首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The opioid receptor preference for dermorphin and several dimerized structural analogues was investigated using rat brain synaptosomes and correlated with the potencies of intracerebroventricularly administered dimeric dermorphin peptides to inhibit gastric acid secretion. The carboxyl terminus of dermorphin or amino-terminal dermorphin analogues was bridged by dihydrazide or (poly)ethylenediamine structures. Synaptosomal membranes were prepared for radioligand binding assay in the presence of soybean trypsin inhibitor and preincubated to remove endogenously bound opioid peptides before storage at -70 degrees C. Specific radiolabeled agonists used in the radioligand binding assays were [D-Ala2,N-methyl-Phe4,Gly-ol5] [3H] enkephalin for mu-receptors and [D-Ala2,D-Leu5] [3H]enkephalin for delta-receptors. delta-Receptor binding assays were conducted in the presence of 2.6 microM [N-Me-Phe3,D-Pro4]morphiceptin to suppress peptide binding to mu-receptors. [D-Ala2,N-methyl-Phe4,Gly-ol5]enkephalin and dermorphin had affinities of 1.39 and 1.22 nM for mu-receptors and 355.8 and 178.6 nM for delta-receptors, respectively. Affinities of dimeric-dermorphin0 for mu- and delta-receptors, and the mu-selectivity ratio, exceeded values characteristic of dermorphin. The dimerized amino-terminal dermorphin analogues are peptides whose receptor binding differed from the parent molecule; e.g. the affinity of dimeric tetrapeptides toward mu-receptors was reduced but was increased for delta-receptors relative to monomeric dermorphin-(1-4)-amide. Dimeric tetradermorphin linked by a bridge containing 12 methylene units (di-tetra-dermorphin12), exhibited a dramatic loss in the mu-selectivity ratio as a result of diminished mu-affinity. On the other hand, substitution of Gly4 by Sar in di-tetra-dermorphin2 enhanced binding to mu-receptors: substitution of D-Arg2 for D-Ala resulted in an increased binding to mu-receptors while decreasing binding to delta-receptors, yielding a peptide with the highest mu-selectivity ratio. These substitutions of D-Arg2 and Sar4 in dimeric amino-terminal dermorphin pentapeptides enhanced binding to both mu- and delta-receptors relative to dermorphin-(1-5)-amide, but led to a decrease in its mu-selectivity ratio. Several dimeric dermorphin analogues exhibited an enhanced mu-selectivity ratio relative to their monomeric analogues. Dimeric peptides, which had a relatively high affinity for mu-receptors, were effective in the suppression of gastric acid secretion.  相似文献   

2.
[D-Ala2,Leu5,Cys6]Enkephalin (DALCE) is a synthetic enkephalin analog which contains a sulfhydryl group. DALCE binds with high affinity to delta-receptors, with moderate affinity to mu-receptors, and with negligible affinity to kappa-receptors. Pretreatment of rat brain membranes with DALCE resulted in concentration-dependent loss of delta-binding sites. Using 2 nM [3H][D-Pen2,D-Pen5]enkephalin (where Pen represents penicillamine) to label delta-sites, 50% loss of sites occurred at about 3 microM DALCE. Loss of sites was not reversed by subsequent incubation in buffer containing 250 mM NaCl and 100 microM guanyl-5'-yl imidodiphosphate (Gpp(NH)p), conditions which cause dissociation of opiate agonists. By contrast, the enkephalin analogs [D-Ala2,D-Leu5]enkephalin, [D-Ser2,Leu5,Thr6]enkephalin, [D-Pen2,D-Pen5]enkephalin, and [D-Ala2,D-Leu5,Lys6]enkephalin were readily dissociated by NaCl and Gpp(NH)p, producing negligible loss at 3 microM. This suggests that DALCE binds covalently to the receptors. Pretreatment of membranes with the reducing agents dithiothreitol and beta-mercaptoethanol had no effect on opiate binding. Thus, loss of sites required both specific recognition by opiate receptors and a thiol group. The irreversible effect of DALCE was completely selective for delta-receptors. Pretreatment with DALCE had no effect on binding of ligands to mu- or kappa-receptors. The effect of DALCE on delta-binding was: 1) markedly attenuated by inclusion of dithiothreitol in the preincubation buffer, 2) partially reversed by subsequent incubation with dithiothreitol, 3) slightly enhanced when converted to the disulfide-linked dimer, and 4) prevented by blocking the DALCE sulfhydryl group with N-ethylmaleimide or iodoacetamide. These results indicate that DALCE binds covalently to delta-receptors by forming a disulfide bond with a sulfhydryl group in the binding site. The mechanism may involve a thiol-disulfide exchange reaction.  相似文献   

