首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Diacetyl reductase from Kluyveromyces marxianus NRRL Y-1196 was purified 27.5-fold with a yield of 13% by ammonium sulphate fractionation, DEAE-anion exchange chromatography, hydroxyapatite chromatography and chromatofocusing. The purified enzyme was most active at pH 7.0 and exhibited optimal activity at 40°C. The K m and V max values for diacetyl were 2.5 mmol 1-1 and 0.026 mmol 1-1 min-1, respectively. The enzyme did not react with monoaldehydes or monoketones, but reduced acetoin, diacetyl and methylglyoxal with NADH as a cofactor. The enzyme had an isoelectric point (pl) of pH 5.8, and its molecular weight was 50 kDa.  相似文献   

2.
A Curvularia sp. isolated from soil was found to produce extracellular β-glucosidase activity when grown in yeast extract, peptone, carboxymethylcellulose (YPC) medium. An initial medium pH of 6·5 and cultivation temperature of 30°C were found to be most suitable for high enzyme productivity. The pH and temperature optima for the enzyme were 4·0 and 70°C, respectively. Under these conditions, the enzyme exhibited a Km (0-nitrophenyl-β- d -glucoside) value of 0.20 mmol/l. Several divalent metal ions inhibited enzyme activity at high concentration. EDTA. also inhibited β-glucosidase activity.  相似文献   

3.
Extracellular products (ECP) secreted from Aeromonas hydrophila with haemolytic andproteolytic activity were studied with respect to temperature and time of incubation as well as thelethal toxicity on tilapia, Tilapia nilotica . The highest production of the haemolysin productwas achieved when Aer. hydrophila was grown at 35°C for 30 h. Tilapia erythrocytewas found to be more susceptible than sheep erythrocyte for determining the haemolytic activity.The haemolytic activity against tilapia erythrocyte was completely inactivated after heating theECP at 60°C for 10 min or 55°C for 15 min. The proteolytic activity was maximized whenthe bacterium was grown at 30°C for 36 h. Complete inactivation of the protease enzyme wasperformed after heating the ECP at 80°C for 10 min or 70°C for 15 min. Aeromonashydrophila was found to produce haemolytic and proteolytic exotoxin lethal to tilapia (LD50 2·1 × 104 cell/fish), as well as heat stable unknown virulent factors thatwere responsible for 20% mortality. The lethality of ECP was decreased by heating andcompletely inactivated by boiling at 100°C for 10 min.  相似文献   

4.
Thermotolerant Kluyveromyces marxianus var. marxianus IMB3 yeast strain was immobilized on Kissiris (mineral glass foam derived from lava) in column packed reactors, and used for ethanol production from glucose or molasses under continuous culture conditions at temperatures between 40 and 50°C. Both ethanol yield and fermentation efficiency were highest at 45°C and a dilution rate (D) of 0.15/h. Increasing sugar concentration led to an increase in ethanol yield of up to 68.6 and 55.9 g/l on approx. 200g glucose or molasses, respectively. Optimum fermentation efficiency (experimental yields over theoretical maximum yields) however was at about 15% sugar for both glucose and molasses. Slight aeration (25 ml of air/min) through the medium addition line was found advantageous due to its mixing effect and probable maintenance of activity.  相似文献   

5.
A net purification of 9·46-, 18·6- and 16·7-fold for filter paper (FP) hydrolytic activity, carboxymethyl (CM) cellulase and β-glucosidase, respectively was achieved through ion exchange and gel chromatographies. The purified enzyme preparation showed an optimal pH of 5·0 for CM cellulase and 5·5 for the other two components. The enzyme activities increased up to 60°–65°C for the three enzyme components and they were stable at 30° or 40°C and pH 4·5 to 5·0 after 20–30 min treatment. The four enzyme components, that is, two FP activities (unadsorbed and adsorbed), a CM cellulase and a β-glucosidase, had Km values of 47·6 mg, 33·3 mg, 4·0 mg and 0·18 mmol/l with V max of 4, 1·28, 66·5 and 1·28 units per mg protein. The molecular weights as determined with SDS-PAGE were found to be 44000, 38000, 55000 and 63000 for the above four enzyme components in the same sequence. A distinct type of synergistic action was observed between these components by their action on dewaxed cotton. Glycerol at 1% strongly repressed the formation of all the cellulolytic enzymes. The role of proteolytic enzymes in in vitro inactivation of cellulases was not apparent.  相似文献   

