首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J Hhfeld  S Jentsch 《The EMBO journal》1997,16(20):6209-6216
The BAG-1 protein appears to inhibit cell death by binding to Bcl-2, the Raf-1 protein kinase, and certain growth factor receptors, but the mechanism of inhibition remains enigmatic. BAG-1 also interacts with several steroid hormone receptors which require the molecular chaperones Hsc70 and Hsp90 for activation. Here we show that BAG-1 is a regulator of the Hsc70 chaperone. BAG-1 binds to the ATPase domain of Hsc70 and, in cooperation with Hsp40, stimulates Hsc70's steady-state ATP hydrolysis activity approximately 40-fold. Similar to the action of the GrpE protein on bacterial Hsp70, BAG-1 accelerates the release of ADP from Hsc70. Thus, BAG-1 regulates the Hsc70 ATPase in a manner contrary to the Hsc70-interacting protein Hip, which stabilizes the ADP-bound state. Intriguingly, BAG-1 and Hip compete in binding to the ATPase domain of Hsc70. Our results reveal an unexpected diversity in the regulation of Hsc70 and raise the possibility that the observed anti-apoptotic function of BAG-1 may be exerted through a modulation of the chaperone activity of Hsc70 on specific protein folding and maturation pathways.  相似文献   

2.
The BAG-1 protein modulates the chaperone activity of Hsc70 and Hsp70 in the mammalian cytosol and nucleus. Remarkably, BAG-1 possesses a ubiquitin-like domain at its amino terminus, suggesting a link to the ubiquitin/proteasome system. Here we show that BAG-1 is indeed associated with the 26 S proteasome in HeLa cells. Binding of the chaperone cofactor to the proteolytic complex is regulated by ATP hydrolysis and is not mediated by Hsc70 and Hsp70. The presented findings reveal a role of BAG-1 as a physical link between the Hsc70/Hsp70 chaperone system and the proteasome. In fact, targeting of BAG-1 to the proteasome promotes an association of the chaperones with the proteolytic complex in vitro and in vivo. A regulatory function of the chaperone cofactor at the interface between protein folding and protein degradation is thus indicated.  相似文献   

3.
BAG-1 modulates the chaperone activity of Hsp70/Hsc70.   总被引:29,自引:3,他引:26  
The 70 kDa heat shock family of molecular chaperones is essential to a variety of cellular processes, yet it is unclear how these proteins are regulated in vivo. We present evidence that the protein BAG-1 is a potential modulator of the molecular chaperones, Hsp70 and Hsc70. BAG-1 binds to the ATPase domain of Hsp70 and Hsc70, without requirement for their carboxy-terminal peptide-binding domain, and can be co-immunoprecipitated with Hsp/Hsc70 from cell lysates. Purified BAG-1 and Hsp/Hsc70 efficiently form heteromeric complexes in vitro. BAG-1 inhibits Hsp/Hsc70-mediated in vitro refolding of an unfolded protein substrate, whereas BAG-1 mutants that fail to bind Hsp/Hsc70 do not affect chaperone activity. The binding of BAG-1 to one of its known cellular targets, Bcl-2, in cell lysates was found to be dependent on ATP, consistent with the possible involvement of Hsp/Hsc70 in complex formation. Overexpression of BAG-1 also protected certain cell lines from heat shock-induced cell death. The identification of Hsp/Hsc70 as a partner protein for BAG-1 may explain the diverse interactions observed between BAG-1 and several other proteins, including Raf-1, steroid hormone receptors and certain tyrosine kinase growth factor receptors. The inhibitory effects of BAG-1 on Hsp/Hsc70 chaperone activity suggest that BAG-1 represents a novel type of chaperone regulatory proteins and thus suggest a link between cell signaling, cell death and the stress response.  相似文献   

4.
The modulation of the chaperone activity of the heat shock cognate Hsc70 protein in mammalian cells involves cooperation with chaperone cofactors, such as Hsp40; BAG-1; the Hsc70-interacting protein, Hip; and the Hsc70-Hsp90-organizing protein, Hop. By employing the yeast two-hybrid system and in vitro interaction assays, we have provided insight into the structural basis that underlies Hsc70’s cooperation with different cofactors. The carboxy-terminal domain of Hsc70, previously shown to form a lid over the peptide binding pocket of the chaperone protein, mediates the interaction of Hsc70 with Hsp40 and Hop. Remarkably, the two cofactors bind to the carboxy terminus of Hsc70 in a noncompetitive manner, revealing the existence of distinct binding sites for Hsp40 and Hop within this domain. In contrast, Hip interacts exclusively with the amino-terminal ATPase domain of Hsc70. Hence, Hsc70 possesses separate nonoverlapping binding sites for Hsp40, Hip, and Hop. This appears to enable the chaperone protein to cooperate simultaneously with multiple cofactors. On the other hand, BAG-1 and Hip have recently been shown to compete in binding to the ATPase domain. Our data thus establish the existence of a network of cooperating and competing cofactors regulating the chaperone activity of Hsc70 in the mammalian cell.  相似文献   