3.
Dermorphin, Tyr-DAla-Phe-Gly-Tyr-Pro-Ser-NH2, a potent opioid peptide isolated from amphibian skin, is endowed with outstanding structural and biological features. It has no common structure with mammalian opioid peptides and is a unique example of a peptide, synthesized by an animal cell, which contains a D-amino acid in its native sequence. We have undertaken a complete evaluation of the receptor selectivity of dermorphin, together with the binding characteristics and receptor distribution of [3H]dermorphin in the rat brain. 1. Dermorphin was tested for its relative affinity to mu-, delta- and chi-opioid receptors by determining its potency in displacing the selective mu-receptor ligand [3H]Tyr-DAla-Gly-MePhe-Gly-ol (where Gly-ol = glycinol), the prototypic delta-receptor ligand [3H]Tyr-DPen-Gly-Phe-DPen (where DPen = beta, beta-dimethylcysteine) and the chi ligand [3H]ethylketocyclazocine from rat brain and/or guinea pig cerebellum membrane preparations. Inhibitory constant (Ki) values of dermorphin were 0.7 nM, 62 nM and greater than 5000 nM respectively for mu, delta and chi sites, indicating a selectivity ratio Ki(delta)/Ki(mu) = 88. Under similar conditions, Tyr-DAla-Gly-MePhe-Gly-ol, which is regarded as one of the most selective high-affinity mu-agonist available, exhibited a selectivity ratio of 84. 2. Specific binding properties of tritium-labeled dermorphin (52 Ci/mmol) were characterized in the rat brain. Equilibrium measurements performed over a large range of concentrations revealed a single homogeneous population of high-affinity binding sites (Kd = 0.46 nM; Bmax = 92 fmol/mg membrane protein). 3. Profound differences were observed in the potencies displayed by various selective opiates and opioids ligands in inhibiting the specific binding of [3H]dermorphin. The rank order of potency was in good agreement with that obtained with other mu-selective radiolabeled ligands. 4. Receptor autoradiography in vitro was used to visualize the distribution of [3H]dermorphin binding sites in rat brain. The labeling pattern paralleled that observed using other mu probes. Binding parameters and selectivity profile of [3H]dermorphin on slide-mounted sections were similar to those obtained with membrane homogenates. 5. Finally, intracerebroventricular administration of synthetic dermorphin into mice showed that this peptide is the most potent analgesic known to date, being up to 5 and 670 times more active than beta-endorphin and morphine, respectively. Higher doses induced catalepsy. The overall data collected demonstrate that dermorphin is the first among the naturally occurring peptides to be highly potent and nearly specific super-agonist towards the morphine (mu) receptor.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Mizoguchi H  Narita M  Nagase H  Tseng LF 《Life sciences》2000,67(22):2733-2743
The activation of mu-, delta- and kappa1-opioid receptors by their respective agonists increases the binding of the non-hydrolyzable GTP analog guanosine-5'-(gamma-thio)-triphosphate (GTPgammaS) to G proteins. Beta-endorphin is an endogenous opioid peptide which binds nonselectively to mu-, delta- and putative epsilon-opioid receptors. The present experiment was designed to determine which opioid receptors are involved in the stimulation of [35S]GTPgammaS binding induced by beta-endorphin in the mouse pons/medulla. The mouse pons/medulla membranes were incubated in an assay buffer containing 50 pM [35S]GTPgammaS, 30 microM GDP and various concentrations of beta-endorphin. Beta-endorphin (0.1 nM-10 microM) increased [35S]GTPgammaS binding in a concentration-dependent manner, and 10 microM beta-endorphin produced a maximal stimulation of approximately 260% over baseline. This stimulation of [35S]GTPgammaS binding by beta-endorphin was partially attenuated by the mu-opioid receptor antagonist beta-funaltrexamine (beta-FNA), but not by the delta-opioid receptor antagonist naltrindole (NTI) or the kappa1-opioid receptor antagonist nor-binaltorphimine (nor-BNI). Beta-endorphin stimulated [35S]GTPgammaS binding by about 80% in the presence of 10 microM beta-FNA, 30 nM NTI and 100 nM nor-BNI. The same concentrations of these antagonists completely blocked the stimulation of [35S]GTPgammaS binding induced by 10 microM [D-Ala2,NHPhe4,Gly-ol]enkephalin, [D-Pen(2,5)]enkephalin and U50,488H, respectively. Moreover, the residual stimulation of [35S]GTPgammaS binding induced by beta-endorphin in the presence of the three opioid receptor antagonists was significantly attenuated by 100 nM of the putative epsilon-opioid receptor partial agonist beta-endorphin (1-27). These results indicate that the stimulation of [35S]GTPgammaS binding induced by beta-endorphin is mediated by the stimulation of both mu- and putative epsilon-opioid receptors in the mouse pons/medulla.  相似文献   

