首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Opening of CLC chloride channels is coupled to the translocation of the permeant anion. From the recent structure determination of bacterial CLC proteins in the closed and open configuration, a glutamate residue was hypothesized to form part of the Cl--sensitive gate. The negatively charged side-chain of the glutamate was suggested to occlude the permeation pathway in the closed state, while opening of a single protopore of the double-pore channel would reflect mainly a movement of this side-chain toward the extracellular pore vestibule, with little rearrangement of the rest of the channel. Here we show that mutating this critical residue (Glu166) in the prototype Torpedo CLC-0 to alanine, serine, or lysine leads to constitutively open channels, whereas a mutation to aspartate strongly slowed down opening. Furthermore, we investigated the interaction of the small organic channel blocker p-chlorophenoxy-acetic acid (CPA) with the mutants E166A and E166S. Both mutants were strongly inhibited by CPA at negative voltages with a >200-fold larger affinity than for wild-type CLC-0 (apparent KD at -140 mV approximately 4 micro M). A three-state linear model with an open state, a low-affinity and a high-affinity CPA-bound state can quantitatively describe steady-state and kinetic properties of the CPA block. The parameters of the model and additional mutagenesis suggest that the high-affinity CPA-bound state is similar to the closed configuration of the protopore gate of wild-type CLC-0. In the E166A mutant the glutamate side chain that occludes the permeation pathway is absent. Thus, if gating consists only in movement of this side-chain the mutant E166A should not be able to assume a closed conformation. It may thus be that fast gating in CLC-0 is more complex than anticipated from the bacterial structures.  相似文献   

2.
Transmembrane proton transport is of fundamental importance for life. The list of H+ transporting proteins has been recently expanded with the discovery that some members of the CLC gene family are stoichiometrically coupled Cl/H+ antiporters. Other CLC proteins are instead passive Cl selective anion channels. The gating of these CLC channels is, however, strongly regulated by pH, likely reflecting the evolutionary relationship with CLC Cl/H+ antiporters. The role of protons in the gating of the model Torpedo channel ClC-0 is best understood. ClC-0 is a homodimer with separate pores in each subunit. Each protopore can be opened and closed independently from the other pore by a “fast gate”. A common, slow gate acts on both pores simultaneously. The opening of the fast gate is controlled by a critical glutamate (E166), whose protonation state determines the fast gate’s pH dependence. Extracellular protons likely can arrive directly at E166. In contrast, protonation of E166 from the inside has been proposed to be mediated by the dissociation of an intrapore water molecule. The OH anion resulting from the water dissociation is stabilized in one of the anion binding sites of the channel, competing with intracellular Cl ions. The pH dependence of the slow gate is less well understood. It has been shown that proton translocation drives irreversible gating transitions associated with the slow gate. However, the relationship of the fast gate’s pH dependence on the proton translocation and the molecular basis of the slow gate remain to be discovered.  相似文献   

3.
Independent gating of single pores in CLC-0 chloride channels.   总被引:3,自引:0,他引:3  
The Cl- channel from the Torpedo electric organ, CLC-0, is the prototype of a large gene family of Cl- channels. At the single-channel level, CLC-0 shows a "double-barreled" behavior. Recently it was shown that CLC-0 is a dimer, and it was suggested that each subunit forms a single pore. The two protopores are gated individually by a fast voltage and anion-dependent gating mechanism. A slower common gating mechanism operates on both pores simultaneously. Previously, wild-type/mutant heteromeric channels had been constructed that display a large wild-type pore and small mutant pore. Here we use patch-clamp recording of single wild-type and mutant CLC-0 channels to investigate in detail the dependence of the gating of one protopore on the physically attached neighboring pore. No difference in rate constants of opening and closing of protopores could be found comparing homomeric wild-type and heteromeric wild-type/mutant channels. In addition, detailed kinetic analysis reveals that gating of single subunits is not correlated with the gating of the neighboring subunit. The results are consistent with the view that permeation and fast gating of individual pores are fully independent of the neighboring pore. Because the two subunits are associated in a common protein complex, opening and closing transitions of individual pores are probably due to only small conformational changes in each pore. In addition to the fast and slow gating mechanisms known previously for CLC-0, in the course of this study we occasionally observed an additional gating process that led to relatively long closures of single pores.  相似文献   

