首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nine [D-Ala2]deltorphin II (DL-II:Tyr-D-Ala-Phe-Glu-Val-Val-Gly-NH2) analogs having various aliphatic amino acids at positions 5 and 6 were synthesized to gain more information about the role of hydrophobic Val5,6 residues for the delta-opioid receptor selectivity. Binding assays of analogs replaced by Ala demonstrated the importance of hydrophobic Val5,6 residues in DL-II for delta-affinity and selectivity, and especially critical importance of Val5 residue for higher delta-selectivity. By enhancing the hydrophobicity of residues at positions 5 and 6, we have developed analogs with very high delta-affinity and selectivity over those of DL-II, e.g., [Ile5,6], [norleucine5,6] and [gamma-methyl-leucine5,6]DL-II, which will be useful as delta-selective ligands for investigation of the physiological role of opioid receptors.  相似文献   

2.
A series of CCK analogues in which positions 28 and 31 have been replaced by N-methylnorleucine residues have been synthesized. It has been found that most of these N-methylnorleucine containing analogues of CCK are highly potent and some are extraordinarily selective for the central vs. peripheral receptor in two animal models (guinea pig and rat). [N-MeNle28,31]CCK26-33 nonsulfated exhibited both high potency (IC50 = 0.13 nM) and selectivity for central vs. peripheral receptors. The pancrease to brain cortex binding affinity ratio for this analogue is 5100 in the rat model. NMR studies reveal that there is cis/trans isomerism about the N-methylnorleucine residue that may be related to high selectivity.  相似文献   

3.
Fluorescent analogues of the potent and highly selective delta-opioid antagonist TIPP (H-Tyr-Tic-Phe-Phe-OH) and TIP (H-Tyr-Tic-Phe-OH) containing the exceptionally environmentally sensitive fluorescent amino acid beta-(6'-dimethylamino-2'-naphthoyl)alanine (Aladan [Ald]) in place of Phe3 were synthesized. The Ald3- and D-Ald3 analogues of TIPP and TIP all retained delta-opioid antagonist properties. The most potent analogue, [Ald3]TIPP, showed a K(e) value of 2.03 nM in the mouse vas deferens assay and five times higher delta vs. mu selectivity (K(i)mu/K(i)delta = 7930) than the TIPP parent peptide in the opioid receptor binding assays. Theoretical conformational analyses of [Ald3]TIPP and [Ald3]TIP using molecular mechanics calculations resulted in a number of low-energy conformers, including some showing various patterns of aromatic ring stacking and others with the Ald side chain and a carbonyl group (fluorescence quencher) in close proximity. These ensembles of low-energy conformers are in agreement with the results of steady-state fluorescence experiments (fluorescence emission maxima and quantum yields) and fluorescence decay measurements (fluorescence lifetime components), which indicated that the fluorophore was either engaged in intramolecular hydrophobic interactions or in proximity of a fluorescence quencher (e.g., a carbonyl group). These fluorescent TIP(P) delta-opioid antagonists represent valuable pharmacological tools for various applications, including studies on membrane interactions, binding to receptors, cellular uptake and intracellular distribution, and tissue distribution.  相似文献   

