首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We demonstrated previously that Xmsx-1 is involved in mesoderm patterning along the dorso-ventral axis, under the regulation of BMP-4 signaling. When Xmsx-1 RNA was injected into the dorsal blastomeres, a mass of muscle tissue formed instead of notochord. This activity was similar to that of Xwnt-8 reported previously. In this study, we investigated whether the activity of Xmsx-1 is related to the ventralizing signal and myogenesis promoting factor, Xwnt-8. Whole-mount in situ hybridization showed that Xmsx-1, Xwnt-8, and XmyoD were expressed in overlapping areas, including the ventro-lateral marginal zone at mid-gastrula stage. The expression of XmyoD was induced by the ectopic expression of either Xmsx-1 or Xwnt-8 in dorsal blastomeres, and Xwnt-8 was induced by the ectopic expression of Xmsx-1. On the other hand, the expression of Xmsx-1 was not affected by the loading of pCSKA-Xwnt-8 or dominant-negative Xwnt-8 (DN-Xwnt-8) RNA. In addition, Xmsx-1 RNA did not abrogate the formation of notochord if coinjected with DN-Xwnt-8 RNA. These results suggest that Xmsx-1 functions upstream of the Xwnt-8 signal. Furthermore, the antagonistic function of Xmsx-1 to the expression of organizer genes, such as Xlim-1 and goosecoid, was shown by in situ hybridization analysis and luciferase reporter assay using the goosecoid promoter construct. Finally if Xmsx-1/VP-16 fusion RNA, which was expected to function as a dominant-negative Xmsx-1, was injected into ventral blastomeres, a partial secondary axis formed in a significant number of embryos. In such embryos, the activity of luciferase, under the control of goosecoid promoter sequence, was significantly elevated at gastrula stage. These results led us to conclude that Xmsx-1 plays a central role in establishing dorso-ventral axis in gastrulating embryo, by suppressing the expression of organizer genes.  相似文献   

3.
The cAMP signaling system has been postulated to be involved in embryogenesis of many animal species, however, little is known about its role in embryonic axis formation in vertebrates. In this study, the role of the cAMP signaling pathway in patterning the body plan of the Xenopus embryo was investigated by expressing and activating the exogenous human 5-hydroxytryptamine type 1a receptor (5-HT(1a)R) which inhibits adenylyl cyclase through inhibitory G-protein in embryos in a spatially- and temporally-controlled manner. In embryos, ventral, but not dorsal expression and stimulation of this receptor during blastula and gastrula stages induced secondary axes but were lacking anterior structures. At the molecular level, 5-HT(1a)R stimulation induced expression of the dorsal mesoderm marker genes, and downregulated expression of the ventral markers but had no effect on expression of the pan mesodermal marker gene in ventral marginal zone explants. In addition, ventral expression and stimulation of the receptor partially restored dorsal axis of UV-irradiated axis deficient embryo. Finally, the total mass of cAMP differs between dorsal and ventral regions of blastula and gastrula embryos and this is regulated in a temporally-specific manner. These results suggest that the cAMP signaling system may be involved in the transduction of ventral signals in patterning early embryos.  相似文献   

4.
5.
M S Saha  R M Grainger 《Neuron》1992,8(6):1003-1014
The process by which the vertebrate central nervous system acquires its regional properties remains a central problem in developmental biology. It is generally argued that at early gastrula stages the dorsal mesoderm possesses precise anterior-posterior positional information, which is subsequently imparted to the overlying ectoderm. However, using regionally specific gene probes to monitor regional responses in Xenopus embryos, we find that anterior-posterior properties are not fixed until early neurula stages. During gastrulation the regional inducing capacities of the dorsal mesoderm as well as the regional responses of the presumptive neural ectoderm are activated along the entire anterior-posterior axis when these properties are assayed in recombinant and explant experiments, respectively. Restriction of regional inducing capacity in the mesoderm and responsiveness in the neural ectoderm occur only at neural plate stages.  相似文献   

6.
The formation of mesoderm is an important developmental process of vertebrate embryos, which can be broken down into several steps; mesoderm induction, patterning, morphogenesis and differentiation. Although mesoderm formation in Xenopus has been intensively studied, much remains to be learned about the molecular events responsible for each of these steps. Furthermore, the interplay between mesoderm induction, patterning and morphogenesis remains obscure. Here, we describe an enhanced functional screen in Xenopus designed for large-scale identification of genes controlling mesoderm formation. In order to improve the efficiency of the screen, we used a Xenopus tropicalis unique set of cDNAs, highly enriched in full-length clones. The screening strategy incorporates two mesodermal markers, Xbra and Xmyf-5, to assay for cell fate specification and patterning, respectively. In addition we looked for phenotypes that would suggest effects in morphogenesis, such as gastrulation defects and shortened anterior-posterior axis. Out of 1728 full-length clones we isolated 82 for their ability to alter the phenotype of tadpoles and/or the expression of Xbra and Xmyf-5. Many of the clones gave rise to similar misexpression phenotypes (synphenotypes) and many of the genes within each synphenotype group appeared to be involved in similar pathways. We determined the expression pattern of the 82 genes and found that most of the genes were regionalized and expressed in mesoderm. We expect that many of the genes identified in this screen will be important in mesoderm formation.  相似文献   