5.
The naturally occurring amphibian skin peptides dermorphin (Tyr-D-Ala-Phe-Gly-Tyr-Pro-Ser-NH2) and dermenkephalin (Tyr-D-Met-Phe-His-Leu-Met-Asp-NH2) are highly potent and selective agonists at the mu- and the delta-opioid receptors, respectively. For peptides synthesized by animal cells, they have a rather peculiar structural feature of containing a D-amino acid residue in their sequence which imparts biological activity on them. The cloned cDNA encoding the prodermorphin precursor contains the usual alanine and methionine codons at positions where D-alanine and D-methionine are present in the mature products. In this study, dermorphin precursor was characterized in extracts from amphibian skin by antisera recognizing distinct epitopes within the predicted structure of pro-dermorphin. Proteolytic digestion of purified endogenous pro-dermorphin generated a peptide containing a D-alanine in position 2, identified as prepro-dermorphin-(80-89), i.e. Tyr-D-Ala-Phe-Gly-Tyr-Pro-Ser-Gly-Glu-Ala. In addition, analysis of skin extracts by enzyme immunoassays coupled to high performance liquid chromatography separations revealed the presence of, besides dermenkephalin, novel dermenkephalin-related peptides, i.e. [L-Met2]dermenkephalin, dermenkephalin-OH, and [Met(O)6]dermenkephalin. [L-Met2]dermenkephalin was present in frog skin in a concentration of about 100 times that of dermenkephalin. These observations confirm that, despite the presence of D-amino acid residues, dermorphin and dermenkephalin are genuine products of post-translational processing of a ribosomally made precursor. They suggest that D-Ala and D-Met develop from a dehydrogenation/hydrogenation stereoinversion of their corresponding L isomers incorporated into pro-dermorphin, a process that occurs with low efficiency at an early stage of biosynthesis.  相似文献   

6.
A screening of new synthetic opioid-like peptides has been carried out by the radioreceptor assay using selective labeled ligands to mu-, delta- and gamma-opioid receptors of the rat brain membranes. With this aim peptides from sequences of the following proteins were used: kapporphin-Tyr-Ser-Phe-Gly-Gly and its analogues-Tyr-Ser-Phe-Gly-Gly-NH2, Tyr-D-Ser-Phe-Gly-Gly, Tyr-D-Ser-Phe-Gly-Gly-NH2, myelorphin-Phe-Gly-Tyr-Gly-Gly, interenkephalin B-Arg-Arg-Gln-Phe-Lys and chimeric peptide IEPhBin 1-Tyr-Gly-Gly-Phe-Leu-Arg-Pro-Tyr-Ile-Leu consisting of leu-enkephalin and pentaneurotensin. It has been found that myelorphin has a prevalent affinity to mu-receptor, while the kapporphin analogues both to mu- and delta-receptors. The presence of pentaneurotensin in chimeric peptide does not affect the specificity of binding to opioid receptors, but decreases affinity to mu- and delta-receptors approximately by an order as compared to leu-enkephalin. Kapprorphin and interenkephalin B displace neither of the selective labeled opioid ligands under study.  相似文献   