6.
Lactobacillus amylovorus ATCC 33621 is an actively amylolytic bacterial strain which produces a cell-bound glucoamylase (EC 3.2.1.3). Conditions of growth and glucoamylase production were investigated using dextrose-free de Man-Rogosa-Sharpe (MRS) medium in a 1.5 I fermenter, with varying dextrin concentration (0.1–1.5% (w/v)), pH (4.5–6.5) and temperature (25–55°C). Cell extracts were prepared by subjecting cells to treatment with a French Pressure cell in order to release intracellular proteins. Glucoamylase activity was then assayed. The effects of pH (4.0–9.0), temperature (15–85°C) and substrate (dextrin and starch, 0–2% w/v) concentration on crude enzyme activity were investigated. Optimal growth was obtained in MRS medium containing 1% (w/v) dextrin, at pH 5.5 and 37°C. Glucoamylase production was maximal at the late logarithmic phase of growth, during 16–18 h. Crude enzyme had a pH optimum of 6.0 and temperature optimum of 60°C. With starch as the substrate, maximal activity was obtained at a concentration of 1.5% (w/v). The effects of ions and inhibitors on glucoamylase activity were also investigated. Enzyme activity was not significantly influenced by Ca2+ and EDTA at 1 mmol 1−1 concentration; however Pb2+ and Co2+ were found to inhibit the activity at concentrations of 1 mmol 1−1. The crude enzyme was found to be thermolabile when glucoamylase activity decreased after about 10 min exposure at 60°C. This property can be exploited in the brewing of low calorie beers where only mild pasteurization treatments are used to inactivate enzymes. The elimination of residual enzyme effect would prevent further maltodextrin degradation and sweetening during long-term storage, thus helping to stabilize the flavour of beer.  相似文献   

7.
The upper limiting temperature of growth of Staphylococcus aureus MF31 in heart infusion broth (HI) was about 44°C but addition of monosodium glutamate (MSG) and soy sauce permitted the organism to grow above this temperature. This effect is similar to that of NaCl. Tomato ketchup, Worcestershire and HP sauces added to HI did not allow growth at the non-permissive temperature of 46°C but death was delayed. Staphylococcus aureus died in unsupplemented chicken meat slurry at 46°C but grew at 48°C in slurry supplemented with 5.8% NaCl and survived incubation for 18 h at 50°C in slurry supplemented with 5.8% NaCl and 5% MSG. Cultures grown at 37°C had a D 60 value of 2 min in 50 mmol/l Tris (pH 7.2) buffer. Cultures grown at 46°C in HI containing 5.8% NaCl had a D 60 value of 8 min in Tris buffer. Addition of 5.8% NaCl plus 5% MSG to the buffer increased the D 60 by a factor of about 7 for both cultures. In storage experiments at room temperature, the culture grown at 37°C and at 46°C plus 5.8% NaCl died at about the same rate in salami. In milk powder, however, the count of 37°C culture decreased from 109/g to 106/g in 5 weeks while the count of 46°C culture remained unchanged. In cottage cheese, freeze-dried rice and macaroni, the 37°C cultures also died more rapidly. It is suggested that cultures grown at 46°C plus 5.8% NaCl may be suitable for experiments with artificially contaminated foods.  相似文献   

8.
Streptomyces sp. LX, newly isolated from soil, was shown to secrete a carboxylmethylcellulose (CMC)-liquefying enzyme that cleaves the CMC chains, releasing negligible reducing terminals. The new enzyme, named component C2, was purified to homogeneity by dialysation. It has a molecular mass of 9·8 kDa. The pH optimum of the enzyme activity is 6·4 and its temperature optimum is 50°C. It retains full activity at pH 4–6·4 upon incubation at 50°C for 30 min. The enzyme has significant fragmentation activity on filter paper despite the absence of weight loss, release of reducing sugars and depolymerization during incubation with filter paper. The one-electron oxidative reaction is shown not to participate in the fragmentation of filter paper by enzyme C2.  相似文献   

9.
Of various commercial enzyme preparations examined, Cytolase M102 was found to contain the highest glucosyltransferase activity (55 U ml−1). It rapidly converted maltose to panose (Glcα1 → 6Glcα1 → 4Glc) with a V max value of 5·8 mmol l−1 min−1 at 50°C in 0·05 mol l−1 sodium acetate buffer (pH 4·4). The K m value of the enzyme for maltose was 750 mmol l−1. Yields of panose and glucose after 45 min of reaction, for example, were 47·2% and 52·8%, respectively, on the basis of the amount of maltose consumed.  相似文献   

