首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydroxyurea was used to study the proliferation rate of haemopoietic stem cells (CFUs) in normal mice, after irradiation or transplantation into irradiated recipients. It was demonstrated that the proliferation rated of endogenous CFUs (endo-CFUs) and exogenous CFUs (exo-CFUs) are identical. After irradiation (650 R) the surviving endo-CFUs begin to proliferate immediately. By contrast exo-CFUs transplanted into the irradiated recipient mouse (850 R), begin to proliferate only after about 30 hr. However, injection of isoproterenol (which stimulates adenyl cyclase) or dibutyryl cyclic adenosin 3',5'-monophosphate shortly after marrow cell graft, triggers the transplanted CFUs into cell cycle as shown by an almost immediately increased sensitivity to hydroxyurea. Isoproterenol is capable of inducing DNA synthesis also in stem cells of normal mice but it takes about 20 hr before CFUs become to be increasingly sensitive to hydroxyurea.  相似文献   

2.
Hydroxyurea injection kills only approximately 10% of CFU, which are in the S phase of the cell cycle. In mice given a single injection of hydroxyurea CFUs in the femur decreased only about 50% in 2–4 days after hydroxyurea, and then started to return to normal levels with an overshoot evident after the eighth day after hydroxyurea. CFUs in spleens of mice given a single injection of hydroxyurea show an evident overshoot as early as 3 days after the drug, reaching levels which are about 300% of normal. CFUs from blood disappear rapidly, but equally rapidly return to normal values followed by a significant overshoot. the radioresistance of mice increased up to 4 days after hydroxyurea.  相似文献   

3.
The ability of protaglandins E1 and E2 to stimulate the proliferation of haemopoietic stem cells (CFUs) was studied in vivo. PGE2, in a dose range of 10-4 to 10-1μg/g body weight and PGE1 in a dose range of 10-5 to 10-1μg/g body weight, produced a rapid cycling wave of CFUs. The increase in the number of CFUs in S phase was not followed by a rise in the femoral CFUs content, and except for a transient increase in femoral CFUc level, no increase in differentiation was found either. Therefore, it is proposed that haemopoiesis after PG-induced CFU stimulation is ineffective. PGE2 did not stimulate regeneration of CFUs in a perturbed state (after sublethal irradiation). All these findings support the idea that PGEs might represent potent stimulators of the haemopoietic stem cells acting in physiological doses. However, if acting concurrently with physiological control systems PGs lead to ineffective haemopoiesis (under normal conditions) or do not exert any measurable effect (after sublethal irradiation).  相似文献   

4.
The extent of bone marrow damage caused by the administration of single or repeated doses of either hydroxyurea (1000 mg/kg b.w.) or colchicine (1 mg/kg b.w.) are comparable. This conclusion is based on serial studies of bone marrow cellularity and of the CFUc numbers in the bone marrow. the proliferation response of the pluripotential haemopoietic stem cells, determined by the cells forming colonies in the spleen of lethally irradiated mice (CFUs) markedly differs if the bone marrow damage is caused by hydroxyurea or colchicine. While hydroxyurea administration stimulates a large proportion of the resting G0 cells into the cell cycle, the damage induced by colchicine is followed by only a mild increase in the CFUs proliferation rate. The seeding efficiency of the spleen colony technique has been determined after both hydroxyurea and colchicine administration. This parameter, important for the estimation of the number of the pluripotential haemopoietic stem cells in blood forming organs, is significantly affected by hydroxyurea administration, but also by repeated injections of colchicine. Following a single dose of hydroxyurea, the time-course of the CFUs numbers, which were corrected for the change in the seeding efficiency, shows an overshoot occurring after 18–20 hr. At the other time periods, the number of pluripotential haemopoietic stem cells is little affected by a single hydroxyurea injection. This poses a question about the nature of the stimulus, which after hydroxyurea administration triggers the CFUs from the resting G0 state into the cell cycle. There is evidence that this stimulus is probably not represented by the damage caused to the various intensively proliferating cell populations of the bone marrow. This evidence is based on experiments which show that colchicine induced damage, of a degree similar to that after hydroxyurea, does not stimulate the CFUs proliferation rate to an extent comparable to hydroxyurea. The possibility that colchicine could block CFUs in the G0 state or that it could interfere with the progress of CFUs through the G1 and S phases of the cell cycle have been ruled out by experiments which demonstrated that colchicine (1 mg/kg b.w.), administered 10 min before hydroxyurea, does not reduce the number of CFUs triggered into the cell cycle as the consequence of hydroxyurea administration.  相似文献   

