首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since generalist predators feed on a variety of prey species they tend to persist in an ecosystem even if one particular prey species is absent. Predation by generalist predators is typically characterized by a sigmoidal functional response, so that predation pressure for a given prey species is small when the density of that prey is low. Many mathematical models have included a sigmoidal functional response into predator–prey equations and found the dynamics to be more stable than for a Holling type II functional response. However, almost none of these models considers alternative food sources for the generalist predator. In particular, in these models, the generalist predator goes extinct in the absence of the one focal prey. We model the dynamics of a generalist predator with a sigmoidal functional response on one dynamic prey and fixed alternative food source. We find that the system can exhibit up to six steady states, bistability, limit cycles and several global bifurcations.  相似文献   

2.
It is well‐known that prey species often face trade‐offs between defense against predation and competitiveness, enabling predator‐mediated coexistence. However, we lack an understanding of how the large variety of different defense traits with different competition costs affects coexistence and population dynamics. Our study focusses on two general defense mechanisms, that is, pre‐attack (e.g., camouflage) and post‐attack defenses (e.g., weaponry) that act at different phases of the predator—prey interaction. We consider a food web model with one predator, two prey types and one resource. One prey type is undefended, while the other one is pre‐ or post‐attack defended paying costs either by a higher half‐saturation constant for resource uptake or a lower maximum growth rate. We show that post‐attack defenses promote prey coexistence and stabilize the population dynamics more strongly than pre‐attack defenses by interfering with the predator's functional response: Because the predator spends time handling “noncrackable” prey, the undefended prey is indirectly facilitated. A high half‐saturation constant as defense costs promotes coexistence more and stabilizes the dynamics less than a low maximum growth rate. The former imposes high costs at low resource concentrations but allows for temporally high growth rates at predator‐induced resource peaks preventing the extinction of the defended prey. We evaluate the effects of the different defense mechanisms and costs on coexistence under different enrichment levels in order to vary the importance of bottom‐up and top‐down control of the prey community.  相似文献   

3.
We analyze simple models of predator-prey systems in which there is adaptive change in a trait of the prey that determines the rate at which it is captured by searching predators. Two models of adaptive change are explored: (1) change within a single reproducing prey population that has genetic variation for vulnerability to capture by the predator; and (2) direct competition between two independently reproducing prey populations that differ in their vulnerability. When an individual predator's consumption increases at a decreasing rate with prey availability, prey adaptation via either of these mechanisms may produce sustained cycles in both species' population densities and in the prey's mean trait value. Sufficiently rapid adaptive change (e.g., behavioral adaptation or evolution of traits with a large additive genetic variance), or sufficiently low predator birth and death rates will produce sustained cycles or chaos, even when the predator-prey dynamics with fixed prey capture rates would have been stable. Adaptive dynamics can also stabilize a system that would exhibit limit cycles if traits were fixed at their equilibrium values. When evolution fails to stabilize inherently unstable population interactions, selection decreases the prey's escape ability, which further destabilizes population dynamics. When the predator has a linear functional response, evolution of prey vulnerability always promotes stability. The relevance of these results to observed predator-prey cycles is discussed.  相似文献   

4.
Intraguild predation (IGP) is a combination of competition and predation which is the most basic system in food webs that contains three species where two species that are involved in a predator/prey relationship are also competing for a shared resource or prey. We formulate two intraguild predation (IGP: resource, IG prey and IG predator) models: one has generalist predator while the other one has specialist predator. Both models have Holling-Type I functional response between resource-IG prey and resource-IG predator; Holling-Type III functional response between IG prey and IG predator. We provide sufficient conditions of the persistence and extinction of all possible scenarios for these two models, which give us a complete picture on their global dynamics. In addition, we show that both IGP models can have multiple interior equilibria under certain parameters range. These analytical results indicate that IGP model with generalist predator has “top down” regulation by comparing to IGP model with specialist predator. Our analysis and numerical simulations suggest that: (1) Both IGP models can have multiple attractors with complicated dynamical patterns; (2) Only IGP model with specialist predator can have both boundary attractor and interior attractor, i.e., whether the system has the extinction of one species or the coexistence of three species depending on initial conditions; (3) IGP model with generalist predator is prone to have coexistence of three species.  相似文献   