10.
Summary Glyoxalase I was extracted from Hansenula mrakii IFO 0895 by incubating the cells with buffer solution containing 50% acetone (enzyme activity 35 units/g cells) or 50% ethyl acetate (enzyme activity 28 units/g cells) at 30°C for 10 h. Glyoxalase II was also extracted from the cells, although the activity of the enzyme was lost during incubation with organic solvents, especially at higher temperature (30°C). By using the organic-solvent-extracted fraction of H. mrakii, enzymatic production of S-lactoylglutathione was studied, and approximately 82 mmol/l (30 g/l) of S-lactoylglutathione was produced from 120 mmol/l glutathione. Offprint requests to: A. Kimura  相似文献   

11.
E. TSAKALIDOU AND G. KALANTZOPOULOS. 1992. An intracellular aminopeptidase from Streptococcus salivarius subsp. thermophilus strain ACA-DC 114, isolated from traditional Greek yoghurt, was purified by chromatography on DEAE-cellulose and Sephadex G-100. The enzyme had a molecular weight of 89 000. It was active over a pH range 4.5-9.5 and had optimum activity on L-lysyl-4-nitroanilide at pH 6.5 and 35°C with K m= 1.80 mmol/l; above 55°C the enzyme activity declined rapidly. The aminopeptidase was capable of degrading substrates by hydrolysis of the N -terminal amino acid; it had very low endopeptidase and no carboxypeptidase activity. The enzyme was strongly inactivated by EDTA. Serine and sulphydryl group reagents had no effect on enzyme activity.  相似文献   

12.
Note: Purification of amylase secreted from Bifidobacterium adolescentis   总被引:1,自引:0,他引:1  
Bifidobacterium adolescentis Int-57 isolated from human faeces produced extracellular amylase. The enzyme was purified from the culture supernatant fluids by ammonium sulphate precipitation, gel-filtration chromatography (Sephadex-G-75), ion-exchange chromatography (CM-cellulose) and FPLC. SDS-PAGE of the purified enzyme revealed a major band with an apparent molecular weight of 66 kDa. The pI was 5·2. Enzyme activity was optimal at 50°C, and at pH 5·5. The enzyme was stable at 20–40°C, and at pH 5–6 with a K m value of 2·4 g l−1 soluble starch. The activation energy was 42·3 kJ mol−1. The enzyme was significantly inhibited by maltose (10%), glucose (10%), Cu2+ (5 mmol l−1), Zn2+ (5 mmol l−1), N- bromosuccinimide (5 mmol l−1), EDTA (5 mmol l−1), I2 (1 mmol l−1) and activated by β-mercaptoethanol (10 mmol l−1).  相似文献   

13.
Abstract. Purified and crude phosphoenolpyruvate carboxylase from the CAM plant Kalanchoë daigremontiana Hamet et Perrier ( Bryophyllum diagremontianum ) was assayed at temperatures between 10 and 45° C. The optimum temperature of the enzyme activity changed with substrate availability and effector concentration in the assay. l -malate inhibited the enzyme activity and lowered the optimum temperature. Glucose-6-phosphate raised the optimum temperature to 43°C. K m values for phosphoenolpyruvate increased with assay temperature from 0.12 mol m-3 at 15° C to 0.36 molm−3 at 35° C. Inhibition by malate increased with temperature and acidity of the assay. In the crude enzyme 50% of control activity was inhibited by 1.65 mol m-3 malate at 15° C and by 0.5 mol m-3 at 35° C (at pH 7.0). With purification malate sensitivity was lost ( K i values for malate at least 10 times higher). The shift in optimum temperatures for PEP-carboxylase activity thus results from changes in the kinetic parameters with temperature and allosteric effectors. The often low optimum temperatures for CO2 fixation observed in nature may thus be the result of substrate and effector concentrations in the cytoplasm and the antagonistic effect of temperature on substrate affinity and effector efficiency on phosphoenolpyruvate carboxylase.  相似文献   

14.
Three exo-glucanases, two endo-glucanases and two β-glucosidases were separated and purified from the culture medium of Aspergillus nidulans. The optimal assay conditions for all forms of cellulase components ranged from pH 5.0 to 6.0 and 50°C and 65°C for exo-glucanases and endo-glucanases but 35°C and 65°C for β-glucosidases. A close relation of enzyme stability to their optimal pH range was observed. All the cellulase components were stable for 10 min at 40–50°C. Exo-II and Exo-III ( K m, 38.46 and 37.71 mg/ml) had greater affinity for the substrate than Exo-I ( K m, 50.00 mg/ml). The K m values of Endo-I and Endo-II (5.0 and 4.0 mg/ml) and their maximum reaction velocities ( V max, 12.0 and 10.0 IU/mg protein) were comparable. β-Glucosidases exhibited K m values of 0.24 and 0.12 mmol and V max values of 8.00 and 0.67 IU/mg protein. The molecular weights recorded for various enzyme forms were: Exo-I, 29000; Exo-II, 72500; Exo-III, 138000; Endo-I, 25000; Endo-II, 32500; β-Gluco-I, 14000 and β-Gluco-II, 26000. Exo- and endo-glucanases were found to require some metal ions as co-factors for their catalytic activities whereas β-glucosidases did not. Hg2+ inhibited the activity of all the cellulase components. The saccharification studies demonstrated a high degree of synergism among all the three cellulase components for hydrolysis of dewaxed cotton.  相似文献   