5.
Haemopoiesis continued for over 2 months in organ culture of embryonal mouse liver, and haemopoietic stem cells (CFUs) capable of DNA-synthesis were found in it all that time. Between the 10th and 40th day the number of stem cells in the culture was sustained in a steady state. Both in normal and in regenerating adult bone marrow haemopoiesis ceased within a short time in the culture. Induction of proliferation in haemopoietic stem cells combined with undamaged or improved micro-environment resulted in a little better maintenance of CFUs in the adult bone marrow culture, The results are discussed in the light of current concepts of haemopoietic stem cell regulation.  相似文献   

6.
Abstract In the early periods (7–9 days) after haemopoietic cell injection, colonies produced by CFU-s and by their progeny are identified in the spleen, while at later periods (11 days after injection) only spleen nodules produced by CFU-s persist. the increase in the suicide values of CFU-s after sublethal (2 Gy) irradiation of mice is associated with a higher proliferation rate of precursors of transitory spleen colonies, but not of CFU-s, as measured by different suicide techniques. During the log-phase of cell growth in a lethally irradiated recipient, the injected CFU-s and CFU-tr proliferate at a higher rate. Active proliferation of CFU-s and CFU-tr has been demonstrated in long-term bone-marrow cultures by the hydroxyurea in-vitro suicide assay. CFU-tr may be the cause of artifactual effects during measurement of haemopoietic stem-cell cycling by CFU-s suicide methods.  相似文献   

7.
Data obtained after various types of partial body irradiation support the concept of a small rapidly exchangeable pool of CFUs, which seems to be exhausted rapidly after irradiation. The depletion of this pool is the most plausible explanation for the decrease in stem cell migration observed 3 hr after exposure in C3H mice. After partial body irradiation the size of the rapidly mobilizable pool is reduced in proportion to the areas of bone marrow irradiated. When only one marrow area is shielded, the recovery of this pool does not occur during the first 24 hr after exposure.  相似文献   

8.
ABSTRACT In the Chinese hamster, 17 days, i. e. one cycle of the seminiferous epithelium, after two injections of [3H]TdR given 24 hr apart, labelled cells were found among all types of spermatogonia, including stem cells (As). These labelled As spermato-gonia derive from one or more self-renewing divisions of the stem cells that originally incorporated [3H]TdR. In the steady state, half of the divisions of the As will be self-renewing and the other half will give rise to Apr spermatogonia that will ultimately become spermatozoa. Theoretically, the labelling index (LI) after 17 days will be similar to that after 1 hr, and in this study twice as high as for the 1-hr interval since only one injection was given. However, experimental values only half that of the theoretical LI were found after 17 days. the following causes for the loss of labelled stem cells are discussed: (1) dilution of label because of division; (2) influx of unlabelled components of false pairs (i. e. newborn stem cells that still have to migrate away. mostly during G1, from their sister cells and are scored as Apr spermatogonia) between 1 hr and 17 days; (3) the existence of long- and short-cycling stem cells, probably combined with preferential differentiation of the short-cycling elements; (4) selective segregation of DNA at stem cell mitosis; and (5) irradiation death of radiosensitive labelled stem cells. As it is not impossible that factors 1, 2, 4 and 5 together account for the total loss of labelled stem cells, LI results do not provide evidence for the existence of separate classes of short- and long-cycling stem cells. The distributions of the LIs of the As, Apr and Aal spermatogonia over the stages of the epithelial cycle at 17 days are similar to those at 1 hr after injection. Hence the regulatory mechanisms that govern the stimulation and inhibition of proliferation of As that give rise to new As for the next epithelial cycle are similar to those of the As that will divide into Apr spermatogonia during the same epithelial cycle. Grain counts revealed that more [3H]TdR is incorporated into As, Apr and Aal spermatogonia that are in S phase during epithelial stages X-IV than in stages V-IX.  相似文献   