5.
Simple models are used to explore how adaptive changes in prey vulnerability alter the population response of their predator to increased mortality. If the mortality is an imposed harvest, the change in prey vulnerability also influences the relationship between harvest effort and yield of the predator. The models assume that different prey phenotypes share a single resource, but have different vulnerabilities to the predator. Decreased vulnerability is assumed to decrease resource consumption rate. Adaptive change may occur by phenotypic changes in the traits of a single species or by shifts in the abundances of a pair of coexisting species or morphs. The response of the predator population is influenced by the shape of the predator's functional response, the shape of resource density dependence, and the shape of the tradeoff between vulnerability and food intake in the prey. Given a linear predator functional response, adaptive prey defense tends to produce a decelerating decline in predator population size with increased mortality. Prey defense may also greatly increase the range of mortality rates that allow predator persistence. If the predator has a type-2 response with a significant handling time, adaptive prey defense may have a greater variety of effects on the predator's response to mortality, sometimes producing alternative attractors, population cycles, or increased mean predator density. Situations in which there is disruptive selection on prey defense often imply a bimodal change in yield as a function of harvesting effort, with a minimum at intermediate effort. These results argue against using single-species models of density dependent growth to manage predatory species, and illustrate the importance of incorporating anti-predator behavior into models in applied population ecology.  相似文献   

6.
Two or more competing predators can coexist using a single homogeneous prey species if the system containing all three undergoes internally generated fluctuations in density. However, the dynamics of species that coexist via this mechanism have not been extensively explored. Here, we examine both the nature of the dynamics and the responses of the mean densities of each predator to mortality imposed upon it or its competitor. The analysis of dynamics uncovers several previously undescribed behaviors for this model, including chaotic fluctuations, and long-term transients that differ significantly from the ultimate patterns of fluctuations. The limiting dynamics of the system can be loosely classified as synchronous cycles, asynchronous cycles, and chaotic dynamics. Synchronous cycles are simple limit cycles with highly positively correlated densities of the two predator species. Asynchronous cycles are limit cycles, frequently of complex form, including a significant period during which prey density is nearly constant while one predator gradually, monotonically replaces the other. Chaotic dynamics are aperiodic and generally have intermediate correlations between predator densities. Continuous changes in density-independent mortality rates often lead to abrupt transitions in mean population sizes, and increases in the mortality rate of one predator may decrease the population size of the competing predator. Similarly, increases in the immigration rate of one predator may decrease its own density and increase the density of the other predator. Proportional changes in one predator's birth and death rate functions can have significant effects on the dynamics and mean densities of both predator species. All of these responses to environmental change differ from those observed when competitors coexist stably as the result of resource (prey) partitioning. The patterns described here occur in many other competition models in which there are cycles and differences in the linearity of the responses of consumers to their resources.  相似文献   

7.
Protozoa are key components of a wide range of ecosystems, but ecological models that incorporate these microbes often suffer from poor parameterisation, specifically of top-level predator loss rates. We (1) suggest that top-level predator mortality is prey-dependent, (2) provide a novel approach to assess this response, and (3) illustrate the ecological relevance of these findings. Ciliates, Paramecium caudatum (prey) and Didinium nasutum (predator), were used to evaluate predator mortality at varying prey levels. To assess mortality, multiple (>100) predators were individually examined (in 2-ml wells), daily (for 3 days), between 0 and 120 preys ml−1. Data were used to determine non-linear mortality and growth responses over a range of prey abundances. The responses, plus literature data were then used to parameterise a predator–prey model, based on the Rosenzweig–MacArthur structure. The model assessed the impact of variable and three levels of constant (high, average and low) mortality rates on P. caudatum–D. nasutum population dynamics. Our method to determine variable mortality rate revealed a strong concave decline in mortality with increasing prey abundance. The model indicated: (1) high- and low-constant mortality rates yielded dynamics that deviate substantially from those obtained from a variable rate; (2) average mortality rate superficially produced dynamics similar to the variable rate, but there were differences in the period of predator–prey cycles, and the lowest abundance of prey and predators (by ~2 orders of magnitude). The differences between incorporating variable and constant mortality rate indicate that including a variable rate could substantially improve microbial-based ecological models.  相似文献   

