end-labeled with a biotin moiety in order to decorate, or to be incorporated into, two-dimensional streptavidin crystals formed in contact of a biotinylated lipid layer. The binding specificity and efficiency were examined by radioactively labeled oligonucleotides and by direct visualization of unstained and hydrated nucleic acid molecules in cryo-electron microscopy. By using RNA polymerase we further show that, once immobilized, femtomolar amounts of DNA template are suitable to interact with the enzyme. The image analysis of the RNA polymerase-DNA complexes showed that a three-dimensional model can be retrieved from such samples.  相似文献   

16.
Summary Freeze-fracture studies were conducted on the membranes of normal cockroach hemocytes. The plasmalemma is asymmetric with the A fracture face containing 80–100 Å membrane intercalated particles at a concentration of 2500/2. The B fracture face contains 120–150 Å particles with a relatively low density (800/2). The nuclear envelope displays an asymmetry with the A fracture face containing 1500 particles/2 and the B face containing 300/ 2. No significant particle size differences were observed in nuclear envelope fracture faces. Two types of symmetric membranes were also found in these cells. Both A and B fracture faces of the membrane surrounding the numerous cytoplasmic inclusion bodies contain particle sizes and concentrations similar to the B face of the plasmalemma. A second type of symmetry was observed in cells apparently engaged in exocytosis. Vesicles (0.1 D) from this process were completely particle free on both fracture faces. Such particle free vesicles could be found in the cytoplasm, attached to the plasmalemma, or completely separated from the cell.Supported by a Pharmaceutical Manufacturers Association Foundation Fellowship.The author wishes to thank Ms. Annalena K. Charla for assistance in plate preparation, Dr. Julius Schultz and the Papanicolaou Cancer Research Institute for use of the freeze-etch device, and Dr. David Smith for the electron microscope facilities.  相似文献   

17.
The Mg2+-dependent H+-ATPase activity of a sealed microsomal vesicle fraction isolated from corn (Zea mays L.) roots appears to be controlled by a phosphorylation-dephosphorylation cycle. Phosphorylation of the microsomal fraction is carried out by a Ca2+/calmodulin (CaM)-stimulated process. The H+-ATPase activity decreases with increasing phosphorylation of the membranes and becomes only slightly uncoupled by ionophores and less inhibited by dicyclohexylcarbodiimide (DCCD), diethylstilbestrol (DES), NO3 and vanadate. The inhibitory effect of phosphorylation is greater on the NO3-sensitive H+-ATPase activity than on the vanadate-sensitive activity. Restoration of H+-ATPase activity is achieved by allowing the phosphorylated membranes to dephosphorylate either in the absence or presence of exogenous alkaline phosphatase. Moreover, the presence of fluphenazine during the Ca2+/CaM-stimulated treatment inhibits membrane phosphorylation and protects the H+-ATPase activity from inhibition.  相似文献   

18.
Abstract

Proteoliposomes have been widely used for in vitro studies of membrane fusion mediated by synaptic proteins. Initially, such studies were made with large unsynchronized ensembles of vesicles. Such ensemble assays limited the insights into the SNARE-mediated fusion mechanism that could be obtained from them. Single particle microscopy experiments can alleviate many of these limitations but they pose significant technical challenges. Here we summarize various approaches that have enabled studies of fusion mediated by SNAREs and other synaptic proteins at a single-particle level. Currently available methods are described and their advantages and limitations are discussed.  相似文献   

19.
为了解液泡膜蛋白在植物细胞信号途径中的功能,用新型的非放射性同位素方法从玉米根细胞的高纯度液泡膜上鉴定出一种膜内在的蛋白激酶.这种蛋白激酶具有Ca2+依赖、CaM和磷脂酰丝氨酸不依赖等特性,与已在多种植物中报道的含有类似钙调素结构域的蛋白激酶CDPK相似.离体实验表明其活性的最适pH值为6.5,最适Ca2+浓度为10 μmol/L.从最适pH值和去污剂的影响可以推测出其活性位点朝向胞质一侧.Zn2+对其活性没有明显的抑制作用,说明该激酶缺少某些哺乳动物的蛋白激酶常含有的锌指结构.当液泡膜蛋白在Ca2+和ATP存在的条件下被预磷酸化后,液泡膜H+-ATPase的ATP水解和质子转运过程均被激活.激活的活性可以被碱性磷酸酶逆转.以上结果说明玉米根尖细胞的液泡膜中存在一种可能是CDPK的蛋白激酶.由它造成的Ca2+依赖的磷酸化作用激活了液泡膜H+-ATPase的活性.这些结果将有助于深入研究CDPK在植物细胞信号转导中的功能.  相似文献   

20.
This review will focus on the recent advance in the study of effect of transmembrane Ca2+ gradient on the function of membrane proteins. It consits of two parts: 1. Transmembrane Ca2+ gradient and sarcoplasmic reticulum Ca2+-ATPase; 2. Effect of transmembrane Ca2+ gradient on the components and coupling of cAMP signal transduction pathway. The results obtained indicate that a proper transmembrane Ca2+ gradient may play an important role in modulating the conformation and activity of SR Ca2+-ATPase and the function of membrane proteins involved in the cAMP signal transduction by mediating the physical state change of the membrane phospholipids.Abbreviations Cai Ca2+ inside vesicles - Ca0 Ca2+ outside vesicles - SR sarcoplasmic reticulum - PC phosphatidylcholine - PS phosphatidylserine - PG phosphatidylglycerol - PE phosphatidylethanolamine - DPH 1,6-diphenyl-1,3,5-hexatriene - n-AS n-(9-anthroyloxy) fatty acids - TMA-DPH 1-(4-trimethylammoniumphenyl)-6)-phenyl-1,3,5-hexatriene - FCCP carbonylcyanide-p-trifluoromethoxyphenylhydrazone - -AR -adrenergic receptors - DHA dihydroalprenolol - AC adenylate cyclase - AC·Lca+– higher Ca2+ inside vesicles - AC·Lca– – lower Ca2+ on both side of vesicles - AC·Lca++ higher Ca2+ on both side of vesicles - AC·Lca– + higher Ca2+ outside vesicles - cAMP cyclic adenosine monophosphate - Gs stimulatory GTP-binding protein - GTP guanosine triposphate - GTPS guanosine 50-(3-thiotriphosphate)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号