7.
A monoclonal antibody (mAb), KA8 that interacts with the kappa-opioid receptor binding site was generated. BALB/c female mice were immunized with a partially purified kappa-opioid receptor preparation from frog brain. Spleen cells were hybridized with SP2/0AG8 myeloma cells. The antibody-producing hybridomas were screened for competition with opioid ligands in a modified enzyme-linked immunosorbent assay. The cell line KA8 secretes an IgG1 (kappa-light chain) immunoglobulin. The mAb KA8 purified by affinity chromatography on protein A-Sepharose CL4B was able to precipitate the antigen from a solubilized and affinity-purified frog brain kappa-opioid receptor preparation. In competition studies, the mAb KA8 decreased specific [3H]ethylketocyclazocine ([3H]EKC) binding to the frog brain membrane fraction in a concentration-dependent manner to a maximum to 72%. The degree of the inhibition was increased to 86% when mu- and delta-opioid binding was suppressed by 100 nM [D-Ala2,NMe-Phe4,Gly-ol]-enkephalin (DAGO) and 100 nM [D-Ala2,L-Leu5]-enkephalin (DADLE), respectively, and to 100% when mu-, delta-, and kappa 2-sites were blocked by 5 microM DADLE. However, the mu-specific [3H]DAGO and the delta-preferring [3H]DADLE binding to frog brain membranes cannot be inhibited by mAb KA8. These data suggest that this mAb is recognizing the kappa- but not the mu- and delta-subtype of opioid receptors. The mAb KA8 also inhibits specific [3H]naloxone and [3H]EKC binding to chick brain cultured neurons and rat brain membranes, whereas it has only a slight effect on [3H]EKC binding to guinea pig cerebellar membranes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Characterization of Opioid Receptors in Cultured Neurons   总被引:1,自引:1,他引:0  
The appearance of mu-, delta-, and kappa-opioid receptors was examined in primary cultures of embryonic rat brain. Membranes prepared from striatal, hippocampal, and hypothalamic neurons grown in dissociated cell culture each exhibited high-affinity opioid binding sites as determined by equilibrium binding of the universal opioid ligand (-)-[3H]bremazocine. The highest density of binding sites (per mg of protein) was found in membranes prepared from cultured striatal neurons (Bmax = 210 +/- 40 fmol/mg protein); this density is approximately two-thirds that of adult striatal membranes. By contrast, membranes of cultured cerebellar neurons and cultured astrocytes were devoid of opioid binding sites. The opioid receptor types expressed in cultured striatal neurons were characterized by equilibrium binding of highly selective radioligands. Scatchard analysis of binding of the mu-specific ligand [3H]D-Ala2,N-Me-Phe4,Gly-ol5-enkephalin to embryonic striatal cell membranes revealed an apparent single class of sites with an affinity (KD) of 0.4 +/- 0.1 nM and a density (Bmax) of 160 +/- 20 fmol/mg of protein. Specific binding of (-)-[3H]bremazocine under conditions in which mu- and delta-receptor binding was suppressed (kappa-receptor labeling conditions) occurred to an apparent single class of sites (KD = 2 +/- 1 nM; Bmax = 40 +/- 15 fmol/mg of protein). There was no detectable binding of the selective delta-ligand [3H]D-Pen2,D-Pen5-enkephalin. Thus, cultured striatal neurons expressed mu- and kappa-receptor sites at densities comparable to those found in vivo for embryonic rat brain, but not delta-receptors.  相似文献   