5.
Hsc70 is a conserved ATP-dependent molecular chaperone, which utilizes the energy of ATP hydrolysis to alter the folding state of its client proteins. In contrast to the Hsc70 systems of bacteria, yeast and humans, the Hsc70 system of C. elegans (CeHsc70) has not been studied to date.We find that CeHsc70 is characterized by a high ATP turnover rate and limited by post-hydrolysis nucleotide exchange. This rate-limiting step is defined by the helical lid domain at the C-terminus. A certain truncation in this domain (CeHsc70-Δ545) reduces the turnover rate and renders the hydrolysis step rate-limiting. The helical lid domain also affects cofactor affinities as the lidless mutant CeHsc70-Δ512 binds more strongly to DNJ-13, forming large protein complexes in the presence of ATP. Despite preserving the ability to hydrolyze ATP and interact with its cofactors DNJ-13 and BAG-1, the truncation of the helical lid domain leads to the loss of all protein folding activity, highlighting the requirement of this domain for the functionality of the nematode's Hsc70 protein.  相似文献   

6.
BACKGROUND: Molecular chaperones recognize nonnative proteins and orchestrate cellular folding processes in conjunction with regulatory cofactors. However, not every attempt to fold a protein is successful, and misfolded proteins can be directed to the cellular degradation machinery for destruction. Molecular mechanisms underlying the cooperation of molecular chaperones with the degradation machinery remain largely enigmatic so far. RESULTS: By characterizing the chaperone cofactors BAG-1 and CHIP, we gained insight into the cooperation of the molecular chaperones Hsc70 and Hsp70 with the ubiquitin/proteasome system, a major system for protein degradation in eukaryotic cells. The cofactor CHIP acts as a ubiquitin ligase in the ubiquitination of chaperone substrates such as the raf-1 protein kinase and the glucocorticoid hormone receptor. During targeting of signaling molecules to the proteasome, CHIP may cooperate with BAG-1, a ubiquitin domain protein previously shown to act as a coupling factor between Hsc/Hsp70 and the proteasome. BAG-1 directly interacts with CHIP; it accepts substrates from Hsc/Hsp70 and presents associated proteins to the CHIP ubiquitin conjugation machinery. Consequently, BAG-1 promotes CHIP-induced degradation of the glucocorticoid hormone receptor in vivo. CONCLUSIONS: The ubiquitin domain protein BAG-1 and the CHIP ubiquitin ligase can cooperate to shift the activity of the Hsc/Hsp70 chaperone system from protein folding to degradation. The chaperone cofactors thus act as key regulators to influence protein quality control.  相似文献   

7.
The ATPase cycle of the chaperone Hsc70 is regulated by co-chaperones; Hsp40/DnaJ-related proteins stimulate ATP hydrolysis by Hsc70 and can bind unfolded polypeptides themselves. Conversely, various nucleotide exchange factors (NEFs) stimulate ADP-ATP exchange by Hsc70. We analyzed the purified Hsp40-related co-chaperones DJA1 (Hdj2) and DJA2 (Hdj3) and found that they had a distinct pattern of binding to a range of polypeptides. DJA2 alone could stimulate Hsc70-mediated refolding of luciferase in the absence of NEF, whereas DJA1 was much less active. The addition of the Bag1 NEF increased refolding by Hsc70 and DJA2, as did the newly characterized NEF Hsp110, but each NEF had a different optimal concentration ratio to Hsc70. Notably, the NEF HspBP1 could not increase refolding by Hsc70 and DJA2 at any concentration, and none of the NEFs improved the refolding activity with DJA1. Instead, DJA1 was inhibitory of refolding with DJA2 and Hsc70. All combinations of DJA1 or DJA2 with the three NEFs stimulated the Hsc70 ATPase rate, although Hsp110 became less effective with increasing concentrations. A chimeric DJA2 having its Hsc70-stimulatory J domain replaced with that of DJA1 was functional for polypeptide binding and ATPase stimulation of Hsc70. However, it could not support efficient Hsc70-mediated refolding and also inhibited refolding with DJA2 and Hsc70. These results suggest a more complex model of Hsc70 mechanism than has been previously thought, with notable functional divergence between Hsc70 co-chaperones.  相似文献   