9.
The haemopoietic tissue of mice was damaged by different cell-cycle-stage specific and cell-cycle-stage non-specific cytostatic agents. The proliferation rate among the surviving pluripotential stem cells, i.e. those cells forming colonies in spleens of lethally irradiated mice (CFUs), was then investigated. The results suggest that, at least in the CFUs population, the cells which synthesize DNA in the S phase of the cell cycle inhibit the entry of the non-proliferating G0 cells into cell cycle. This evidence was based on the ability of three cytostatic agents, hydroxyurea, cytosine arabinoside and methotrexate, which are toxic specifically to the S phase cells to increase the proliferation in the CFUs population. This increase was quite out of proportion to the small amount of damage they caused to the population. Colchicine, which kills cells in mitosis, and ionizing irradiation, damaging cells in all stages, proved to be much weaker stimulators of proliferation. It has been suggested that a mechanism for the control of cellular proliferation might be based on the negative feedback in the cell cycle. In this feedback control loop the cells which are preparing for cell division in the S phase of the cell cycle inhibit the entry of the non-proliferating G0 cells into cell cycle.  相似文献   

10.
Regulation of the proliferation of transplanted colony forming units (CFUs) was investigated in lethally irradiated mice, pretreated by methods known to accelerate hemopoietic recovery after sublethal irradiation. Prospective recipients were exposed to either hypoxia, vinblastine or priming irradiation and at different intervals thereafter lethally irradiated and transplanted with bone marrow. Repopulation of CFUs was determined by counting the number of splenic colonies in primary recipients or by retransplantation. Regeneration of grafted CFUs was greatly accelerated and their self-renewal capacity increased in mice grafted within two days after hypoxia. Also the number of splenic colonies formed by grafted syngeneic CFUs as well as by C57BL parent CFUs growing in BC3F1 hosts was significantly increased. The effect was not dependent on the seeding efficiency of CFUs and apparently resulted from hypoxia induced changes in the hosts physiological environment. Proliferative capacity of grafted CFUs increased remarkably in hosts receiving vinblastine two or four days prior to irradiation. Priming irradiation given six days before main irradiation accelerated, given two days before impaired regeneration of CFUs. The increased rate of regeneration was not related to the cellularity of hemopoietic organs at the time of transplantation. The growth of CFUs in diffusion chambers implanted into posthypoxic mice was only slightly improved which does indicate that the accelerated regeneration of CFUs in posthypoxic mice is mainly due to the changes in the hemopoietic microenvironment. A short conditioning of transplanted CFUs by host factor(s) was sufficient to improve regeneration. The results might suggest that the speed of hemopoietic regeneration depends on the number of CFUs being induced to proliferate shordy after irradiation, rather than on the absolute numbers of CFUs available to the organism.  相似文献   

11.
Low dose (80 μg/kg) Actinomycin D (AD) produced a significant but transient inhibition of proliferation of the haemopoietic stem cells (CFUs) in chimaeras or in mice regenerating after sublethal irradiation. The same dose of AD had no effect on the resting CFUs population. During the period of proliferation inhibition, CFUs proved to be insensitive to the killing effect of [3H]thymidine in vitro and hydroxyurea (HU) in vivo. In Ehrlich ascites tumour (EAT) bearing mice enhanced CFUs turnover rate was found. Eighty μg/kg AD produced a selective effect in these mice: it protected the proliferating CFUs population without diminishing the effect of hydroxyurea on the tumour cells.  相似文献   

12.
REGULATION OF HUMAN MYELOPOIESIS BY PROSTAGLANDIN E AND LACTOFERRIN   总被引:3,自引:0,他引:3  
Studies on human myeloid stem cell proliferation indicate that progenitor cell populations committed to monocytoid differentiation are preferentially inhibited by prostaglandin E (PGE). the addition of PGE but not PGF to day 7 CFUGM cultures upon initiation results in the dose-dependent inhibition of total colony and cluster formation. Morpholigical analysis of proliferating clones demonstrates that the effect of PGE on total colony and cluster formation results from the selective inhibition of monocyte-macrophage colony forming cells. Mixed monocytoid/neutrophil colony formation was markedly less sensitive and neutrophil and eosinophil colony formation essentially insensitive to the inhibitory effects of PGE. the inhibition of monocytoid colony formation by PGE1 extends equally well to day 13 CFUGM, but not to CFUGM in suspension culture. the observed effects of PGE1 on monocytoid committed pre-CFUGM and day 7 and day 14 CFUGM indicate that sensitivity to inhibition by PGE increases with progenitor cell maturity. Specificity analysis indicates that prostaglandins of the E series (PGE1, PGE2) are by far the most active naturally occurring prostanoate compounds inhibiting CFUGM proliferation. The addition of iron saturated lactoferrin to liquid cultures of human peripheral blood monocytes, inclusion into mononuclear cell feeder layers or addition to agar cultures proliferating in response to endogenously produced CSFs, results in the equivalent inhibition of CSFs necessary for day 7 and day 14 monocytoid and/or neutrophil and eosinophil colony and cluster formation. These results indicate roles for PGE and lactoferrin in myeloid stem cell regulation in vitro and suggest that they may serve as physiological regulators of granulocyte and monocyte proliferation.  相似文献   