8.
 General dynamic models of systems with two prey and one or two predators are considered. After rescaling the equations so that both prey have the same intrinsic rate of growth, it is shown that there exists a generalist predator that can mediate permanence if and only if there is a population density of a prey at which its per-capita growth rate is positive yet less than its competitor’s invasion rate. In particular, this result implies that if the outcome of competition between the prey is independent of initial conditions, then there exists a generalist predator that mediates permanence. On the other hand, if the outcome of competition is contingent upon initial conditions (i.e., the prey are bistable), then there may not exist a suitable generalist predator. For example, bistable prey modeled by the Ayala–Gilpin (θ-Logistic) equations can be stabilized if and only if θ<1 for one of the prey. It is also shown that two specialist predators always can mediate permanence between bistable prey by creating a repelling heteroclinic cycle consisting of fixed points and limit cycles. Received 10 August 1996; received in revised form 21 March 1997  相似文献   

9.
I analyze the dynamics of predator and prey populations living in two patches. Within a patch the prey grow logistically and the predators have a Holling type II functional response. The two patches are coupled through predator migration. The system can be interpreted as a simple predator-prey metapopulation or as a spatially explicit predator-prey system. Asynchronous local dynamics are presumed by metapopulation theory. The main question I address is when synchronous and when asynchronous dynamics arise. Contrary to biological intuition, for very small migration rates the oscillations always synchronize. For intermediate migration rates the synchronous oscillations are unstable and I found periodic, quasi-periodic, and intermittently chaotic attractors with asynchronous dynamics. For large predator migration rates, attractors in the form of equilibria or limit cycles exist in which one of the patches contains no prey. The dynamical behavior of the system is described using bifurcation diagrams. The model shows that spatial predator-prey populations can be regulated through the interplay of local dynamics and migration.  相似文献   

10.
Satiation and the functional response: a test of a new model   总被引:1,自引:0,他引:1  
Abstract. 1. A model of the functional response to prey density is derived to include the reduction in time available for search, Ts , resulting from predator satiation.
2. For larger prey items predator satiation occurs at each prey capture and Ts is reduced by the attack time and digestive pause of a series of attack cycles. For small prey items predator foraging is continuous at low densities with Ts reduced solely by attack time. At higher densities predator satiation occurs after the capture of several small prey items and Ts is reduced by the attack time and digestive pause of a series of foraging cycles.
3. A comparison of the predicted asymptotic level of prey capture using experimentally estimated parameter values, with the maximum consumption of aphids by larval and adult coccinellids provides a test of the satiation model.
4. The limitation of prey capture by predator satiation is discussed with reference to handling time and the success of coccinellids in biological control.  相似文献   

11.
Multiple limit cycles for predator-prey models   总被引:3,自引:0,他引:3  
We construct a Gause-type predator-prey model with concave prey isocline and (at least) two limit cycles. This serves as a counter-example to the global stability criterion of Hsu [Math. Biosci. 39:1-10 (1978)].  相似文献   

12.
We model a chemostat containing an age-structured predator and its prey using a linear function for the uptake of substrate by the prey and two different functional responses (linear and Monod) for the consumption of prey by the predator. Limit cycles (LCs) caused by the predator's age structure arise at Hopf bifurcations at low values of the chemostat dilution rate for both model cases. In addition, LCs caused by the predator–prey interaction arise for the case with the Monod functional response. At low dilution rates in the Monod case, the age structure causes cycling at lower values of the inflowing resource concentration and conversely prevents cycling at higher values of the inflowing resource concentration. The results shed light on a similar model by Fussmann et al. [G. Fussmann, S. Ellner, K. Shertzer, and N. Hairston, Crossing the Hopf bifurcation in a live predator–prey system, Science 290 (2000), pp. 1358–1360.], which correctly predicted conditions for the onset of cycling in a chemostat containing an age-structured rotifer population feeding on algal prey.  相似文献   

13.
In this paper, we analyze a laissez-faire predator-prey model and a Leslie-type predator-prey model with type I functional responses. We study the stability of the equilibrium where the predator and prey coexist by both performing a linearized stability analysis and by constructing a Lyapunov function. For the Leslie-type model, we use a generalized Jacobian to determine how eigenvalues jump at the corner of the functional response. We show, numerically, that our two models can both possess two limit cycles that surround a stable equilibrium and that these cycles arise through global cyclic-fold bifurcations. The Leslie-type model may also exhibit super-critical and discontinuous Hopf bifurcations. We then present and analyze a new functional response, built around the arctangent, that smoothes the sharp corner in a type I functional response. For this new functional response, both models undergo Hopf, cyclic-fold, and Bautin bifurcations. We use our analyses to characterize predator-prey systems that may exhibit bistability.  相似文献   