4.
Few gastrointestinal hormones/neurotransmitters have high affinity peptide receptor antagonists, and little is known about the molecular basis of their selectivity or affinity. The receptor mediating the action of the mammalian bombesin (Bn) peptide, gastrin-releasing peptide receptor (GRPR), is an exception, because numerous classes of peptide antagonists are described. To investigate the molecular basis for their high affinity for the GRPR, two classes of peptide antagonists, a statine analogue, JMV594 ([d-Phe(6),Stat(13)]Bn(6-14)), and a pseudopeptide analogue, JMV641 (d-Phe-Gln-Trp-Ala-Val-Gly-His-Leupsi(CHOH-CH(2))-(CH(2))(2)-CH(3)), were studied. Each had high affinity for the GRPR and >3,000-fold selectivity for GRPR over the closely related neuromedin B receptor (NMBR). To investigate the basis for this, we used a chimeric receptor approach to make both GRPR loss of affinity and NMBR gain of affinity chimeras and a site-directed mutagenesis approach. Chimeric or mutated receptors were transiently expressed in Balb/c 3T3. Only substitution of the fourth extracellular (EC) domain of the GRPR by the comparable NMBR domain markedly decreased the affinity for both antagonists. Substituting the fourth EC domain of NMBR into the GRPR resulted in a 300-fold gain in affinity for JMV594 and an 11-fold gain for JMV641. Each of the 11 amino acid differences between the GRPR and NMBR in this domain were exchanged. The substitutions of Thr(297) in GRPR by Pro from the comparable position in NMBR, Phe(302) by Met, and Ser(305) by Thr decreased the affinity of each antagonist. Simultaneous replacement of Thr(297), Phe(302), and Ser(305) in GRPR by the three comparable NMBR amino acids caused a 500-fold decrease in affinity for both antagonists. Replacing the comparable three amino acids in NMBR by those from GRPR caused a gain in affinity for each antagonist. Receptor modeling showed that each of these three amino acids faced inward and was within 5 A of the putative binding pocket. These results demonstrate that differences in the fourth EC domain of the mammalian Bn receptors are responsible for the selectivity of these two peptide antagonists. They demonstrate that Thr(297), Phe(302), and Ser(305) of the fourth EC domain of GRPR are the critical residues for determining GRPR selectivity and suggest that both receptor-ligand cation-pi interactions and hydrogen bonding are important for their high affinity interaction.  相似文献   

5.
A series of cyclic conformationally restricted penicillamine containing somatostatin octapeptide analogues have been prepared by standard solid phase synthetic techniques and tested for their ability to inhibit specific [125I]CGP 23,996 (des-Ala1-,Gly2-[desamino-Cys3Tyr11]-dicarba3, 14-somatostatin), [3H]naloxone or [3H]DPDPE ([D-Pen2-D-Pen5]enkephalin) binding in rat brain membrane preparations. We now report structure-activity relationship studies with the synthesis of our most potent and selective mu opioid receptor compound D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2, which we refer to as Cys2Tyr3Orn5Pen7-amide. While this octapeptide exhibited high affinity (IC50 = 2.80 nM) for an apparently single population of binding sites (nH = 0.89 +/- 0.1) and exceptional selectivity for mu opioid receptors with an IC50(DPDPE)/IC50 (naloxone) ratio of 4,829, it also displayed very low affinity for somatostatin receptors (IC50 = 22,700 nM). Thus, Cys2Tyr3Orn5Pen7-amide may be the ligand of choice for further characterization of mu opioid receptors and for examining the physiological role of this class of receptors.  相似文献   

6.
The syntheses of a number of different N-linked heterocyclic pyrazole replacements based on the structure 1 are described (compounds 3-12) as hD4 ligands. After further optimisation the best compound identified was 13 which has high affinity for hD4 (5.2 nM) and >300-fold selectivity for hD4 receptors over hD2 and hD3 receptors.  相似文献   

7.
Processing of the polyprotein precursor pro-dermorphin generates two distantly related D-amino acid-containing peptides, dermorphin and dermenkephalin, which are among the most selective high affinity agonists described, respectively, for the mu- and delta-opioid receptors. Dermenkephalin, Tyr-D-Met-Phe-His-Leu-Met-Asp-NH2, is a linear, potentially flexible peptide devoid of structural homology with either enkephalins, endorphins, or dynorphins and, as such, represents a useful tool for identifying determinants of high affinity and selective binding of opioids to the delta-receptor. A series of selected dermenkephalin analogs and homologs was investigated for affinity at the mu- and delta-sites in the brain. Whereas dermenkephalin has high affinity and specificity for the delta-opioid receptors, its tetrapeptide amino end, dermenkephalin-[1-4]-NH2 binds almost exclusively at the mu-receptors. Dermorphin, Tyr-D-Ala-Phe-Gly-Tyr-Pro-Ser-NH2, is only marginally more selective for the u-sites than is dermenkephalin-[1-4]-NH2. Using dermorphin-dermenkephalin peptide hybrids and C-terminal deletion analogs of dermenkephalin, we showed the critical role that the C-terminal residues Met6 and Asp7 play in specifying correct addressing of dermenkephalin toward delta-receptors. The potent mu-deteminant located within the amino end of dermenkephalin is over-whelmed by the powerful delta-directing ability of the carboxy end. The negatively charged side chain of Asp7 makes a significant contribution to the delta-addressing ability of the C-terminal region, a finding consistent with Schwyzer's membrane selection model (Schwyzer, R. (1986) Biochemistry 25, 6335-6342). The Leu residue in position 5 and D-configuration about the alpha-carbon of Met2 were found to be of crucial importance for high affinity binding to delta-receptors. Whereas the Met residue in position 6 in dermenkephalin could safely be oxidized or replaced with D-Met, oxidation of Met2 led to deleterious effects, this analog being 1/100 as potent as dermenkephalin at delta-sites. Overall, the data collected demonstrate that highest levels of selectivity and affinity for the delta-opioid receptors can be achieved with small-sized, potentially flexible, linear peptides and further support the model according to which, in addition to optimum accommodation at the receptor, selection for delta-receptors is reduced by the effective positive charge of the molecule. Dermenkephalin may provide a starting point for the design of agonists and antagonists with nearly total specificity for the delta-sites. Such pharmacological agents could be used to explore the ill-defined physiological role and behavioral actions conveyed by delta-opioid receptors.  相似文献   