4.
Using the substituted-cysteine-accessibility method, we previously showed that a cysteine residue introduced to the Y512 position of CLC-0 was more rapidly modified by a negatively charged methanethiosulfonate (MTS) reagent, 2-sulfonatoethyl MTS (MTSES), than by the positively charged 2-(trimethylammonium)ethyl MTS (MTSET). This result suggests that a positive intrinsic pore potential attracts the negatively charged MTS molecule. In this study, we further test this hypothesis of a positive pore potential in CLC-0 and find that the preference for the negatively charged MTS is diminished significantly in modifying the substituted cysteine at a deeper pore position, E166. To examine this conundrum, we study the rates of MTS inhibitions of the E166C current and those of the control mutant current from E166A. The results suggest that the inhibition of E166C by intracellularly applied MTS reagents is tainted by the modification of an endogenous cysteine, C229, located at the channel's dimer interface. After this endogenous cysteine is mutated, CLC-0 resumes its preference for selecting MTSES in modifying E166C, reconfirming the idea that the pore of CLC-0 is indeed built with a positive intrinsic potential. These experiments also reveal that MTS modification of C229 can inhibit the current of CLC-0 depending on the amino acid placed at position 166.  相似文献   

5.
GlialCAM, a glial cell adhesion molecule mutated in megalencephalic leukoencephalopathy with subcortical cysts, targets the CLC-2 Cl- channel to cell contacts in glia and activates CLC-2 currents in vitro and in vivo. We found that GlialCAM clusters all CLC channels at cell contacts in vitro and thus studied GlialCAM interaction with CLC channels to investigate the mechanism of functional activation. GlialCAM slowed deactivation kinetics of CLC-Ka/barttin channels and increased CLC-0 currents opening the common gate and slowing its deactivation. No functional effect was seen for common gate deficient CLC-0 mutants. Similarly, GlialCAM targets the common gate deficient CLC-2 mutant E211V/H816A to cell contacts, without altering its function. Thus, GlialCAM is able to interact with all CLC channels tested, targeting them to cell junctions and activating them by stabilizing the open configuration of the common gate. These results are important to better understand the physiological role of GlialCAM/CLC-2 interaction.  相似文献   

6.
GlialCAM, a glial cell adhesion molecule mutated in megalencephalic leukoencephalopathy with subcortical cysts, targets the CLC-2 Cl- channel to cell contacts in glia and activates CLC-2 currents in vitro and in vivo. We found that GlialCAM clusters all CLC channels at cell contacts in vitro and thus studied GlialCAM interaction with CLC channels to investigate the mechanism of functional activation. GlialCAM slowed deactivation kinetics of CLC-Ka/barttin channels and increased CLC-0 currents opening the common gate and slowing its deactivation. No functional effect was seen for common gate deficient CLC-0 mutants. Similarly, GlialCAM targets the common gate deficient CLC-2 mutant E211V/H816A to cell contacts, without altering its function. Thus, GlialCAM is able to interact with all CLC channels tested, targeting them to cell junctions and activating them by stabilizing the open configuration of the common gate. These results are important to better understand the physiological role of GlialCAM/CLC-2 interaction.  相似文献   

7.
CLC-2 channels are dimeric double-barreled chloride channels that open in response to hyperpolarization. Hyperpolarization activates protopore gates that independently regulate the permeability of the pore in each subunit and the common gate that affects the permeability through both pores. CLC-2 channels lack classic transmembrane voltage–sensing domains; instead, their protopore gates (residing within the pore and each formed by the side chain of a glutamate residue) open under repulsion by permeant intracellular anions or protonation by extracellular H+. Here, we show that voltage-dependent gating of CLC-2: (a) is facilitated when permeant anions (Cl, Br, SCN, and I) are present in the cytosolic side; (b) happens with poorly permeant anions fluoride, glutamate, gluconate, and methanesulfonate present in the cytosolic side; (c) depends on pore occupancy by permeant and poorly permeant anions; (d) is strongly facilitated by multi-ion occupancy; (e) is absent under likely protonation conditions (pHe = 5.5 or 6.5) in cells dialyzed with acetate (an impermeant anion); and (f) was the same at intracellular pH 7.3 and 4.2; and (g) is observed in both whole-cell and inside-out patches exposed to increasing [Cl]i under unlikely protonation conditions (pHe = 10). Thus, based on our results we propose that hyperpolarization activates CLC-2 mainly by driving intracellular anions into the channel pores, and that protonation by extracellular H+ plays a minor role in dislodging the glutamate gate.  相似文献   