9.
Amphibian skin synthesizes a variety of biologically active peptides. Of these, dermorphin (Tyr-D-Ala-Phe-Gly-Tyr-Pro-Ser-NH2) is an extraordinarily potent opioid peptide up to 1000 times more active than morphine in inducing analgesia after intracerebroventricular administration. Dermorphin has little in common with the sequence of all hitherto known mammalian opioid peptides and is unique in having a D-amino acid residue in position 2. Specific binding properties of tritium labeled dermorphin were characterized in the rat brain. Scatchard or Hill analysis of equilibrium measurements performed over a large range of concentrations revealed a single population of dermorphin binding sites with a Kd value of 0.46 nM. Dermorphin and the selective mu-receptor ligand (D-Ala2, MePhe4, Gly5-ol)-enkephalin (DAGO) had similar high potencies in competing with (3H)-dermorphin binding, whereas the inverse holds for the prototypical delta receptor ligand (D-Pen2, D-Pen5)-enkephalin (DPDPE), which exhibited a potency three orders of magnitude lower. Dermorphin was tested for its relative affinity to mu and delta binding sites by determining its potency in displacing (3H)-DAGO and (3H)-DPDPE from rat brain membrane preparations. Based on these comparisons, dermorphin exhibited a selectivity ratio Ki(DPDPE)/Ki(DAGO) = 100, a value almost identical to that of DAGO, this ligand being considered as the protypical mu-receptor probe. The high affinity and selectivity of (3H)-dermorphin together with its very low nonspecific binding make this peptide a useful tool for dissecting the role(s) of the mu-receptor(s).  相似文献   

10.
The effects of substituting the enkephalin moiety of dynorphin with the dermorphin sequence were studied on the receptor preference, analgesic, and peripheral opioid potencies by using synthetic dermorphin-dynorphin hybrid peptides as the probe. Replacement of the enkephalin moiety of dynorphin with the dermorphin or dermorphin1-5 sequences caused a remarkable increase in analgesic potency, and a 3-6 fold increase in potency of binding against [3H]-dihydromorphine. The potency of receptor binding against [3H]-EKC was also increased by incorporation of the whole dermorphin sequence into the dynorphin molecule. In the presence of NaCl (100 mM), the effect of enhancing binding against [3H]-EKC due to dermorphin substitution disappeared, suggesting the contribution of opioid mu-receptor. Peripheral opioid activities assayed by various smooth muscle preparations showed that dermorphin incorporation caused a decreased in the potency of inhibition of the contractions of the guinea pig ileum and the rabbit vas deferens, no change in potency on the mouse vas deferens, and a marked increase in the inhibition of the rat vas deferens. Among the peripheral opioid activities only that assayed with the rat vas deferens appears to correlate approximately with the analgesic and the receptor binding activities. Judging from the relative potencies obtained from all assays, it is evident that the N-terminal dermorphin moiety, but not the C-terminal dynorphin fragment, dominates the opioid activity and receptor preference of the hybrid peptide.  相似文献   

11.
Kim KW  Kim SJ  Shin BS  Choi HY 《Life sciences》2001,68(14):1649-1656
In this study, receptor binding profiles of opioid ligands for subtypes of opioid delta-receptors were examined employing [3H]D-Pen2,D-Pen5-enkephalin ([3H]DPDPE) and [3H]Ile(5,6)-deltorphin II ([3H]Ile-Delt II) in human cerebral cortex membranes. [3H]DPDPE, a representative ligand for delta1 sites, labeled a single population of binding sites with apparent affinity constant (Kd) of 2.72 +/- 0.21 nM and maximal binding capacity (Bmax) value of 20.78 +/- 3.13 fmol/mg protein. Homologous competition curve of [3H]Ile-Delt II, a representative ligand for delta2 sites, was best fit by the one-site model (Kd = 0.82 +/- 0.07 nM). Bmax value (43.65 +/- 2.41 fmol/mg) for [3H]Ile-Delt II was significantly greater than that for [3H]DPDPE. DPDPE, [D-Ala2,D-Leu5]enkephalin (DADLE) and 7-benzylidenaltrexone (BNTX) were more potent in competing for the binding sites of [3H]DPDPE than for those of [3H]Ile-Delt II. On the other hand, deltorphin II (Delt II), [D-Ser2,Leu5,Thr6]enkephalin (DSLET), naltriben (NTB) and naltrindole (NTI) were found to be equipotent in competing for [3H]DPDPE and [3H]Ile-Delt II binding sites. These results indicate that both subtypes of opioid delta-receptors, delta1 and delta2, exist in human cerebral cortex with different ligand binding profiles.  相似文献   