8.
The molecular chaperone Hsc70 assists in the folding of non-native proteins together with its J domain- and BAG domain-containing cofactors. In Caenorhabditis elegans, two BAG domain-containing proteins can be identified, one of them being UNC-23, whose mutation induces severe motility dysfunctions. Using reporter strains, we find that the full-length UNC-23, in contrast to C-terminal fragments, localizes specifically to the muscular attachment sites. C-terminal fragments of UNC-23 instead perform all Hsc70-related functions, like ATPase stimulation and regulation of folding activity, albeit with lower affinity than BAG-1. Interestingly, overexpression of CFP-Hsc70 can induce muscular defects in wild-type nematodes that phenocopy the knockout of its cofactor UNC-23. Strikingly, the motility dysfunction in the unc-23 mutated strain can be cured specifically by down-regulation of the antagonistic Hsc70 cochaperone DNJ-13, implying that the severe phenotype is caused by misregulation of the Hsc70 cycle. These findings point out that the balanced action of cofactors in the ATP-driven cycle of Hsc70 is crucial for the contribution of Hsc70 to muscle functionality.  相似文献   

9.
Protein folding mediated by the Hsp70 family of molecular chaperones requires both ATP and the co-chaperone Hdj-1. BAG-1 was recently identified as a bcl-2-interacting, anti-apoptotic protein that binds to the ATPase domain of Hsp70 and prevents the release of the substrate. While this suggested that cells had the potential to modulate Hsp70-mediated protein folding, physiological regulators of BAG-1 have yet to be identified. We report here that the apoptotic regulator Scythe, originally isolated through binding to the potent apoptotic inducer Reaper, shares limited sequence identity with BAG-1 and inhibits Hsp70- mediated protein refolding. Scythe-mediated inhibition of Hsp70 is reversed by Reaper, providing evidence for the regulated reversible inhibition of chaperone activity. As Scythe functions downstream of Reaper in apoptotic induction, these findings suggest that Scythe/Reaper may signal apoptosis, in part through regulating the folding and activity of apoptotic signaling molecules.  相似文献   

10.
The chaperone function of the mammalian 70-kDa heat shock proteins Hsc70 and Hsp70 is modulated by physical interactions with four previously identified chaperone cofactors: Hsp40, BAG-1, the Hsc70-interacting protein Hip, and the Hsc70-Hsp90-organizing protein Hop. Hip and Hop interact with Hsc70 via a tetratricopeptide repeat domain. In a search for additional tetratricopeptide repeat-containing proteins, we have identified a novel 35-kDa cytoplasmic protein, carboxyl terminus of Hsc70-interacting protein (CHIP). CHIP is highly expressed in adult striated muscle in vivo and is expressed broadly in vitro in tissue culture. Hsc70 and Hsp70 were identified as potential interaction partners for this protein in a yeast two-hybrid screen. In vitro binding assays demonstrated direct interactions between CHIP and both Hsc70 and Hsp70, and complexes containing CHIP and Hsc70 were identified in immunoprecipitates of human skeletal muscle cells in vivo. Using glutathione S-transferase fusions, we found that CHIP interacted with the carboxy-terminal residues 540 to 650 of Hsc70, whereas Hsc70 interacted with the amino-terminal residues 1 to 197 (containing the tetratricopeptide domain and an adjacent charged domain) of CHIP. Recombinant CHIP inhibited Hsp40-stimulated ATPase activity of Hsc70 and Hsp70, suggesting that CHIP blocks the forward reaction of the Hsc70-Hsp70 substrate-binding cycle. Consistent with this observation, both luciferase refolding and substrate binding in the presence of Hsp40 and Hsp70 were inhibited by CHIP. Taken together, these results indicate that CHIP decreases net ATPase activity and reduces chaperone efficiency, and they implicate CHIP in the negative regulation of the forward reaction of the Hsc70-Hsp70 substrate-binding cycle.  相似文献   

