首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A specific and sensitive combined selection and enrichment PCR procedure was developed for the detection of Clostridium botulinum types B, E, and F in fecal samples from slaughtered pigs. Two enrichment PCR assays, using the DNA polymerase rTth, were constructed. One assay was specific for the type B neurotoxin gene, and the other assay was specific for the type E and F neurotoxin genes. Based on examination of 29 strains of C. botulinum, 16 strains of other Clostridium spp., and 48 non-Clostridium strains, it was concluded that the two PCR assays detect C. botulinum types B, E, and F specifically. Sample preparation prior to the PCR was based on heat treatment of feces homogenate at 70°C for 10 min, enrichment in tryptone-peptone-glucose-yeast extract broth at 30°C for 18 h, and DNA extraction. The detection limits after sample preparation were established as being 10 spores per g of fecal sample for nonproteolytic type B, and 3.0 × 103 spores per g of fecal sample for type E and nonproteolytic type F with a detection probability of 95%. Seventy-eight pig fecal samples collected from slaughter houses were analyzed according to the combined selection and enrichment PCR procedure, and 62% were found to be PCR positive with respect to the type B neurotoxin gene. No samples were positive regarding the type E and F neurotoxin genes, indicating a prevalence of less than 1.3%. Thirty-four (71%) of the positive fecal samples had a spore load of less than 4 spores per g. Statistical analysis showed that both rearing conditions (outdoors and indoors) and seasonal variation (summer and winter) had significant effects on the prevalence of C. botulinum type B, whereas the effects of geographical location (southern and central Sweden) were less significant.  相似文献   

2.
Botulism is diagnosed by detecting botulinum neurotoxin and Clostridium botulinum cells in the patient and in suspected food samples. In this study, a multiplex PCR assay for the detection of Clostridium botulinum types A, B, E, and F in food and fecal material was developed. The method employs four new primer pairs with equal melting temperatures, each being specific to botulinum neurotoxin gene type A, B, E, or F, and enables a simultaneous detection of the four serotypes. A total of 43 C. botulinum strains and 18 strains of other bacterial species were tested. DNA amplification fragments of 782 bp for C. botulinum type A alone, 205 bp for type B alone, 389 bp for type E alone, and 543 bp for type F alone were obtained. Other bacterial species, including C. sporogenes and the nontoxigenic nonproteolytic C. botulinum-like organisms, did not yield a PCR product. Sensitivity of the PCR for types A, E, and F was 10(2) cells and for type B was 10 cells per reaction mixture. With a two-step enrichment, the detection limit in food and fecal samples varied from 10(-2) spore/g for types A, B, and F to 10(-1) spore/g of sample material for type E. Of 72 natural food samples investigated, two were shown to contain C. botulinum type A, two contained type B, and one contained type E. The assay is sensitive and specific and provides a marked improvement in the PCR diagnostics of C. botulinum.  相似文献   

3.
Botulism is diagnosed by detecting botulinum neurotoxin and Clostridium botulinum cells in the patient and in suspected food samples. In this study, a multiplex PCR assay for the detection of Clostridium botulinum types A, B, E, and F in food and fecal material was developed. The method employs four new primer pairs with equal melting temperatures, each being specific to botulinum neurotoxin gene type A, B, E, or F, and enables a simultaneous detection of the four serotypes. A total of 43 C. botulinum strains and 18 strains of other bacterial species were tested. DNA amplification fragments of 782 bp for C. botulinum type A alone, 205 bp for type B alone, 389 bp for type E alone, and 543 bp for type F alone were obtained. Other bacterial species, including C. sporogenes and the nontoxigenic nonproteolytic C. botulinum-like organisms, did not yield a PCR product. Sensitivity of the PCR for types A, E, and F was 102 cells and for type B was 10 cells per reaction mixture. With a two-step enrichment, the detection limit in food and fecal samples varied from 10−2 spore/g for types A, B, and F to 10−1 spore/g of sample material for type E. Of 72 natural food samples investigated, two were shown to contain C. botulinum type A, two contained type B, and one contained type E. The assay is sensitive and specific and provides a marked improvement in the PCR diagnostics of C. botulinum.  相似文献   

4.
A degenerate primer pair was selected to amplify specifically a 260-bp DNA fragment from Clostridium botulinum types A, B, E, F, and G, and five individual probes allowed identification of each toxinotype by hybridization of the PCR products. The 72 strains of different Clostridium species tested and 11 other bacterial species commonly found in food samples gave an amplification product. This assay was able to detect 1 C. botulinum type A or B and 10 C. botulinum type E strains per reaction. With 184 artificially contaminated food samples, after an 18-h enrichment step, the sensitivity was 10 bacteria per g of sample and the correlation with the mouse bioassay reached 95.6%.  相似文献   