15.
Lactobacillus plantarum was found to produce extracellular polygalacturonase (EC 3.2.1.15.). Maximum enzyme production was obtained in a medium containing 0.5% glucose and 1.5% low methyl-pectin as inducer at 27°C at an initial pH of 6.8. Enzyme production was strongly inhibited by 5 μmol/l NiCl2, 5 μmol/l CoCl2, 5 μmol/l CuSO4, and 10 μmol/l ZnCl2. MnSO4 and MgSO4 at 200 μmol/l and 50 μmol/l respectively seemed to enhance enzyme biosynthesis. The optimal pH and temperature for enzyme activity were 4.5 and 30°C respectively. Enzyme production in batch culture accompanied growth.  相似文献   

16.
An extracellular β-glucosidase enzyme was purified from the fungus Aspergillus niger strain 322 . The molecular mass of the enzyme was estimated to be 64 kDa by SDS gel electrophoresis. Optimal pH and temperature for β-glucosidase were 5·5 and 50 °C, respectively. Purified enzyme was stable up to 50 °C and pH between 2·0 and 5·5. The Km was 0·1 mmol l−1 for cellobiose. Enzyme activity was inhibited by several divalent metal ions.  相似文献   

17.
Bacillus sp. A-001, which produced large amounts of amylase, was isolated from fermenting tef ( Eragrostis tef ) on tryptone soya agar supplemented with 1% starch. The organism grew between pH 4.5 and 10.5 with an optimum at 7–7.5. Growth occurred between 20 and 55°C but the optimum was about 35–40°C. At optimum medium pH (7.5) and a temperature of 35°C the organism entered the stationary phase after about 72 h and amylase production was at its highest (9.6 units ml-1) at this time. Enzyme activity was optimal at pH 5.5 and 40°C and showed good thermal stability; it required 110 min to lose 50% of its activity at 70°C. The enzyme hydrolysed native starch (flour from tef, corn and kocho) to various oligosaccharides, including maltotriose, maltose and glucose.  相似文献   

18.
The extracellular amylase produced by Clostridium thermocellum strain SS8 on starch was characterized as a β-amylase based on blue value reduction test and the production of maltose from starch. The enzyme had a temperature and pH optima of 60°C and 6.0, respectively. Of the metal ions tested, Ca2 + and Mg2 + had little effect on enzyme activity, but their presence increased its thermal stability. Ca2 + displayed a higher stabilizing effect and at 10 mmol 1-1 Ca2 +, the enzyme retained 86% activity even after exposure at 70°C for 30 min. The amylase was induced on starch or maltose but was repressed strongly by glucose.  相似文献   

19.
Kluyveromyces marxianus had a higher specific activity of diacetyl reductase (EC 1.1.1.5) than all other organisms previously reported. The enzyme was NADH-dependent and irreversibly catalysed the conversion of diacetyl to acetoin with an optimum pH of 7.0. It was stable at 40°C but lost 50% of its activity at 50°C in 30 min. The K m and V max values for diacetyl were 1.8 mm and 0.053 mm/min, respectively.The authors are with the Department of Food Science and Technology, Comell University, Geneva, New York 14456, USA  相似文献   

20.
Curvularia lunata var. aeria was grown on yeast extract, peptone and carboxymethylcellulose (YPC) medium for the production of extracellular rifamycin oxidase. The enzyme was partially purified through a Sephadex G-75 column. The half lives of rifamycin oxidase at 30° and 40°C were 9 d and 100 min, respectively. The activation and deactivation energies of the partially purified enzyme, calculated from Arrhenius plots, were 5.80 and 35.10 kcal mol-1 respectively. The enzyme exhibited a K m (rifamycin B) value of 0.67 mmol l-1 and a V max of 11 μmol h-1 ml. Three metal ions, Fe2+, Ag+ and Hg2+, inhibited the enzyme in the 10–20 mmol l-1 metal ion concentration range. Catalytic activity was not affected by the chelating agent, EDTA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号