8.
A series of 1-phenyl-2-cyclopropylmethylamines structurally related to (+)- and (-)-MPCB were synthesized and their binding affinities for sigma1, sigma2, opioid and dopamine (D2) receptors were evaluated. Substitution of the cis-N-normetazocine with different aminic moieties provided compounds with high affinity and selectivity for sigma binding sites with respect to opioid and dopamine (D2) receptors. The observed increase in sigma2 affinity as compared to the parent (+)-MPCB, supports the idea that the particular stereochemistry of (+)-cis-N-normetazocine affects sigma1 selectivity but does not affect sigma1 affinity. The (+/-)-cis isomers of methyl 2-[(1-adamantylamino)methyl]-1-phenylcyclopropane-1-carboxyl ate (18) displayed a higher affinity and selectivity for the sigma1 and sigma2 receptor subtypes compared to the (+/-)-trans 19. Interestingly, the enantiomer (-)-cis 18 displayed a preference for sigma1 receptor subtype whereas the (+)-cis 18 did for sigma2. These results prompt us to synthesize compounds with modification of nitrogen and carboxyl groups. The compounds obtained showed high affinities and selectivity for sigma sites. Moreover, modifications of carboxyl groups provided compounds with the highest affinities in the series. In particular, compound 25 with reverse-type ester showed a Ki of 0.6 and 4.05 nM for sigma1 and sigma2 binding sites, respectively.  相似文献   

9.
The usefulness of 2,6-dimethylphenylalanine (Dmp) as a Phe surrogate in two opioid peptides, dermorphin (DM) and deltorphin II (DT), was investigated. Compared to DM, [L-Dmp(3)]DM (1) showed a 170-fold increase in mu affinity and only a 4-fold increase in delta affinity, resulting in a 40-fold improvement in mu receptor selectivity. Compared to DT, [L-Dmp(3)]DT (3) showed a 22-fold increase in delta affinity and somewhat of a loss in mu affinity, and consequently a marked (75-fold) improvement in delta receptor selectivity. The D-Dmp replacement, however, resulted in a great loss in receptor selectivity in each of the peptides. The specific receptor interactions of 1 and 3 were confirmed by in vitro bioassays. Analogues 1 and 3 seem to be useful as pharmacological tools for the study of opioid systems.  相似文献   

10.
Initial experiments demonstrated that the hydantoin prostaglandin derivative, BW 245 C, has potent anti-aggregatory activity on human platelets which may result from its structural similarity with one of the natural prostaglandins. The aim of the present study was to extend this preliminary pharmacological characterization and to determine which, if any, prostaglandin receptor-type is responsible for mediating the biological activity of BW 245 C. A marked species variation was observed in the anti-aggregatory potency of BW 245 C such that in the human (0.36 X PGE1) it was about one hundred times more effective than in the rat (0.003 X PGE1). The relative potencies of PGI2 (ca. 10 X PGE1) and PGE1 were, however, similar in both species. An intravenous bolus injection of 250 micrograms/kg BW 245 C lowered systolic (-23%) and diastolic (-34%) blood pressure in spontaneously hypertensive rats. In radioligand binding studies it showed a high affinity and selectivity for PGD2 platelet receptors, binding to PGI2 or PGE2 receptors was not detectable. Therefore it is concluded that the platelet and cardiovascular actions of BW 245 C are mediated by PGD2 receptors and this accounts for the observed species variation which is a characteristic of this prostaglandin.  相似文献   