5.
The application of the polymerase chain reaction (PCR) for detection of Clostridium botulinum types A, B and E in foods, environmental and clinical samples was evaluated and compared to the mouse bioassay. Samples inoculated with 10, 100 and 1000 spores of Cl. botulinum types A and B included pasteurized milk, UHT milk, infant formula, infant faeces, meat juice, canned tuna, mushrooms, blood sausage and soil. Clostridium botulinum type E spores were inoculated into fish eggs, canned tuna, picked herring, raw fish and soil at similar levels. Spores were added to 2.5 g of each sample with the exception of soil which was inoculated in 10 g samples. The presence of Cl. botulinum in sample enrichments was determined by both PCR and the bioassay. An overall correlation of 95.6% was observed between PCR results and the mouse bioassay. Of the total of 114 samples tested there was disparity between the mouse bioassay and the PCR in three samples of soil inoculated with 100 type A or E spores and 10 type B spores per 10 g, respectively, and two samples of infant faeces inoculated with 10 type A or B spores per 2.5 g. All of these samples gave negative animal results and positive PCR results.  相似文献   

6.
An enrichment semi-nested PCR procedure was developed for detection of Clostridium botulinum types A, B, E, and F. It was applied to sediment samples to examine the prevalence of C. botulinum in the Korean environment. The first pair of primers for the semi-nested PCR was designed using a region shared by the types A, B, E, and F neurotoxin gene sequences, and the second round employed four nested primers complementary to the BoNT/A, /B, /E, and /F encoding genes for simultaneous detection of the four serotypes. Positive results were obtained from the PCR analysis of five of 44 sediments (11%) collected from Yeong-am Lake in Korea; all were identified as deriving from type B neurotoxin (bontb) genes. Two of the C. botulinum type B organisms were isolated, and their bontb genes sequenced. The deduced amino acid sequences of BoNT/B showed 99.5 and 99.8% identity with the amino acid sequence of accession no. AB084152. Our data suggest that semi-nested PCR is a useful tool for detecting C. botulinum in sediments, and renders it practicable to conduct environmental surveys.  相似文献   

7.
Honey can be used for the treatment of wounds, sores and skin bums, but it might be contaminated with Clostridium botulinum spores. In order to evaluate Costa Rican raw honey samples, the detection of neurotoxin gene sequences (corresponding to the bacterium) C. botulinum A, B, E and F was done with the polymerase chain reaction. A total of 64 raw honey samples, coming from different Costa Rican sites were analyzed. Reference C. botulinum strains type A (ATCC 19397), type B (ATCC 7949), type E (ATCC 17786) and type F (ATCC 25764) were used as templates for testing the effectivity of the method. The process consisted in culturing the honey samples in prereduced triptose-peptone-glucose-yeast extract media (TGPY) for 5 days. After this, the bacteria lysate obtained was used for PCR. The amplicons, product of the reaction, were visualized using agarose gel 2%. From the 64 honey samples analyzed, none produced positive results in the PCR, since no amplicons were obtained. Even though, all the reference C. botulinum strains used as controls were visualized and showed the effectivity of the extraction method and of the PCR used. The results obtained show promising therapeutic uses for honey from Costa Rica, but further evaluations shall be done in order to be sure of the safety of the product.  相似文献   

8.
Neurotoxins produced by strains of Clostridium sp. are belonging to the most toxic biological substances. In the study phenotypes and genotypes of C. botulinum strains in animal studies in vivo and on the DNA level were evaluated, respectively. Additionally, the presence of genes encoding BoNT toxins of A, B, and E types among strains of Clostridium sp. were identified. In case of C. botulinum DNA was isolated from vegetative bacterial cells and from spores. Two different genes encoding two different neurotoxins harboured by three strains of Ae biotype/ae genotype, and by two strains of B biotype/be genotype were detected. Additionally, above E type C. botulinum strains, the presence of gene encoding E type neurotoxin, was found in genome of two C. baratii, two C. butyricum, and C. bifidobacterium, and C. oedematicum strains. C. bifidobacterium and C. oedematicum strains positive for presence of gene encoding E type neurotoxin, were found negative for E neurotoxin production in vivo in TN test. The study indicates that genes encoding BoNT/E neurotoxins are very common among Clostridium species. Phenotype and genotype analysis indicated co-presence of B phenotype together with be genotype and A phenotype together with ae genotype among C. botulinum strains.  相似文献   