11.
Hsp70 binding protein 1 (HspBP1) and Bcl2-associated athanogene 1 (BAG-1), the functional orthologous nucleotide exchange factors of the heat shock protein 70 kilodalton (Hsc70/Hsp70) chaperones, catalyze the release of ADP from Hsp70 while inducing different conformational changes of the ATPase domain of Hsp70. An appropriate exchange rate of ADP/ATP is crucial for chaperone-dependent protein folding processes. Among Hsp70 client proteins are steroid receptors such as the glucocorticoid receptor (GR), the mineralocorticoid receptor (MR), and the androgen receptor (AR). BAG-1 diversely affects steroid receptor activity, while to date the influence of HspBP1 on steroid receptor function is mostly unknown. Here, we compared the influence of HspBP1 and BAG-1M on Hsp70-mediated steroid receptor folding complexes and steroid receptor activity. Coimmunoprecipitation studies indicated preferential binding of Hsp40 and the steroid receptors to BAG-1M as compared to HspBP1. Furthermore, Hsp70 binding to the ligand-binding domain of GR was reduced in the presence of HspBP1 but not in the presence of BAG-1M as shown by pull-down assays. Reporter gene experiments revealed an inhibitory effect on GR, MR, and AR at a wide range of HspBP1 protein levels and at hormone concentrations at or approaching saturation. BAG-1M exhibited a transition from stimulatory effects at low BAG-1M levels to inhibitory effects at higher BAG-1M levels. Overall, BAG-1M and HspBP1 had differential impacts on the dynamic composition of steroid receptor folding complexes and on receptor function with important implications for steroid receptor physiology.  相似文献   

12.
S Sadis  L E Hightower 《Biochemistry》1992,31(39):9406-9412
The mammalian 70-kilodalton heat shock cognate protein (Hsc70) is an abundant, cytosolic molecular chaperone whose interactions with protein substrates are regulated by ATP hydrolysis. In vitro, purified Hsc70 was found to have a slow, intrinsic ATPase activity in the absence of protein substrates. The addition of an unfolded protein such as apocytochrome c stimulated ATP hydrolysis 2-3-fold. In contrast, the native holoprotein, cytochrome c, did not stimulate the ATPase rate, in accord with recent observations that 70-kilodalton heat shock proteins interact selectively with unfolded proteins. Stimulation of ATP hydrolysis by apocytochrome c was due to an increase in the Vmax, with no effect on the Km for ATP. Following hydrolysis of [3H]ATP, a relatively stable [3H]ADP.Hsc70 complex was formed. Release of [3H]ADP from Hsc70 was most efficient in the presence of other nucleotides such as ADP or ATP, suggesting that ADP release occurs as an ADP/ATP exchange reaction. The loss of radiolabeled ADP from Hsc70 in the presence of exogenous nucleotides followed first-order kinetics. In the presence of nucleotides, apocytochrome c induced a 2-fold increase in the rate of ADP release from Hsc70. Moreover, rate constants of the nucleotide exchange reaction measured in the absence and presence of apocytochrome c (0.16 and 0.34 min-1, respectively) closely matched the kcat values derived from ATP hydrolysis measurements (0.15 and 0.38 min-1, respectively). The results suggest that ADP release in a rate-limiting step in the Hsc70 ATPase reaction and that unfolded proteins stimulate ATP hydrolysis by accelerating the rate of ADP/ATP exchange.  相似文献   

13.
A model structure of the Hsc70/auxilin complex has been constructed to gain insight into interprotein substrate transfer and ATP hydrolysis induced conformational changes in the multidomain Hsc70 structure. The Hsc70/auxilin system, which is a member of the Hsp70/Hsp40 chaperone system family, uncoats clathrin-coated vesicles in an ATP hydrolysis-driven process. Incorporating previous results from NMR and mutant binding studies, the auxilin J-domain was docked into the Hsc70 ATPase domain lower cleft using rigid backbone/flexible side chain molecular dynamics, and the Hsc70 substrate binding domain was docked by a similar procedure. For comparison, J-domain and substrate binding domain docking sites were obtained by the rigid-body docking programs DOT and ZDOCK, filtered and ranked by the program ClusPro, and relaxed using the same rigid backbone/flexible side chain dynamics. The substrate binding domain sites were assessed in terms of conserved surface complementarity and feasibility in the context of substrate transfer, both for auxilin and another Hsp40 protein, Hsc20. This assessment favors placement of the substrate binding domain near D152 on the ATPase domain surface adjacent to the J-domain invariant HPD segment, with the Hsc70 interdomain linker in the lower cleft. Examining Hsc70 interdomain energetics, we propose that long-range electrostatic interactions, perhaps due to a difference in the pKa values of bound ATP and ADP, could play a major role in the structural change induced by ATP hydrolysis. Interdomain electrostatic interactions also appear to play a role in stimulation of ATPase activity due to J-domain binding and substrate binding by Hsc70.  相似文献   