14.
A model for two competing prey species and one predator is formulated in which three essential nutrients can limit growth of all populations. Prey take up dissolved nutrients and predators ingest prey, assimilating a portion of ingested nutrients and recycling or respiring the balance. For all species, the nutrient contents of individuals vary and growth is coupled to increasing content of the limiting nutrient. This model was parameterized to describe a flagellate preying on two bacterial species, with carbon (C), nitrogen (N), and phosphorus (P) as nutrients. Parameters were chosen so that the two prey species would stably coexist without predators under some nutrient supply conditions. Using numerical simulations, the long-term outcomes of competition and predation were explored for a gradient of N:P supply ratios, varying C supply, and varying preference of the predator for the two prey. Coexistence and competitive exclusion both occurred under some conditions of nutrient supply and predator preference. As in simpler models of competition and predation these outcomes were largely governed by apparent competition mediated by the predator, and resource competition for nutrients whose effective supply was partly governed by nutrient recycling also mediated by the predator. For relatively small regions of parameter space, more complex outcomes with multiple attractors or three-species limit cycles occurred. The multiple constraints posed by multiple nutrients held the amplitudes of these cycles in check, limiting the influence of complex dynamics on competitive outcomes for the parameter ranges explored.  相似文献   

15.
This article re-analyses a prey-predator model with a refuge introduced by one of the founders of population ecology Gause and his co-workers to explain discrepancies between their observations and predictions of the Lotka-Volterra prey-predator model. They replaced the linear functional response used by Lotka and Volterra by a saturating functional response with a discontinuity at a critical prey density. At concentrations below this critical density prey were effectively in a refuge while at a higher densities they were available to predators. Thus, their functional response was of the Holling type III. They analyzed this model and predicted existence of a limit cycle in predator-prey dynamics. In this article I show that their model is ill posed, because trajectories are not well defined. Using the Filippov method, I define and analyze solutions of the Gause model. I show that depending on parameter values, there are three possibilities: (1) trajectories converge to a limit cycle, as predicted by Gause, (2) trajectories converge to an equilibrium, or (3) the prey population escapes predator control and grows to infinity.  相似文献   

16.
Two experiments on the nymphal predation of Podisus maculiventris were conducted using Spodoptera litura larvae as prey. First experiment: The predator nymphs divided into three groups were reared individually from second instar to adult in a small vessel. Each nymph in the groups 1, 2 and 3 was allowed to attack the serially growing larvae (these were supplied at the rate of one per day) from 3-, 5- and 7-day old after hatching, respectively. The first prey used for the group 1 was so small that it was not only insufficient to satiate the predator but also was difficult to be searched out. But these disadvantages were soon recuperated due to the rapid growth of the prey and all nymphs could survive to adults. The survival rate of third and fourth instar nymphs in the group 3 was severely affected by vigorous counterattack of older prey larvae. Second experiment: The predator nymphs were individually reared either in a small vessel or in a large one at various rates of food supply (the prey larvae of 7-day old were used). The functional response curves obtained for each instar of the predator took a saturation type within a certain range of the prey density. The saturation level specific to each instar was generally higher for the predator reared in the large vessel than in the small one. The functional response of fourth and fifth instar nymphs was accelerated at a high prey density, viz. 16 larvae per vessel. Even at the low rate of food supply, viz. one larva per day per predator, the predator nymphs could survive to adults, but the size of resultant adults were abnormally small.  相似文献   