9.
Botulinum neurotoxin (BoNT) producing clostridia contain genes encoding a specific neurotoxin serotype (A-G) and nontoxic associated proteins that form the toxin complex. The nontoxic nonhemagglutinin (NTNH) is a conserved component of the toxin complex in all seven toxin types. A real-time PCR assay that utilizes a locked nucleic acid hydrolysis probe to target the NTNH gene was developed to detect bacterial strains harboring the botulinum neurotoxin gene cluster. The specificity of the assay for Clostridium botulinum types A-G, Clostridium butyricum type E and Clostridium baratii type F was demonstrated using a panel of 73 BoNT producing clostridia representing all seven toxin serotypes. In addition, exclusivity of the assay was demonstrated using non-botulinum toxin producing clostridia (7 strains) and various enteric bacterial strains (n=27). Using purified DNA, the assay had a sensitivity of 4-95 genome equivalents. C. botulinum type A was detected directly in spiked stool samples at 10(2)-10(3) CFU/ml. Stool spiked with 1 CFU/ml was detected when the sample was inoculated into enrichment broth and incubated for 24 h. These results indicate that the NTNH real-time PCR assay can be used to screen enrichment cultures of primary specimens at earlier time points (24 h) than by toxin detection of unknown culture supernatants (up to 5 days).  相似文献   

10.
Aims:  To develop real-time PCR assays for tracking and tracing clostridia responsible for human botulism.
Methods and Results:  Real-time PCR assays based on the detection of the genes ntnh encoding the nontoxin-nonhaemagglutinin (NTNH) proteins or the most homologous regions of the botulinum neurotoxin ( bont ) genes have been developed together with four real-time PCR assays, each being specific of the genes bont/A , bont/B , bont/E , bont/F and enables a toxin type-specific identification. The specificity of the assays was demonstrated using a panel of botulinum toxin producing clostridia (29 strains), nonbotulinum toxin producing clostridia (21 strains) and various other bacterial strains. The toxin type-specific assays had a sensitivity of 100 fg–1000 fg of total DNA in the PCR tube (25–250 genome equivalents) which correspond to 103 to 104 cells ml−1. After a 48 h enrichment in anaerobic conditions, these PCR assays allowed the detection of Clostridium botulinum type A in a naturally contaminated sample of 'foie gras' suspected in a C. botulinum outbreak.
Conclusion:  These PCR tests are specific and reliable for detection of heterogeneous BoNT producing clostridia responsible for human botulism.
Significance and Impact of the Study:  Adoption of these PCR assays is a step forward a reliable and rapid detection of these clostridia in food samples.  相似文献   

11.
The polymerase chain reaction (PCR) was used as the basis for the development of highly sensitive and specific diagnostic tests for organisms harboring botulinum neurotoxin type A through E genes. Synthetic DNA primers were selected from nucleic acid sequence data for Clostridium botulinum neurotoxins. Individual components of the PCR for each serotype (serotypes A through E) were adjusted for optimal amplification of the target fragment. Each PCR assay was tested with organisms expressing each of the botulinum neurotoxin types (types A through G), Clostridium tetani, genetically related nontoxigenic organisms, and unrelated strains. Each assay was specific for the intended target. The PCR reliably identified multiple strains having the same neurotoxin type. The sensitivity of the test was determined with different concentrations of genomic DNA from strains producing each toxin type. As little as 10 fg of DNA (approximately three clostridial cells) was detected. C. botulinum neurotoxin types A, B, and E, which are most commonly associated with human botulism, could be amplified from crude DNA extracts, from vegetative cells, and from spore preparations. This suggests that there is great potential for the PCR in the identification and detection of botulinum neurotoxin-producing strains.  相似文献   

12.
The prevalence of Clostridium botulinum types A, B, E, and F was determined in 214 fresh fish and environmental samples collected in Northern France. A newly developed PCR-enzyme-linked immunosorbent assay (ELISA) used in this survey detected more than 80% of samples inoculated with fewer than 10 C. botulinum spores per 25 g and 100% of samples inoculated with more than 30 C. botulinum spores per 25 g. The percent agreement between PCR-ELISA and mouse bioassay was 88.9%, and PCR-ELISA detected more positive samples than the mouse bioassay did. The prevalence of C. botulinum in seawater fish and sediment was 16.6 and 4%, respectively, corresponding to 3.5 to 7 and 1 to 2 C. botulinum most-probable-number counts, respectively, and is in the low range of C. botulinum contamination reported elsewhere. The toxin type identification of the 31 naturally contaminated samples was 71% type B, 22.5% type A, and 9.6% type E. Type F was not detected. The high prevalence of C. botulinum type B in fish samples is relatively unusual compared with the high prevalence of C. botulinum type E reported in many worldwide and northern European surveys. However, fish processing and fish preparation in France have not been identified as a significant hazard for human type B botulism.  相似文献   