8.
Mammalian CLC proteins comprise both Cl- channels and Cl-/H+ antiporters that carry out fundamental physiological tasks by transporting Cl- across plasma membrane and intracellular compartments. The NO3- over Cl- preference of a plant CLC transporter has been pinpointed to a conserved serine residue located at Scen and it is generally assumed that the other two binding sites of CLCs, Sext and Sin, do not substantially contribute to anion selectivity. Here we show for the Cl-/H+ antiporter CLC-5 that the conserved and extracellularly exposed Lys210 residue is critical to determine the anion specificity for transport activity. In particular, mutations that neutralize or invert the charge at this position reverse the NO3- over Cl- preference of WT CLC-5 at a concentration of 100 mm, but do not modify the coupling stoichiometry with H+. The importance of the electrical charge is shown by chemical modification of K210C with positively charged cysteine-reactive compounds that reintroduce the WT preference for Cl-. At saturating extracellular anion concentrations, neutralization of Lys210 is of little impact on the anion preference, suggesting an important role of Lys210 on the association rate of extracellular anions to Sext.  相似文献   

9.
CLC chloride channels comprise a gene family with nine mammalian members. Probably all CLC channels form homodimers, and some CLC proteins may also associate to heterodimers. ClC-0 and ClC-1, the only CLC channels investigated at the single-channel level, display two conductances of equal size which are thought to result from two separate pores, formed individually by the two monomers. We generated concatemeric channels containing one subunit of ClC-0 together with one subunit of ClC-1 or ClC-2. They should display two different conductances if one monomer were sufficient to form one pore. Indeed, we found a 8-picosiemens (pS) conductance (corresponding to ClC-0) that was associated with either a 1.8-pS (ClC-1) or a 2.8-pS (ClC-2) conductance. These conductances retained their typical gating, but the slow gating of ClC-0 that affects both pores simultaneously was lost. ClC-2 and ClC-0 current components were modified by point mutations in the corresponding subunit. The ClC-2 single pore of the mixed dimer was compared with the pores in the ClC-2 homodimer and found to be unaltered. We conclude that each monomer individually forms a gated pore. CLC dimers in general must be imagined as having two pores, as shown previously for ClC-0.  相似文献   

10.
CLC proteins are a nine-member gene family of Cl- channels that have diverse roles in the plasma membrane and in intracellular organelles. The recent structure determination of bacterial CLC homologues by Dutzler et al. was a breakthrough for the structure-function analysis of CLC channels. This review describes the mechanisms of inhibition of muscle type CLC channels by two classes of small organic substances: 9-anthracene carboxylic acid (9AC) and p-chlorophenoxy propionic acid (CPP). Both substances block muscle type CLC channels (CLC-0 and CLC-1) from the intracellular side. For CPP, one could show that it inhibits the individual protopores of the double-barrelled channel. A major difference between the two types of blockers is the extremely slow binding- and unbinding-kinetics of 9AC (time scale of min), compared to that of CPP block (time scale of s), while the general mechanism of block seems to be quite similar. In the case of the chiral CPP only the S(-) enantiomer is effective. Both substances exhibit a strongly voltage-dependent block with strong inhibition at negative voltages and relief of block at depolarizing potentials at which the channels tend to open maximally. A quantitative kinetic model was developed for the CPP block of CLC-0 in which the closed state has a much larger affinity for CPP than the open state and opening of drug-bound channels is greatly slowed compared to drug-free channels. First experiments with mutated CLC-0 channels and with derivatives of CPP strongly support the pore localization of the CPP binding site. This work provides the basis for the use of these small organic substances as tools to investigate the pharmacological properties of mammalian CLC channels guided by the crystallographic structure of bacterial CLC homologues. They might also turn out to be useful to obtain information about the intricate coupling of gating and permeation that characterizes CLC channels.  相似文献   

11.
Members of the CLC family of Cl channels and transporters are homodimeric integral membrane proteins. Two gating mechanisms control the opening and closing of Cl channels in this family: fast gating, which regulates opening and closing of the individual pores in each subunit, and slow (or common) gating, which simultaneously controls gating of both subunits. Here, we found that intracellularly applied Cd2+ reduces the current of CLC-0 because of its inhibition on the slow gating. We identified CLC-0 residues C229 and H231, located at the intracellular end of the transmembrane domain near the dimer interface, as the Cd2+-coordinating residues. The inhibition of the current of CLC-0 by Cd2+ was greatly enhanced by mutation of I225W and V490W at the dimer interface. Biochemical experiments revealed that formation of a disulfide bond within this Cd2+-binding site is also affected by mutation of I225W and V490W, indicating that these two mutations alter the structure of the Cd2+-binding site. Kinetic studies showed that Cd2+ inhibition appears to be state dependent, suggesting that structural rearrangements may occur in the CLC dimer interface during Cd2+ modulation. Mutations of I290 and I556 of CLC-1, which correspond to I225 and V490 of CLC-0, respectively, have been shown previously to cause malfunction of CLC-1 Cl channel by altering the common gating. Our experimental results suggest that mutations of the corresponding residues in CLC-0 change the subunit interaction and alter the slow gating of CLC-0. The effect of these mutations on modulations of slow gating of CLC channels by intracellular Cd2+ likely depends on their alteration of subunit interactions.  相似文献   