17.
We consider a two-trophic ecological model comprising of two predators competing for their common prey. We cast the model into the framework of a singular perturbed system of equations in one fast variable (prey population density) and two slow variables (predator population densities), mimicking the common observation that the per-capita productivity rate decreases from bottom to top along the trophic levels in Nature. We assume that both predators exhibit Holling II functional response with one of the predators (territorial) having a density dependent mortality rate. Depending on the system parameters, the model exhibits small, intermediate and/or large fluctuations in the population densities. The large fluctuations correspond to periodic population outbreaks followed by collapses (commonly known as cycles of “boom and bust”). The small fluctuations arise due to a singular Hopf bifurcation in the system, and are ecologically more desirable. However, more interestingly, the system exhibits mixed-mode oscillations (which are concatenations of the large amplitude oscillations and the small amplitude oscillations) that indicate the adaptability of the species to prolong the time gap between successive cycles of boom and bust. Numerical simulations are carried out to demonstrate the extreme sensitivity of the system to initial conditions (chaos and bistability of limit cycles are observed) as well as to the system parameters (here we only show the sensitivity to the density dependent mortality rate of the territorial predator). This model throws light at the uncertainties in long term behaviors that are associated with a real ecological system. We show that even very small changes in the system parameters due to natural or human-induced causes can lead to a complete different ecological phenomenon, thus affecting the predictability of the density of the prey population. In this paper, we explain the mechanisms behind the irregular fluctuations in the population sizes in an attempt to understand the dynamics occurring in a natural population and also comment on the inherent uncertainties associated with the system.  相似文献   

18.
The paper presents the study of one prey one predator harvesting model with imprecise biological parameters. Due to the lack of precise numerical information of the biological parameters such as prey population growth rate, predator population decay rate and predation coefficients, we consider the model with imprecise data as form of an interval in nature. Many authors have studied prey–predator harvesting model in different form, here we consider a simple prey–predator model under impreciseness and introduce parametric functional form of an interval and then study the model. We identify the equilibrium points of the model and discuss their stabilities. The existence of bionomic equilibrium of the model is discussed. We study the optimal harvest policy and obtain the solution in the interior equilibrium using Pontryagin’s maximum principle. Numerical examples are presented to support the proposed model.  相似文献   

19.
Predator feeding rates (described by their functional response) must saturate at high prey densities. Although thousands of manipulative functional response experiments show feeding rate saturation at high densities under controlled conditions, it remains unclear how saturated feeding rates are at natural prey densities. The general degree of feeding rate saturation has important implications for the processes determining feeding rates and how they respond to changes in prey density. To address this, we linked two databases—one of functional response parameters and one on mass–abundance scaling—through prey mass to calculate a feeding rate saturation index. We find that: (1) feeding rates may commonly be unsaturated and (2) the degree of saturation varies with predator and prey taxonomic identities and body sizes, habitat, interaction dimension and temperature. These results reshape our conceptualisation of predator–prey interactions in nature and suggest new research on the ecological and evolutionary implications of unsaturated feeding rates.  相似文献   

20.
In food webs heavily influenced by multi‐annual population fluctuations of key herbivores, predator species may differ in their functional and numerical responses as well as their competitive ability. Focusing on red and arctic fox in tundra with cyclic populations of rodents as key prey, we develop a model to predict how population dynamics of a dominant and versatile predator (red fox) impacted long‐term growth rate of a subdominant and less versatile predator (arctic fox). We compare three realistic scenarios of red fox performance: (1) a numerical response scenario where red fox acted as a resident rodent specialist exhibiting population cycles lagging one year after the rodent cycle, (2) an aggregative response scenario where red fox shifted between tundra and a nearby ecosystem (i.e. boreal forest) so as to track rodent peaks in tundra without delay, and (3) a constant subsidy scenario in which the red fox population was stabilized at the same mean density as in the other two scenarios. For all three scenarios it is assumed that the arctic fox responded numerically as a rodent specialist and that the mechanisms of competition is of a interference type for space, in which the arctic fox is excluded from the most resource rich patches in tundra. Arctic fox is impacted most by the constant subsidy scenario and least by the numerical response scenario. The differential effects of the scenarios stemmed from cyclic phase‐dependent sensitivity to competition mediated by changes in temporal mean and variance of available prey to the subdominant predator. A general implication from our result is that external resource subsidies (prey or habitats), monopolized by the dominant competitor, can significantly reduce the likelihood for co‐existence within the predator guild. In terms of conservation of vulnerable arctic fox populations this means that the likelihood of extinction increases with increasing amount of subsidies (e.g. carcasses of large herbivores or marine resources) in tundra and nearby forest areas, since it will act to both increase and stabilize populations of red fox.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号