12.
[3H]U69,593 and [3H]ethylketazocine (mu + delta suppressed) binding was measured in homogenates of guinea-pig brain. Both ligands bind with high affinity to a single class of opioid sites. The relative equilibrium dissociation constant (KD) for [3H]U69,593 is 1.15 nM, while [3H]ethylketazocine has a KD value of 0.33 nM. Their respective maximum binding capacities are 4.49 and 4.48 pmol/g of wet tissue. Various mu-selective, delta-selective, kappa-selective, and nonselective opioids were tested in competition studies against the binding of [3H]U69,593 or [3H]ethylketazocine (in the presence of mu- and delta-blockers) to measure their relative affinity. [D-Ala2, MePhe4,Gly5-ol]enkephalin (mu-selective) has low affinity (600-3000 nM) and [D-Pen2,D-Pen5]enkephalin and [D-Ser2, Leu5, Thr6]enkephalin (delta-selective) have very low affinities (greater than 20,000 nM) at the sites labelled with [3H]U69,593 or [3H]ethylketazocine. On the other hand, unlabelled U69,593, U50,488H, and tifluadom (all three kappa-selective substances) display high affinity (1-5 nM) at those sites. Nonselective opioids, such as bremazocine, levorphanol, and ethylketazocine show similar affinities at the sites labelled with [3H]U69,593 and at the sites labelled with [3H]ethylketazocine. These data indicate that [3H]U69,593 is a selective high-affinity ligand for the same sites that are labelled with [3H]ethylketazocine (in the presence of mu- and delta-blockers) and that these are kappa-sites.  相似文献   

13.
A series of potential affinity label derivatives of the amphibian opioid peptide [D-Ala2]deltorphin I were prepared by incorporation at the para position of Phe3 (in the 'message' sequence) or Phe5 (in the 'address' sequence) of an electrophilic group (i.e. isothiocyanate or bromoacetamide). The introduction of the electrophile was accomplished by incorporating Fmoc-Phe(p-NHAlloc) into the peptide, followed later in the synthesis by selective deprotection of the Alloc group and modification of the resulting amine. While para substitution decreased the delta-opioid receptor affinity, selected analogs retained nanomolar affinity for delta receptors. [D-Ala2,Phe(p-NCS)3]deltorphin I exhibited moderate affinity (IC50=83 nM) and high selectivity for delta receptors, while the corresponding amine and bromoacetamide derivatives showed pronounced decreases in delta-receptor affinity (80- and >1200-fold, respectively, compared with [D-Ala2]deltorphin I). In the 'address' sequence, the Phe(p-NH2)5 derivative showed the highest delta-receptor affinity (IC50=32 nM), while the Phe(p-NHCOCH2Br)5 and Phe(p-NCS)5 peptides displayed four- and tenfold lower delta-receptor affinities, respectively. [D-Ala2,Phe(p-NCS)3]deltorphin I exhibited wash-resistant inhibition of [3H][D-Pen2,D-Pen5]enkephalin (DPDPE) binding to delta receptors at a concentration of 80 nM. [D-Ala2, Phe(p-NCS)3]deltorphin I represents the first affinity label derivative of one of the potent and selective amphibian opioid peptides, and the first electrophilic affinity label derivative of an agonist containing the reactive functionality in the 'message' sequence of the peptide.  相似文献   

14.
The ability of opioids to influence rectal temperature after injection into the periaqueductal grey region (PAG) of rat brain was investigated. Both morphine and beta-endorphin caused a dose-dependent increase in rectal temperature of up to 2 degrees C. By using selective ligands of the subclasses of opiate receptor such as [D-Ala2,D-Leu5]enkephalin for delta-receptors and ethylketocyclazocine, dynorphin(1-17) and dynorphin(1-8) for kappa-receptors, it was possible to show that neither the delta- nor the kappa-opiate receptor was involved in the hyperthermic response. However, [D-Ala2,MePhe4,Gly-ol5]enkephalin (DAGO), a mu-receptor ligand, did produce a dose-dependent hyperthermia. The ability of naltrexone, an opiate receptor antagonist, to reverse the hyperthermia induced by beta-endorphin and DAGO suggests that the opioid-stimulated increase in body temperature via the PAG is mediated through the mu-opiate receptor. Since the application of opioids to the PAG produces a hyperthermic response, it is possible that this brain site may have a role in the peptidergic control of body temperature.  相似文献   