12.
Intracellularly applied amphiphilic molecules, such as p-chlorophenoxy acetate (CPA) and octanoate, block various pore-open mutants of CLC-0. The voltage-dependent block of a particular pore-open mutant, E166G, was found to be multiphasic. In symmetrical 140 mM Cl, the apparent affinity of the blocker in this mutant increased with a negative membrane potential but, paradoxically, decreased when the negative membrane potential was greater than −80 mV, a phenomenon similar to the blocker “punch-through” shown in many blocker studies of cation channels. To provide further evidence of the punch-through of CPA and octanoate, we studied the dissociation rate of the blocker from the pore by measuring the time constant of relief from the block under various voltage and ionic conditions. Consistent with the voltage dependence of the effect on the steady-state current, the rate of CPA dissociation from the E166G pore reached a minimum at −80 mV in symmetrical 140 mM Cl, and the direction of current recovery suggested that the bound CPA in the pore can dissociate into both intracellular and extracellular solutions. Moreover, the CPA dissociation depends upon the Cl reversal potential with a minimal dissociation rate at a voltage 80 mV more negative than the Cl reversal potential. That the shift of the CPA-dissociation rate follows the Cl gradient across the membrane argues that these blockers can indeed punch through the channel pore. Furthermore, a minimal CPA-dissociation rate at a voltage 80 mV more negative than the Cl reversal potential suggests that the outward blocker movement through the CLC-0 pore is more difficult than the inward movement.  相似文献   

13.
ClC channels are a family of protein molecules containing two ion-permeation pores. Although these transmembrane proteins are important for a variety of physiological functions, their molecular operations are only superficially understood. High-resolution X-ray crystallography techniques have recently revealed the structures of two bacterial ClC channels, but whether vertebrate ClC channel pores are similar to those of bacterial homologues is not clear. To study the pore architecture of the Torpedo ClC-0 channel, we employed the substituted-cysteine-accessibility method (SCAM) and used charged methane thiosulfonate (MTS) compounds to modify the introduced cysteine. Several conclusions were derived from this approach. First, the MTS modification pattern from Y512C to E526C in ClC-0, which corresponds to residues forming helix R in bacterial ClC channels, is indeed consistent with the suggested helical structure. Second, the ClC-0 pore is more accessible to the negatively charged than to the positively charged MTS compound, a pore property that is regulated by the intrinsic electrostatic potential in the pore. Finally, attempts to modify the introduced cysteine at positions intracellular to the selectivity filter did not result in larger MTS modification rates for the open-state channel, suggesting that the fast gate of ClC-0 cannot be located at a position intracellular to the Cl- selectivity filter. Thus, the proposal that the glutamate side chain is the fast gate of the channel is applicable to ClC-0, revealing a structural and functional conservation of ClC channels between bacterial and vertebrate species.  相似文献   

14.
The opening and closing of chloride (Cl-) channels in the ClC family are thought to tightly couple to ion permeation through the channel pore. In the prototype channel of the family, the ClC-0 channel from the Torpedo electric organ, the opening-closing of the pore in the millisecond time range known as "fast gating" is regulated by both external and internal Cl- ions. Although the external Cl- effect on the fast-gate opening has been extensively studied at a quantitative level, the internal Cl- regulation remains to be characterized. In this study, we examine the internal Cl- effects and the electrostatic controls of the fast-gating mechanism. While having little effect on the opening rate, raising [Cl-]i reduces the closing rate (or increases the open time) of the fast gate, with an apparent affinity of >1 M, a value very different from the one observed in the external Cl- regulation on the opening rate. Mutating charged residues in the pore also changes the fast-gating properties-the effects are more prominent on the closing rate than on the opening rate, a phenomenon similar to the effect of [Cl-]i on the fast gating. Thus, the alteration of fast-gate closing by charge mutations may come from a combination of two effects: a direct electrostatic interaction between the manipulated charge and the negatively charged glutamate gate and a repulsive force on the gate mediated by the permeant ion. Likewise, the regulations of internal Cl- on the fast gating may also be due to the competition of Cl- with the glutamate gate as well as the overall more negative potential brought to the pore by the binding of Cl-. In contrast, the opening rate of the fast gate is only minimally affected by manipulations of [Cl-]i and charges in the inner pore region. The very different nature of external and internal Cl- regulations on the fast gating thus may suggest that the opening and the closing of the fast gate are not microscopically reversible processes, but form a nonequilibrium cycle in the ClC-0 fast-gating mechanism.  相似文献   