13.
The TaqMan real-time PCR method for the quantitative detection of C. botulinum type A was developed based on sequence-specific hybridization probes. The validity of this assay was verified by using 10 genera of 20 strains, including reference strains of C. botulinum types A, B, C, D, E and F. The detection limit of this assay was evaluated on C. botulinum type A, using a 10-fold dilution series of DNA and spores . The DNA and spores were detected up to level of 0.1 ng/ml and 10(2)spores/ml, respectively. Spore spiked food sample preparation prior to the real-time PCR was performed by two methods, heat treatment and GuSCN. The detection limits after heat treatment showed 10(2) spores/ml for spiked sausage slurry, and 10(3) spores/ml for spiked canned corn slurry, while detection limits after GuSCN precipitation showed 10(2) spores/ml in both sausage and canned corn. Therefore the real-time PCR assay after GuSCN precipitation is useful for the quantification of C. botulinum type A because it showed identical CT values in both pure spore solutions and food slurries. We suggest that quantitative analysis of C. botulinum type A by TaqMan real-time PCR can be a rapid and accurate assessment method for botulinal risk in food samples.  相似文献   

14.
Aims:  To develop a convenient and rapid detection method for toxigenic Clostridium botulinum types A and B using a loop-mediated isothermal amplification (LAMP) method.
Methods and results:  The LAMP primer sets for the type A or B botulinum neurotoxin gene, BoNT / A or BoNT / B , were designed. To determine the specificity of the LAMP assay, a total of 14 C. botulinum strains and 17 other Clostridium strains were tested. The assays for the BoNT/A or BoNT/B gene detected only type A or B C. botulinum strains, respectively, but not other types of C. botulinum or strains of other Clostridium species. Using purified chromosomal DNA, the sensitivity of LAMP for the BoNT/A or BoNT/B gene was 1 pg or 10 pg of DNA per assay, respectively. The assay times needed to detect 1 ng of DNA were only 23 and 22 min for types A and B, respectively. In food samples, the detection limit per reaction was one cell for type A and 10 cells for type B.
Conclusions:  The LAMP is a sensitive, specific and rapid detection method for C. botulinum types A and B.
Significance and Impact of the Study:  The LAMP assay would be useful for detection of C. botulinum in environmental samples.  相似文献   

15.
Investigation of animal botulism outbreaks by PCR and standard methods   总被引:1,自引:0,他引:1  
Abstract A double PCR procedure is proposed for identification of Clostridium botulinum C and D. This method consists of a first PCR amplification with a degenerate primer pair able to amplify a 340 bp common DNA fragment from botulinum neurotoxin (BoNT) C1 and D genes, followed by two subsequent PCR amplifications with two primer pairs specific for BoNT/C1 and D respectively (198 bp DNA fragment). This method was found to be specific for C. botulinum C and D, amongst 81 strains of C. botulinum and 21 different species of other Clostridium and bacteria tested. The detection limit ranged from 10 to 103 bacteria in the reaction volume according to the C. botulinum C and D strains. In 160 naturally contaminated animal and food samples submitted to a 48 h enrichment culture, the double PCR showed an 89.4% correlation rate with the standard mouse bioassay. A clear distinction between botulism type C and D was obtained. The double PCR provides a reliable alternative for detection and identification of C. botulinum C and D in clinical and food samples.  相似文献   