14.
Molecular chaperones influence the process of protein folding and, under conditions of stress, recognize non-native proteins to ensure that misfolded proteins neither appear nor accumulate. BAG-1, identified as an Hsp70 associated protein, was shown to have the unique properties of a negative regulator of Hsp70. Here, we demonstrate that BAG-1 inhibits the in vitro protein refolding activity of Hsp70 by forming stable ternary complexes with non-native substrates that do not release even in the presence of nucleotide and the co-chaperone, Hdj-1. However, the substrate in the BAG-1-containing ternary complex does not aggregate and remains in a soluble intermediate folded state, indistinguishable from the refolding-competent substrate-Hsp70 complex. BAG-1 neither inhibits the Hsp70 ATPase, nor has the properties of a nucleotide exchange factor; instead, it stimulates ATPase activity, similar to that observed for Hdj-1, but with opposite consequences. In the presence of BAG-1, the conformation of Hsp70 is altered such that the substrate binding domain becomes less accessible to protease digestion, even in the presence of nucleotide and Hdj-1. These results suggest a mechanistic basis for BAG-1 as a negative regulator of the Hsp70-Hdj-1 chaperone cycle.  相似文献   

15.
The stress response in injured brain is well characterized after experimental ischemic and traumatic brain injury (TBI); however, the induction and regulation of the stress response in humans after TBI remains largely undefined. Accordingly, we examined injured brain tissue from adult patients (n = 8) that underwent emergent surgical decompression after TBI, for alterations in the inducible 72-kDa heat shock protein (Hsp70), the constitutive 73-kDa heat shock protein (Hsc70), and isoforms of the chaperone cofactor BAG-1. Control samples (n = 6) were obtained postmortem from patients dying of causes unrelated to CNS trauma. Western blot analysis showed that Hsp70, but not Hsc70, was increased in patients after TBI versus controls. Both Hsp70 and Hsc70 coimmunoprecipitated with the cofactor BAG-1. The 33 and 46, but not the 50-kDa BAG-1 isoforms were increased in patients after TBI versus controls. The ratio of the 46/33-kDa isoforms was increased in TBI versus controls, suggesting negative modulation of Hsp70/Hsc70 protein refolding activity in injured brain. These data implicate induction of the stress response and its modulation by the chaperone cofactor and Bcl-2 family member BAG-1, after TBI in humans.  相似文献   

16.
Hsp105alpha is a mammalian member of the HSP105/110 family, a diverged subgroup of the HSP70 family. Hsp105alpha associates with Hsp70/Hsc70 as complexes in vivo and regulates the chaperone activity of Hsp70/Hsc70 negatively in vitro and in vivo. In this study, we examined the mechanisms by which Hsp105alpha regulates Hsc70 chaperone activity. Using a series of deletion mutants of Hsp105alpha and Hsc70, we found that the interaction between Hsp105alpha and Hsc70 was necessary for the suppression of Hsc70 chaperone activity by Hsp105alpha. Furthermore, Hsp105alpha and deletion mutants of Hsp105alpha that interacted with Hsc70 suppressed the ATPase activity of Hsc70, with the concomitant appearance of ATPase activity of Hsp105alpha. As the ATPase activity of Hsp70/Hsc70 is essential for the efficient folding of nonnative protein substrates, Hsp105alpha is suggested to regulate the substrate binding cycle of Hsp70/Hsc70 by inhibiting the ATPase activity of Hsp70/Hsc70, thereby functioning as a negative regulator of the Hsp70/Hsc70 chaperone system.  相似文献   

17.
To test the temperature sensitivity of molecular chaperones in poikilothermic animals, we purified the molecular chaperone Hsc70 from 2 closely related notothenioid fishes--the Antarctic species Trematomus bernacchii and the temperate New Zealand species Notothenia angustata--and characterized the effect of temperature on Hsc70 adenosine triphosphatase (ATPase) activity. Hsc70 ATPase activity was measured using [alpha-32P]-adenosine triphosphate (ATP)-based in vitro assays followed by separation of adenylates by thin-layer chromatography. For both species, a significant increase in Hsc70 ATPase activity was observed across a range of temperatures that was ecologically relevant for each respective species. Hsc70 from T bernacchii hydrolyzed 2-fold more ATP than did N angustata Hsc70 at 0 degrees C, suggesting that the Antarctic molecular chaperone may be adapted to function more efficiently at extreme cold temperatures. In addition, Q10 measurements indicate differential temperature sensitivity of the ATPase activity of Hsc70 from these differentially adapted fish that correlates with the temperature niche inhabited by each species. Hsc70 from T bernacchii was relatively temperature insensitive, as indicated by Q10 values calculated near 1.0 across each temperature range measured. In the case of Hsc70 purified from N angustata, Q10 values indicated thermal sensitivity across the temperature range of 0 degrees C to 10 degrees C, with a Q10 of 2.714. However, Hsc70 from both T bernacchii and N angustata exhibited unusually high thermal stabilities with ATPase activity at temperatures that far exceeded temperatures encountered by these fish in nature. Overall, as evidenced by in vitro ATP hydrolysis, Hsc70 from T bernacchii and N angustata displayed biochemical characteristics that were supportive of molecular chaperone function at ecologically relevant temperatures.  相似文献   