15.
We investigated in detail the mechanism of inhibition by the S(-) enantiomer of 2-(p-chlorophenoxy)butyric acid (CPB) of the Torpedo Cl(-)channel, ClC-0. The substance has been previously shown to inhibit the homologous skeletal muscle channel, CLC-1. ClC-0 is a homodimer with probably two independently gated protopores that are conductive only if an additional common gate is open. As a simplification, we used a mutant of ClC-0 (C212S) that has the common gate "locked open" (Lin, Y.W., C.W. Lin, and T.Y. Chen. 1999. J. Gen. Physiol. 114:1-12). CPB inhibits C212S currents only when applied to the cytoplasmic side, and single-channel recordings at voltages (V) between -120 and -80 mV demonstrate that it acts independently on individual protopores by introducing a long-lived nonconductive state with no effect on the conductance and little effect on the lifetime of the open state. Steady-state macroscopic currents at -140 mV are half-inhibited by approximately 0.5 mM CPB, but the inhibition decreases with V and vanishes for V > or = 40 mV. Relaxations of CPB inhibition after voltage steps are seen in the current responses as an additional exponential component that is much slower than the gating of drug-free protopores. For V = 60 mV) with an IC50 of approximately 30-40 mM. Altogether, these findings support a model for the mechanism of CPB inhibition in which the drug competes with Cl(-) for binding to a site of the pore where it blocks permeation. CPB binds preferentially to closed channels, and thereby also strongly alters the gating of the single protopore. Since the affinity of CPB for open WT pores is extremely low, we cannot decide in this case if it acts also as an open pore blocker. However, the experiments with the mutant K519E strongly support this interpretation. CPB block may become a useful tool to study the pore of ClC channels. As a first application, our results provide additional evidence for a double-barreled structure of ClC-0 and ClC-1.  相似文献   

16.
The charge on the side chain of the internal pore residue lysine 519 (K519) of the Torpedo ClC-0 chloride (Cl-) channel affects channel conductance. Experiments that replace wild-type (WT) lysine with neutral or negatively charged residues or that modify the K519C mutant with various methane thiosulfonate (MTS) reagents show that the conductance of the channel decreases when the charge at position 519 is made more negative. This charge effect on the channel conductance diminishes in the presence of a high intracellular Cl- concentration ([Cl-]i). However, the application of high concentrations of nonpermeant ions, such as glutamate or sulfate (SO42-), does not change the conductance, suggesting that the electrostatic effects created by the charge at position 519 are unlikely due to a surface charge mechanism. Another pore residue, glutamate 127 (E127), plays an even more critical role in controlling channel conductance. This negatively charged residue, based on the structures of the homologous bacterial ClC channels, lies 4-5 A from K519. Altering the charge of this residue can influence the apparent Cl- affinity as well as the saturated pore conductance in the conductance-Cl- activity curve. Amino acid residues at the selectivity filter also control the pore conductance but mutating these residues mainly affects the maximal pore conductance. These results suggest at least two different conductance determinants in the pore of ClC-0, consistent with the most recent crystal structure of the bacterial ClC channel solved to 2.5 A, in which multiple Cl--binding sites were identified in the pore. Thus, we suggest that the occupancy of the internal Cl--binding site is directly controlled by the charged residues located at the inner pore mouth. On the other hand, the Cl--binding site at the selectivity filter controls the exit rate of Cl- and therefore determines the maximal channel conductance.  相似文献   

17.
Chloride channels and transporters of the CLC gene family are expressed in virtually all cell types and are crucial in the regulation of membrane potential, chloride homeostasis and intravesicular pH. There are two gating processes that open CLC channels-fast and slow. The fast gating process in CLC channels has recently been linked to a small movement of a glutamate side chain. However, the molecular mechanism underlying the slow gating process is still elusive. Using spectroscopic microscopy, we observed a large backbone movement in the C terminus of the CLC-0 chloride channel that was functionally linked to slow gating. We further showed that the C-terminal movement had a time course similar to slow gating. In addition, a mutation known to lock the slow gate open prevented movement of the C terminus. When combined with recent structural information on the CLC C terminus, our findings provide a structural model for understanding the conformational changes linked to slow gating in CLC transport proteins.  相似文献   