15.
In an attempt to identify potential peptide-based affinity labels for opioid receptors, endomorphin-2 (Tyr-Pro-Phe-PheNH2), a potent and selective endogenous ligand for mu-opioid receptors, was chosen as the parent peptide for modification. The tetrapeptide analogs were prepared using standard Fmoc-solid phase peptide synthesis in conjunction with incorporation of Fmoc-Phe(p-NHAlloc) and modification of the p-amino group. The electrophilic groups isothiocyanate and bromoacetamide were introduced into the para position on either Phe3 or Phe4; the corresponding free amine-containing peptides were also prepared for comparison. The peptides bearing an affinity label group and their free amine analogs were evaluated in a radioligand-binding assay using Chinese hamster ovary (CHO) cells expressing mu- and delta-opioid receptors. Modification on Phe4 was better tolerated than on Phe3 for mu-receptor binding. Among the analogs tested, [Phe(p-NH2)4]endomorphin-2 showed the highest affinity (IC50 = 37 nm) for mu-receptors. The Phe(p-NHCOCH2Br)4 analog displayed the highest mu-receptor affinity (IC50 = 158 nm) among the peptides containing an affinity label group. Most of the compounds exhibited negligible binding affinity for delta-receptors, similar to the parent peptide.  相似文献   

16.
The ability of selective mu- ([D-Ala2, NHPhe4, Gly-ol]enkephalin: DAMGO), delta1- ([D-Pen2, Pen5]enkephalin: DPDPE) and delta2- ([D-Ala2]deltorphin II: DELT II) opioid receptor agonists to activate G-proteins in the midbrain and forebrain of mice and rats was examined by monitoring the binding of guanosine-5'-O-(3-[35S]thio)triphosphate ([35S]GTPgammaS). The levels of [35S]GTPgammaS binding stimulated by DAMGO in the mouse and rat midbrain were significantly greater than those by DPDPE or DELT II. However, relatively lower levels of stimulation of [35S]GTPgammaS binding by all of the agonists than would have been predicted from the receptor densities were observed in either the limbic forebrain or striatum of mice and rats. The effects of DAMGO, DPDPE and DELT II in all three regions were completely reversed by selective mu-, delta1- and delta2-antagonists, respectively. The results indicate that the levels of mu-, delta1- and delta2-opioid receptor agonist-induced G-protein activation in the midbrain are in good agreement with the previously determined distribution densities of each receptor type. Furthermore, the discrepancies observed in the forebrain might reflect differential catalytic efficiencies of receptor-G-protein coupling.  相似文献   

17.
Processing of the polyprotein precursor pro-dermorphin generates two distantly related D-amino acid-containing peptides, dermorphin and dermenkephalin, which are among the most selective high affinity agonists described, respectively, for the mu- and delta-opioid receptors. Dermenkephalin, Tyr-D-Met-Phe-His-Leu-Met-Asp-NH2, is a linear, potentially flexible peptide devoid of structural homology with either enkephalins, endorphins, or dynorphins and, as such, represents a useful tool for identifying determinants of high affinity and selective binding of opioids to the delta-receptor. A series of selected dermenkephalin analogs and homologs was investigated for affinity at the mu- and delta-sites in the brain. Whereas dermenkephalin has high affinity and specificity for the delta-opioid receptors, its tetrapeptide amino end, dermenkephalin-[1-4]-NH2 binds almost exclusively at the mu-receptors. Dermorphin, Tyr-D-Ala-Phe-Gly-Tyr-Pro-Ser-NH2, is only marginally more selective for the u-sites than is dermenkephalin-[1-4]-NH2. Using dermorphin-dermenkephalin peptide hybrids and C-terminal deletion analogs of dermenkephalin, we showed the critical role that the C-terminal residues Met6 and Asp7 play in specifying correct addressing of dermenkephalin toward delta-receptors. The potent mu-deteminant located within the amino end of dermenkephalin is over-whelmed by the powerful delta-directing ability of the carboxy end. The negatively charged side chain of Asp7 makes a significant contribution to the delta-addressing ability of the C-terminal region, a finding consistent with Schwyzer's membrane selection model (Schwyzer, R. (1986) Biochemistry 25, 6335-6342). The Leu residue in position 5 and D-configuration about the alpha-carbon of Met2 were found to be of crucial importance for high affinity binding to delta-receptors. Whereas the Met residue in position 6 in dermenkephalin could safely be oxidized or replaced with D-Met, oxidation of Met2 led to deleterious effects, this analog being 1/100 as potent as dermenkephalin at delta-sites. Overall, the data collected demonstrate that highest levels of selectivity and affinity for the delta-opioid receptors can be achieved with small-sized, potentially flexible, linear peptides and further support the model according to which, in addition to optimum accommodation at the receptor, selection for delta-receptors is reduced by the effective positive charge of the molecule. Dermenkephalin may provide a starting point for the design of agonists and antagonists with nearly total specificity for the delta-sites. Such pharmacological agents could be used to explore the ill-defined physiological role and behavioral actions conveyed by delta-opioid receptors.  相似文献   