13.
Altered haematopoiesis in the femoral marrow was observed in mice bearing the Lewis lung carcinoma (LLca). During tumour growth, a marked reduction was observed in the myeloperoxidase-positive cells (granulocytes) of the marrow 7 days after inoculation of the LLca tumour reaching a nadir (17% of control) by day 28. Accompanying this suppression of mature white cells was a gradual expansion of the CFUc-GM compartment followed by an increase in the number of femoral CFUs. Humoral-stimulating activity (HSA) increased through day 14 in the serum of these animals; then returned to control levels by day 28. During this same interval, the more primitive erythroid progenitor (BFUe) compartment expanded to 168% of control, while the more differentiated (CFUe) compartment was reduced (45% of control at day 28). Reductions in both 59Fe-incorporation and erythroblasts/femur confirmed the suppression of erythroid differentiation in marrow during tumour growth. Similar results were observed following the daily injection (188 mg equivalent dose; q 24 hr × 10) of the supernatant prepared from LLca tissue. Marked differences were observed between the response of the spleen and the marrow to the supernatant. the data suggest that the growth of the LLca tumour results in a dissociation of the normal continuity of haematopoietic steady-state differentiation in the marrow of tumour-bearing animals.  相似文献   

14.
Abstract. Hydroxyurea (HU) injected into experimental mice increases the proliferation rate of the pluripotent haemopoietic stem cells (CFUs). This effect can be enhanced if hydroxyurea is administered in two doses, separated by 2 hr. The effect does not seem to be caused by more extensive bone marrow damage.  相似文献   

15.
The capacity of NZB stem cells to proliferate in vivo was evaluated in two systems which required repopulation of peripheral organs. In both types of depletion systems, stem-cell repopulation after cyclophosphamide treatment or adoptive transfer repopulation in lethally irradiated hosts, it was found that NZB stem cells were hyperproliferating. The increase in proliferating cells was most pronounced in the spleens of NZB mice treated with high-dose cyclophosphamide and in lethally irradiated F1 mice reconstituted with NZB T-cell-depleted bone marrow. Thus, upon a stimulus to repopulate, NZB marrow stem cells will hyperproliferate in peripheral organs resulting in an increase in cell number. The abnormality in the marrow cells can be observed in young NZB mice when their marrow cells are in an environment which requires recovery and division.  相似文献   

16.
Abstract. Analysis of the mouse haemopoietic stem cell (CFUs) kinetics after hydroxyurea administration has provided an in vivo assay suitable for detection of factors which inhibit recruitment of non-proliferating G0-CFUs into cell cycle, or transit of CFU's through the G1 phase. Using this assay, it has been demonstrated that plasma obtained from mice which had received hydroxyurea approximately 12–14 hr previously, possesses a factor which inhibited the triggering of CFUs into the cell cycle. The appearance of this CFUs proliferation inhibitor occurred at a time when 60–70% of the CFUs were synchronized in the S phase of the cell cycle, as a consequence of hydroxyurea action. Some basic properties of the inhibitor were investigated.  相似文献   

17.
Abstract Migration of 51Cr-labelled T cells from irradiated mice into lymph nodes of syngeneic unirradiated recipients decreased in a dose-dependent fashion. Influx of labelled T cells between 4 and 24 hr after injection (secondary migration) is more radiosensitive than lymph-node migration of T cells in the first 4 hr (primary migration). Treatment of T cells from irradiated mice in vitro with Con A or with trypsin does not enhance radiation-induced alteration of their migratory properties, but irradiation enhances the effects of Con A and trypsin on T-cell migration. Recovery of primary migration of irradiated T cells is completed 3 months after irradiation; it is probably caused by T-cell renewal. the defect of T-cell secondary migration is more stable: it remains 6 months after irradiation in a dose of 4 Gy. Post-irradiation defects of the T-cell differentiation process as a cause of long-lasting alteration of T-cell secondary migration are discussed.  相似文献   