16.
Denaturing high-performance liquid chromatography (DHPLC) is a recently developed technique for rapid screening of nucleotide polymorphisms in PCR products. We used this technique for the identification of type A, B, E, and F botulinum neurotoxin genes. PCR products amplified from a conserved region of the type A, B, E, and F botulinum toxin genes from Clostridium botulinum, neurotoxigenic C. butyricum type E, and C. baratii type F strains were subjected to both DHPLC analysis and sequencing. Unique DHPLC peak profiles were obtained with each different type of botulinum toxin gene fragment, consistent with nucleotide differences observed in the related sequences. We then evaluated the ability of this technique to identify botulinal neurotoxigenic organisms at the genus and species level. A specific short region of the 16S rRNA gene which contains genus-specific and in some cases species-specific heterogeneity was amplified from botulinum neurotoxigenic clostridia and from different food-borne pathogens and subjected to DHPLC analysis. Different peak profiles were obtained for each genus and species, demonstrating that the technique could be a reliable alternative to sequencing for the rapid identification of food-borne pathogens, specifically of botulinal neurotoxigenic clostridia most frequently implicated in human botulism.  相似文献   

17.
By the dilution-centrifugation method, 270 honey samples, both domestic and imported, were examined and Clostridium botulinum was detected in 23 samples (8.5%); type A in 11 samples, type B in two, type C in 10, and type F in one. Of 58 domestic honey samples, six (10%) were positive; three gave type A and the other two type C. Among imported honey samples, Chinese honey gave 12% positives (types A, B, and C) and Argentina honey 20% positives (types A and F). The incidence was higher with samples taken from drums (18%) and from apiaries (23%) than marketing honey (5%). It was estimated that most positive samples contained spores in one per gram or lower concentrations. One sample contained 4 type A spores per gram and another 36-60 type F spores per gram. No distinct biochemical properties were found with the honey isolates.  相似文献   

18.
Vegetative cells and spores of 10 strains of Clostridium botulinum representing types A, B, and E were grown in Trypticase-peptone-sucrose-yeast extract (TPSY) medium. Five type E strains were also grown in Multipeptone-sucrose-Nutramino acids (MSN) medium. Lyophilized samples were subjected to pyrolysis-gas-liquid chromatography (PGLC) analysis, and the resulting pyrograms were examined for variations in elution patterns between spores and vegetative cells of types A, B, and E grown in the TPSY medium and spores and vegetative cells of type E grown in the TPSY medium and spores and vegetative cells of type E grown in TPSY and MSN media. Growth and toxin production of all 10 strains of C. botulinum were investigated by using a modified dialysis sac culture technique. The dialysate supernatant fluid (DSF) obtained after centrifugation of the 5-day-old cultures from the dialysate was also subjected to PGLC analysis. Control samples consisting of (i) noninoculated DSF, (ii) noninoculated DSF plus partially purified toxin, and (iii) 1.0 mg of partially purified toxin were also analyzed by PGLC. Differences between pyrograms of cultures were suitable for positive identification at the type level but not at the strain level. Pyrograms permitting differentiation were also obtained between spores and vegetative cells as well as between the same cultures grown in different media. The dialysis sac technique was useful in detecting growth but not toxin production of C. botulinum.  相似文献   

19.
Denaturing high-performance liquid chromatography (DHPLC) is a recently developed technique for rapid screening of nucleotide polymorphisms in PCR products. We used this technique for the identification of type A, B, E, and F botulinum neurotoxin genes. PCR products amplified from a conserved region of the type A, B, E, and F botulinum toxin genes from Clostridium botulinum, neurotoxigenic C. butyricum type E, and C. baratii type F strains were subjected to both DHPLC analysis and sequencing. Unique DHPLC peak profiles were obtained with each different type of botulinum toxin gene fragment, consistent with nucleotide differences observed in the related sequences. We then evaluated the ability of this technique to identify botulinal neurotoxigenic organisms at the genus and species level. A specific short region of the 16S rRNA gene which contains genus-specific and in some cases species-specific heterogeneity was amplified from botulinum neurotoxigenic clostridia and from different food-borne pathogens and subjected to DHPLC analysis. Different peak profiles were obtained for each genus and species, demonstrating that the technique could be a reliable alternative to sequencing for the rapid identification of food-borne pathogens, specifically of botulinal neurotoxigenic clostridia most frequently implicated in human botulism.  相似文献   

20.
A PCR procedure was developed for the detection of Clostridium botulinum in foods. PCR products were detected in agarose gels and by Southern hybridization. The sensitivity of PCR was tested in broth cultures and in canned asparagus, dry cured ham and honey. The sensitivity of the method in broth was high (2·1–8·1 cfu ml−1) for types A and B, but rather low (104 cfu ml−1) for types E and F. However, after enrichment at 37°C for 18 h, it was possible to detect Cl. botulinum types A, B, E and F in food samples at initial levels of about 1 cfu 10 g−1 of food. This PCR detection protocol provides a sensitive and relatively rapid technique for the routine detection of Cl. botulinum in foods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号