18.
Hsc66, a stress-70 protein, and Hsc20, a J-type accessory protein, comprise a newly described Hsp70-type chaperone system in addition to DnaK-DnaJ-GrpE in Escherichia coli. Because endogenous substrates for the Hsc66-Hsc20 system have not yet been identified, we investigated chaperone-like activities of Hsc66 and Hsc20 by their ability to suppress aggregation of denatured model substrate proteins, such as rhodanese, citrate synthase, and luciferase. Hsc66 suppressed aggregation of rhodanese and citrate synthase, and ATP caused effects consistent with complex destabilization typical of other Hsp70-type chaperones. Differences in the activities of Hsc66 and DnaK, however, suggest that these chaperones have dissimilar substrate specificity profiles. Hsc20, unlike DnaJ, did not exhibit intrinsic chaperone activity and appears to function solely as a regulatory cochaperone protein for Hsc66. Possible interactions between the Hsc66-Hsc20 and DnaK-DnaJ-GrpE chaperone systems were also investigated by measuring the effects of cochaperone proteins on Hsp70 ATPase activities. The nucleotide exchange factor GrpE did not stimulate the ATPase activity of Hsc66 and thus appears to function specifically with DnaK. Cross-stimulation by the cochaperones Hsc20 and DnaJ was observed, but the requirement for supraphysiological concentrations makes it unlikely that these interactions occur significantly in vivo. Together these results suggest that Hsc66-Hsc20 and DnaK-DnaJ-GrpE comprise separate molecular chaperone systems with distinct, nonoverlapping cellular functions.  相似文献   

19.
Tutar Y  Song Y  Masison DC 《Genetics》2006,174(2):851-861
Hsp70's are highly conserved essential protein chaperones that assist protein folding and prevent protein aggregation. They have modular structures consisting of ATPase, substrate-binding, and C-terminal domains. Substrate binding and release is regulated by ATP hydrolysis and nucleotide exchange, which in turn are regulated by cochaperones. Eukaryotes have constitutive (Hsc70) and stress-inducible (iHsp70) isoforms, but their functions have not been systematically compared. Using a yeast system to evaluate heterologous Hsp70's we find that primate Hsc70 supported growth but iHsp70 did not. Plant Hsc70 and iHsp70 counterparts behaved similarly, implying evolutionary conservation of this distinction. Swapping yeast and primate Hsp70 domains showed that (i) the Hsc70-iHsp70 distinction resided in the ATPase domain, (ii) substrate-binding domains of Hsp70's within and across species functioned similarly regarding growth, (iii) C-terminal domain function was important for growth, and (iv) Hsp70 functions important for cell growth and prion propagation were separable. Enzymatic analysis uncovered a correlation between substrate affinity and prion phenotype and showed that ATPase and protein-folding activities were generally similar. Our data support a view that intrinsic activities of Hsp70 isoforms are comparable, and functional differences in vivo lie mainly in complex interactions of Hsp70 with cochaperones.  相似文献   

20.
Hsp70 family members together with their Hsp40 cochaperones function as molecular chaperones, using an ATP-controlled cycle of polypeptide binding and release to mediate protein folding. Hsp40 plays a key role in the chaperone reaction by stimulating the ATPase activity and activating the substrate binding of Hsp70. We have explored the interaction between the Escherichia coli Hsp70 family member, DnaK, and its cochaperone partner DnaJ. Our data show that the binding of ATP, subsequent conformational changes in DnaK, and DnaJ-stimulated ATP hydrolysis are all required for the formation of a DnaK-DnaJ complex as monitored by Biacore analysis. In addition, our data imply that the interaction of the J-domain with DnaK depends on the substrate binding state of DnaK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号