7.
8.
9.
10.
The dorsal-specific homeobox gene goosecoid (gsc) and the bone morphogenetic protein 4 gene (BMP-4) are expressed in complementary regions of the Xenopus gastrula. Injection of gsc mRNA dorsalizes ventral mesodermal tissue and can induce axis formation in normal and UV-ventralized embryos. On the other hand, BMP-4 mRNA injection, which has a strong ventralizing effect on whole embryos, has been implicated in ventralization by UV, and can rescue tail structures in embryos dorsalized by LiCl. The above-mentioned putative roles for BMP-4 and gsc are based on gain-of-function experiments. In order to determine the in vivo role of these two genes in the patterning of the Xenopus mesoderm during gastrulation, partial loss-of-function experiments were performed using antisense RNA injections. Using marker genes that are expressed early in gastrulation, we show that antisense gsc RNA has a ventralizing effect on embryos, whereas antisense BMP-4 RNA dorsalizes mesodermal tissue. These loss-of-function studies also show a requirement for gsc and BMP-4 in the dorsalization induced by LiCl and in the ventralization generated by UV irradiation, respectively. Thus, both gain- and loss-of-function results for gsc and BMP-4 support the view that these two genes are necessary components of the dorsal and ventral patterning pathways in Xenopus embryos.  相似文献   

11.
12.
13.
14.
15.
16.
17.
Signaling triggered by polypeptide growth factors leads to the activation of their target genes. Several homeobox genes are known to be induced in response to polypeptide growth factors in early Xenopus development. In particular, Xmsx-1, an amphibian homologue of vertebrate Msx-1, is well characterized as a target gene of bone morphogenetic protein (BMP). Here, using a dominant-negative form of Xmsx-1 (VP-Xmsx-1), which is a fusion protein made with the virus-derived VP16 activation domain, we have examined whether Xmsx-1 activity is required in the endogenous ventralizing pathway. VP-Xmsx-1 induced a secondary body axis, complete with muscle and neural tissues, when overexpressed in ventral blastomeres, suggesting that Xmsx-1 activity is necessary for both mesoderm and ectoderm to be ventralized. We have also examined the epistatic relationship between Xmsx-1 and another ventralizing homeobox protein, Xvent-1, and show that Xmsx-1 is likely to be acting upstream of Xvent-1. We propose that Xmsx-1 is required in the BMP-stimulated ventralization pathway that involves the downstream activation of Xvent-1.  相似文献   

18.
19.
Studies of morphogenesis in early Xenopus embryos have focused primarily on gastrulation and neurulation. Immediately following these stages is another period of intense morphogenetic activity, the neurula-to-tailbud transition. During this period the embryo is transformed from the spherical shape of the early stages into the long, thin shape of the tailbud stages. While gastrulation and neurulation depend largely on active cell rearrangement and cell shape changes in dorsal tissues, we find that the neurula-to-tailbud transition depends in part on activities of ventral cells. Ventral explants of neurula lengthen autonomously as much as the ventral sides of intact embryos, while dorsal explants lengthen less than the dorsal sides of intact embryos. Analyses of cell division, cell shapes, and cell rearrangement by transplantation of labeled cells and by time lapse recordings in live intact embryos concur that cell rearrangements in ventral mesoderm and ectoderm contribute to the autonomous anterior-posterior axis lengthening of ventral explants between neurula and tailbud stages.  相似文献   

20.
C R Sharpe 《Neuron》1991,7(2):239-247
In the frog Xenopus laevis, signals from the mesoderm divert part of the ectoderm from an epidermal to a neural fate. In the course of neural induction, the neurectoderm also acquires anterior-posterior polarity. In this report, the early expression of two genes, XlHbox6 and the neurofilament gene XIF6, is examined. The pattern of expression of the two genes seen in the tailbud embryo develops progressively over a 4 hr period following gastrulation. Physiological concentrations of retinoic acid can mimic this effect in isolated embryonic explants, consistent with the involvement of retinoic acid, or a closely related molecule, in localizing gene expression along the anterior-posterior axis of the neural tube.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号