18.
The effect of RBC transfusion and erythropoietin (EPO) on the proliferation of immature erythrocyte progenitors was studied in the spleens of RBC transfused, lethally irradiated mice injected with bone marrow. Transfusion decreased expansion of the progenitors and slowed their proliferation: the mean cycle time as measured by per cent labelled mitosis (PLM) on the third day after injection of bone marrow was 10.7 hr in transfused as compared to 5.6 hr in non-transfused mice. One injection of five units of erythropoietin on day 2 decreased the mean cycle time to 7.3 hr in transfused mice and increased expansion of the progenitor cells. The effects of erythropoietin on cell proliferation were prompt: a significant increase of incorporation of 3H-TdR into DNA occurred within 2 hr of injection. Erythroblasts were absent from the spleens of transfused, irradiated bone marrow injected mice; however, erythroblasts appeared by 72 hr and 48 hr following EPO injection either 2 days or 5 days after transplantation respectively. Increased uptake of radioactive iron in spleen after erythropoietin injection preceded the appearance of erythroblasts by 2 and 1 days when erythropoietin was injected either 2 or 5 days after marrow transplantation respectively. The increase in cellular proliferation induced by erythropoietin in transfused irradiated mice injected with bone marrow equivalent to 0.35 femoral shaft was manifested as an increase of the total DNA content in the spleen by 119 μg (11.9 × 106 cells) within 48 hr of injection. The cellular increment produced by EPO injection on day 5 to mice given 0.05 femoral shaft consisted mainly of undifferentiated mononuclear cells, most of which were labelled, with erythroblasts comprising only one quarter of the increment. Erythropoietin inactivated by mild acid hydrolysis failed to increase cellular proliferation.  相似文献   

19.
Planarians are well known for their remarkable regenerative capacity. This capacity to regenerate is thought to be due to the presence of totipotent somatic stem cells known as ‘neoblasts’, which have particular morphological characteristics. The totipotency of neoblasts was supported by Baguñà's experiment, which involved the introduction of donor cells into irradiated hosts. However, since Baguñà's experiment did not include the use of a phenotypic marker, the donor cells could not be traced. In the current study, a genetic mutant planarian, menashi, an eye‐defective mutant that lacks the pigmented area in the eyes, was established. This planarian is excellent for tracing the fate of cells after their introduction into irradiated hosts. To investigate the differentiation potency more directly, a neoblast‐rich fraction obtained from normal worms was transplanted into an X‐ray‐irradiated menashi strain. Planarians that survive X‐ray irradiation were developed, and we observed the pigment of the area in the eyes of the regenerating planarians. This result suggests that the neoblast‐rich fraction contains cells that can proliferate and differentiate. These cells can replace the cells and structures lost by X‐ray irradiation and ablation, and they can also differentiate into eye pigment cells.  相似文献   

20.
THE ROLE OF BONE MARROW OF X-IRRADIATED MICE IN THYMIC RECOVERY   总被引:1,自引:0,他引:1  
The influence of the bone marrow on the repopulation of the thymus in X-irradiated mice has been investigated.
It was observed that the thymus and a certain population of bone marrow lymphocytic cells were repopulated in parallel in a cyclic fashion. This occurred either after a single exposure of mice to 400 R or after serial weekly X-ray treatments with 170 R. Lethally irradiated recipients which were grafted with bone marrow cells obtained 12-24 days after four weekly irradiations of donor mice with 170 R also exhibited a cyclic repopulation of both the thymus and the bone marrow lymphocytic population. In contrast, mice which were transplanted with bone marrow cells from unirradiated donors, containing an equal number of stem cells (CFU), exhibited a continuous rather than a cyclic recovery of both cell populations. the bone marrow stem cells of mice recovering from X-irradiation were found to have a decreased proliferative activity, since they produced significantly smaller spleen colonies in lethally irradiated recipients than marrow cells from unirradiated mice.
The results were interpreted as indicating that the bone marrow lymphocytic cells may act as thymic precursor cells and that thymic lymphopoiesis is dependent on the presence of such cells. Evidently, the production of lymphocytic cells will decrease when the stimulus for granulocyte production increases due to the limited proliferative activity of the surviving bone marrow stem cells after irradiation. This may result in a cyclic variation of the production of bone marrow lymphocytic cells and it follows that thymic lymphopoiesis will run parallel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号