18.
The blockade of CLC-0 chloride channels by p-chlorophenoxy acetate (CPA) has been thought to be state dependent; the conformational change of the channel pore during the “fast gating” alters the CPA binding affinity. Here, we examine the mechanism of CPA blocking in pore-open mutants of CLC-0 in which the residue E166 was replaced by various amino acids. We find that the CPA-blocking affinities depend upon the volume and the hydrophobicity of the side chain of the introduced residue; CPA affinity can vary by three orders of magnitude in these mutants. On the other hand, mutations at the intracellular pore entrance, although affecting the association and dissociation rates of the CPA block, generate only a modest effect on the steady-state blocking affinity. In addition, various amphiphilic compounds, including fatty acids and alkyl sulfonates, can also block the pore-open mutants of CLC-0 through a similar mechanism. The blocking affinity of fatty acids and alkyl sulfonates increases with the length of these amphiphilic blockers, a phenomenon similar to the block of the Shaker K+ channel by long-chain quaternary ammonium (QA) ions. These observations lead us to propose that the CPA block of the open pore of CLC-0 is similar to the blockade of voltage-gated K+ channels by long-chain QAs or by the inactivation ball peptide: the blocker first uses the hydrophilic end to “dock” at the pore entrance, and the hydrophobic part of the blocker then enters the pore to interact with a more hydrophobic region of the pore. This blocking mechanism appears to be very general because the block does not require a precise structural fit between the blocker and the pore, and the blocking mechanism applies to the cation and anion channels with unrelated pore architectures.  相似文献   

19.
Pusch M 《Biochemistry》2004,43(5):1135-1144
CLC Cl(-) channels fulfill numerous physiological functions as demonstrated by their involvement in several human genetic diseases. They have an unusual homodimeric architecture in which each subunit forms an individual pore whose open probability is regulated by various physicochemical factors, including voltage, Cl(-) concentration, and pH. The voltage dependence of Torpedo channel CLC-0 is derived probably indirectly from the translocation of a Cl(-) ion through the pore during the opening step. Recent structure determinations of bacterial CLC homologues marked a breakthrough for the structure-function analysis of CLC channels. The structures revealed a complex fold with 18 alpha-helices and two Cl(-) ions per subunit bound in the center of the protein. The side chain of a highly conserved glutamate residue that resides in the putative permeation pathway appears to be a major component of the channel gate. First studies have begun to exploit the bacterial structures as guides for a rational structure-function analysis. These studies confirm that the overall structure seems to be conserved from bacteria to humans. A full understanding of the mechanisms of gating of eukaryotic CLC channels is, however, still lacking.  相似文献   

20.
Some CLC proteins function as passive Cl(-) ion channels whereas others are secondary active chloride/proton antiporters. Voltage-dependent gating of the model Torpedo channel ClC-0 is modulated by intracellular and extracellular pH, possibly reflecting a mechanistic relationship with the chloride/proton coupling of CLC antiporters. We used inside-out patch clamp measurements and mutagenesis to explore the dependence of the fast gating mechanism of ClC-0 on intracellular pH and to identify the putative intracellular proton acceptor(s). Among the tested residues (S123, K129, R133, K149, E166, F214L, S224, E226, V227, C229, R305, R312, C415, H472, F418, V419, P420, and Y512) only mutants of E166, F214, and F418 qualitatively changed the pH(int) dependence. No tested amino acid emerged as a valid candidate for being a pH sensor. A detailed kinetic analysis of the dependence of fast gate relaxations on pH(int) and [Cl(-)](int) provided quantitative constraints on possible mechanistic models of gating. In one particular model, a proton is generated by the dissociation of a water molecule in an intrapore chloride ion binding site. The proton is delivered to the side chain of E166 leading to the opening of the channel, while the hydroxyl ion is stabilized in the internal/central anion binding site. Deuterium isotope effects confirm that proton transfer is rate limiting for fast gate opening and that channel closure depends mostly on the concentration of OH(-) ions. The gating model is in natural agreement with the finding that only the closing rate constant, but not the opening rate constant, depends on pH(int) and [Cl(-)](int).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号