11.
A series of potential affinity label derivatives of the amphibian opioid peptide [D-Ala2]deltorphin I were prepared by incorporation at the para position of Phe3 (in the 'message' sequence) or Phe5 (in the 'address' sequence) of an electrophilic group (i.e. isothiocyanate or bromoacetamide). The introduction of the electrophile was accomplished by incorporating Fmoc-Phe(p-NHAlloc) into the peptide, followed later in the synthesis by selective deprotection of the Alloc group and modification of the resulting amine. While para substitution decreased the delta-opioid receptor affinity, selected analogs retained nanomolar affinity for delta receptors. [D-Ala2,Phe(p-NCS)3]deltorphin I exhibited moderate affinity (IC50=83 nM) and high selectivity for delta receptors, while the corresponding amine and bromoacetamide derivatives showed pronounced decreases in delta-receptor affinity (80- and >1200-fold, respectively, compared with [D-Ala2]deltorphin I). In the 'address' sequence, the Phe(p-NH2)5 derivative showed the highest delta-receptor affinity (IC50=32 nM), while the Phe(p-NHCOCH2Br)5 and Phe(p-NCS)5 peptides displayed four- and tenfold lower delta-receptor affinities, respectively. [D-Ala2,Phe(p-NCS)3]deltorphin I exhibited wash-resistant inhibition of [3H][D-Pen2,D-Pen5]enkephalin (DPDPE) binding to delta receptors at a concentration of 80 nM. [D-Ala2, Phe(p-NCS)3]deltorphin I represents the first affinity label derivative of one of the potent and selective amphibian opioid peptides, and the first electrophilic affinity label derivative of an agonist containing the reactive functionality in the 'message' sequence of the peptide.  相似文献   

12.
13.
Using clearance and brain penetration studies as a screen, tetrahydroisoquinoline 3 was identified as a lead having low clearance in rats (CLb 20 ml/min/kg). Introduction of a 7-CF3SO2O- substituent into the tetrahydroisoquinoline, followed by replacement of the biphenylamido group of 3 by a 3-indolylpropenamido group gave 31, having high D3 receptor affinity (pKi 8.4) and 150 fold selectivity over the D2 receptor.  相似文献   

14.
Karlsson E  Jolkkonen M  Mulugeta E  Onali P  Adem A 《Biochimie》2000,82(9-10):793-806
There are five subtypes of muscarinic acetylcholine receptors (M(1) to M(5)) which control a large number of physiological processes, such as the function of heart and smooth muscles, glandular secretion, release of neurotransmitters, gene expression and cognitive functions as learning and memory. A selective ligand is very useful for studying the function of a subtype in presence of other subtypes, which is the most common situation, since a cell or an organ usually has several subtypes. There are many non-selective muscarinic ligands, but only few selective ones. Mambas, African snakes of genus Dendroaspis have toxins, muscarinic toxins, that are selective for M(1), M(2) and M(4) receptors. They consist of 63-66 amino acids and four disulfides which form four loops. They are members of a large group of snake toxins, three-finger toxins; three loops are extended like the middle fingers of a hand and the disulfides and the shortest loop are in the palm of the hand. Some of the toxins target the allosteric site which is located in a cleft of the receptor molecule close to its extracellular part. A possible explanation to the good selectivity is that the toxins bind to the allosteric site, but because of their size they probably also bind to extracellular parts of the receptors which are rather different in the various subtypes. Some other allosteric ligands also have good selectivity, the alkaloid brucine and derivatives are selective for M(1), M(3) and M(4) receptors. Muscarinic toxins have been used in several types of experiments. For instance radioactively labeled M(1) and M(4) selective toxins were used in autoradiography of hippocampus from Alzheimer patients. One significant change in the receptor content was detected in one region of the hippocampus, dentate gyrus, where M(4) receptors were reduced by 50% in patients as compared to age-matched controls. Hippocampus is essential for memory consolidation. M(4) receptors in dentate gyrus may play a role, since they decreased in Alzheimers disease which destroys the memory. Another indication of the role of M(4) receptors for memory is that injection of the M(4) selective antagonist muscarinic toxin 3 (M(4)-toxin 1) into rat hippocampus produced amnesia.  相似文献   