18.
Fab fragments from a monoclonal antibody, OR-689.2.4, directed against the opioid receptor, selectively inhibited opioid binding to rat and guinea pig neural membranes. In a titratable manner, the Fab fragments noncompetitively inhibited the binding of the mu selective peptide [D-Ala2,(Me)Phe4,Gly(OH)5][3H] enkephalin and the delta selective peptide [D-Pen2,D-Pen5] [3H]enkephalin (where Pen represents penicillamine) to neural membranes. In contrast, kappa opioid binding, as measured by the binding of [3H]bremazocine to rat neural membranes and guinea pig cerebellum in the presence of mu and delta blockers, was not significantly altered by the Fab fragments. In addition to blocking the binding of mu and delta ligands, the Fab fragments displaced bound opioids from the membranes. When mu sites were blocked with [D-Ala2,(Me)Phe4,Gly(OH)5]enkephalin, the Fab fragments suppressed the binding of [D-Pen2,D-Pen5][3H]enkephalin to the same degree as when the mu binding site was not blocked. The Fab fragments also inhibited binding to the mu site regardless of whether or not the delta site was blocked with [D-Pen2,D-Pen5]enkephalin. This monoclonal antibody is directed against a 35,000-dalton protein. Since the antibody is able to inhibit mu and delta binding but not kappa opioid binding, it appears that this 35,000-dalton protein is an integral component of mu and delta opioid receptors but not kappa receptors.  相似文献   

19.
In an effort to improve diazabicycloalkane-based opioid receptor ligands, N-3(6)-arylpropenyl-N-6(3)-propionyl-3,6-diazabicyclo[3.1.1]heptanes (3A,Ba-i) were synthesized and their affinity and selectivity towards mu-, delta- and kappa-receptors were evaluated. The results of the current study revealed a number of compounds (3Bb, 3Bg and 3Bh) having a high affinity for mu (Ki at mu-receptors ranging from 2.7 to 7.9 nM) versus delta (Ki at delta-receptors > 2000 nM) and versus kappa (Ki at kappa-receptors > 5000 nM) receptors. Molecular modelling carried out on the pair 3Aa/3Ba and on the 3Bh was consistent with the hypothesis that the two series of compounds 3A and 3B interact with the mu-receptor in very different ways.  相似文献   

20.
Previous study has shown that cholecystokinin (CCK) octapeptide (CCK-8) suppressed the binding of opioid receptors to the universal opioid agonist [3H]etorphine. In the present study, highly selective tritium-labeled agonists for the mu-[(tryrosyl-3,5-3H][D-Ala2,MePhe4,Gly-ol5]enkephalin ([3H]DAGO], delta- ([tyrosyl-3,5-3H][D-Pen2,5]enkephalin ([3H]DPDPE], and kappa- ([3H]U69,593) opioid receptors were used to clarify which type(s) of opioid receptor in rat brain homogenates is suppressed by CCK-8. In the competition experiments, CCK-8 suppressed the binding of [3H]DAGO and [3H]U69,593 but not that of [3H]DPDPE to the respective opioid receptor. This effect was blocked by the CCK antagonist proglumide at 1 mumol/L. In the saturation experiments, CCK-8 at concentrations of 0.1 nmol/L to 1 mumol/L decreased the Bmax of [3H]DAGO binding sites without affecting the KD; on the other hand, CCK-8 increased the KD of [3H]U69,593 binding without changing the Bmax. The results suggest that CCK-8 inhibits the binding of mu- and kappa-opioid receptors via the activation of CCK receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号