15.
Specific, high affinity receptors for vasoactive intestinal peptide (VIP) have been identified on a human pre-B cell line, Nalm 6, and on a human plasma cell line, Dakiki. The single class of high affinity sites exhibited a KD of 12.6 +/- 2.9 nM for VIP in Nalm 6 cells and 9.1 +/- 2.7 nM in Dakiki plasma cells. The homologous peptides, peptide histidine methionine (PHM), growth hormone releasing factor (GHRF), and secretin were all less effective than VIP in competitively inhibiting binding of 125I-VIP to Nalm 6 and Dakiki plasma membranes. The putative receptor was characterized as a 47-kDa protein using covalent cross-linking techniques and VIP stimulated adenylate cyclase in pre-B cells. Human lymphocytes of B cell lineage thus appear to express functional VIP receptors homologous to the receptor identified in T lymphoblasts, brain, pituitary, and intestine.  相似文献   

16.
Desensitization and internalization of G protein-coupled receptors observed after agonist activation are considered two important regulatory processes of receptor transduction. Endogenous human delta-opioid receptors (hDOR) are differentially regulated in terms of desensitization by peptide ([d-Pen2,5]enkephalin (DPDPE) and Deltorphin I) and alkaloid (etorphine) agonists in the neuroblastoma cell line SK-N-BE (Allouche, S., Roussel, M., Marie, N., and Jauzac, P. (1999) Eur. J. Pharmacol. 371, 235-240). In the present study, we examined the role of hDOR internalization and down-regulation in this differential desensitization. Sustained activation by peptides for 30 min caused a marked decrease of both [3H]diprenorphine binding sites and hDOR immunoreactivity, observed in a Western blot, whereas a moderate reduction by 30% was observed after a 30- and 60-min etorphine exposure in binding experiments without opioid receptor degradation. Using fluorescence microscopy, we visualized hDOR internalization promoted by different agonists in SK-N-BE cells expressing FLAG-tagged hDOR. Agonist withdrawal results in a greater recycling process correlated with a stronger hDOR resensitization after etorphine treatment compared with DPDPE or Deltorphin I, as shown in binding, immunocytochemical, and functional experiments. This suggests a distinct sorting of opioid receptors after their internalization. We demonstrated a lysosomal hDOR targeting upon peptides by using chloroquine in binding, Western blot, and immunocytochemical experiments and by colocalization of this receptor with a late endosome marker. In contrast, when the recycling endosome blocker monensin was used, acceleration of desensitization associated with a strong intracellular immunostaining was observed upon etorphine treatment. The possibility of separate endocytic pathways responsible for the differential sorting of hDOR upon peptide and alkaloid ligand exposure was ruled out by binding and immunocytochemical experiments using sucrose hypertonic solution. First, these results showed complex relationships between hDOR internalization/down-regulation and desensitization. Second, we demonstrated for the first time that the same receptor could undergo a distinct sorting after internalization by peptide and alkaloid agonists.  相似文献   

17.
18.
19.
A new series of quinoline ether inhibitors, which potently and selectively inhibit PDGFR tyrosine kinases, is described in this Letter. Compounds 23 and 33 are selective, low nanomolar inhibitors of PDGFRα and β, display good pharmacokinetics in rat and dog and are active in vivo at low doses when given orally twice daily. Further evaluation of these compounds is warranted.  相似文献   

20.
Described is the synthesis of a fluorescent LacNAc derivative appended with a 3'-deoxy-3'-naphthamido functionality, 2-(fluorescein-5/6-amido)ethyl 3-deoxy-3-(2-naphthamido)-beta-D-galactopyranosyl-(1-->4)-2-acetamido-2-deoxy-beta-D-glucopyranoside, which confers high affinity (Kd 170 nM) and selectivity for galectin-3 via a stacking interaction with Arg144. Its use as a selective and sensitive galectin-3 probe is demonstrated with fluorescence polarization measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号