首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《The Journal of cell biology》1993,123(5):1223-1236
Ensheathment and myelination of axons by Schwann cells in the peripheral nervous system requires contact with a basal lamina. The molecular mechanism(s) by which the basal lamina promotes myelination is not known but is likely to reflect the activity of integrins expressed by Schwann cells. To initiate studies on the role of integrins during myelination, we characterized the expression of two integrin subunits, beta 1 and beta 4, in an in vitro myelination system and compared their expression to that of the glial adhesion molecule, the myelin-associated glycoprotein (MAG). In the absence of neurons, Schwann cells express significant levels of beta 1 but virtually no beta 4 or MAG. When Schwann cells are cocultured with dorsal root ganglia neurons under conditions promoting myelination, expression of beta 4 and MAG increased dramatically in myelinating cells, whereas beta 1 levels remained essentially unchanged. (In general agreement with these findings, during peripheral nerve development in vivo, beta 4 levels also increase during the period of myelination in sharp contrast to beta 1 levels which show a striking decrease.) In cocultures of neurons and Schwann cells, beta 4 and MAG appear to colocalize in nascent myelin sheaths but have distinct distributions in mature sheaths, with beta 4 concentrated in the outer plasma membrane of the Schwann cell and MAG localized to the inner (periaxonal) membrane. Surprisingly, beta 4 is also present at high levels with MAG in Schmidt-Lanterman incisures. Immunoprecipitation studies demonstrated that primary Schwann cells express beta 1 in association with the alpha 1 and alpha 6 subunits, while myelinating Schwann cells express alpha 6 beta 4 and possibly alpha 1 beta 1. beta 4 is also downregulated during Wallerian degeneration in vitro, indicating that its expression requires continuous Schwann cell contact with the axon. These results indicate that axonal contact induces the expression of beta 4 during Schwann cell myelination and suggest that alpha 6 beta 4 is an important mediator of the interactions of myelinating Schwann cells with the basal lamina.  相似文献   

2.
Axon-glial interactions are critical for the induction of myelination and the domain organization of myelinated fibers. Although molecular complexes that mediate these interactions in the nodal region are known, their counterparts along the internode are poorly defined. We report that neurons and Schwann cells express distinct sets of nectin-like (Necl) proteins: axons highly express Necl-1 and -2, whereas Schwann cells express Necl-4 and lower amounts of Necl-2. These proteins are strikingly localized to the internode, where Necl-1 and -2 on the axon are directly apposed by Necl-4 on the Schwann cell; all three proteins are also enriched at Schmidt-Lanterman incisures. Binding experiments demonstrate that the Necl proteins preferentially mediate heterophilic rather than homophilic interactions. In particular, Necl-1 on axons binds specifically to Necl-4 on Schwann cells. Knockdown of Necl-4 by short hairpin RNA inhibits Schwann cell differentiation and subsequent myelination in cocultures. These results demonstrate a key role for Necl-4 in initiating peripheral nervous system myelination and implicate the Necl proteins as mediators of axo-glial interactions along the internode.  相似文献   

3.
4.

Background

The quaking viable (qkv) mice have uncompacted myelin in their central and peripheral nervous system (CNS, PNS). The qk gene encodes 3 major alternatively spliced isoforms that contain unique sequence at their C-terminus dictating their cellular localization. QKI-5 is a nuclear isoform, whereas QKI-6 and QKI-7 are cytoplasmic isoforms. The qkv mice harbor an enhancer/promoter deletion that prevents the expression of isoforms QKI-6 and QKI-7 in myelinating cells resulting in a dysmyelination phenotype. It was shown that QKI regulates the differentiation of oligodendrocytes, the myelinating cells of the CNS, however, little is known about the role of the QKI proteins, or RNA binding proteins in PNS myelination.

Methodology/Principal Findings

To define the role of the QKI proteins in PNS myelination, we ectopically expressed QKI-6 and QKI-7 in primary rat Schwann cell/neuron from dorsal root ganglia cocultures. We show that the QKI isoforms blocked proliferation and promoted Schwann cell differentiation and myelination. In addition, these events were coordinated with elevated proteins levels of p27KIP1 and myelin basic protein (MBP), markers of Schwann cell differentiation. QKI-6 and QKI-7 expressing co-cultures contained myelinated fibers that had directionality and contained significantly thicker myelin, as assessed by electron microscopy. Moreover, QKI-deficient Schwann cells had reduced levels of MBP, p27KIP1 and Krox-20 mRNAs, as assessed by quantitative RT-PCR.

Conclusions/Significance

Our findings suggest that the QKI-6 and QKI-7 RNA binding proteins are positive regulators of PNS myelination and show that the QKI RNA binding proteins play a key role in Schwann cell differentiation and myelination.  相似文献   

5.
Signaling by laminins and axonal neuregulin has been implicated in regulating axon sorting by myelin-forming Schwann cells. However, the signal transduction mechanisms are unknown. Focal adhesion kinase (FAK) has been linked to alpha6beta1 integrin and ErbB receptor signaling, and we show that myelination by Schwann cells lacking FAK is severely impaired. Mutant Schwann cells could interdigitate between axon bundles, indicating that FAK signaling was not required for process extension. However, Schwann cell FAK was required to stimulate cell proliferation, suggesting that amyelination was caused by insufficient Schwann cells. ErbB2 receptor and AKT were robustly phosphorylated in mutant Schwann cells, indicating that neuregulin signaling from axons was unimpaired. These findings demonstrate the vital relationship between axon defasciculation and Schwann cell number and show the importance of FAK in regulating cell proliferation in the developing nervous system.  相似文献   

6.
During peripheral nerve development, each segment of a myelinated axon is matched with a single Schwann cell. Tight regulation of Schwann cell movement, proliferation and differentiation is essential to ensure that these glial cells properly associate with axons. ErbB receptors are required for Schwann cell migration, but the operative ligand and its mechanism of action have remained unknown. We demonstrate that zebrafish Neuregulin 1 (Nrg1) type III, which signals through ErbB receptors, controls Schwann cell migration in addition to its previously known roles in proliferation and myelination. Chimera analyses indicate that ErbB receptors are required in all migrating Schwann cells, and that Nrg1 type III is required in neurons for migration. Surprisingly, expression of the ligand in a few axons is sufficient to induce migration along a chimeric nerve constituted largely of nrg1 type III mutant axons. These studies also reveal a mechanism that allows Schwann cells to fasciculate axons regardless of nrg1 type III expression. Time-lapse imaging of transgenic embryos demonstrated that misexpression of human NRG1 type III results in ectopic Schwann cell migration, allowing them to aberrantly enter the central nervous system. These results demonstrate that Nrg1 type III is an essential signal that controls Schwann cell migration to ensure that these glia are present in the correct numbers and positions in developing nerves.  相似文献   

7.
The present experiments were designed to clarify the relationship between cAMP elevation, proliferation and differentiation in Schwann cells. They were carried out on short-term cultures of cells obtained from neonatal rat sciatic nerves. It was found that the myelin-related phenotype was expressed in response to agents that elevate or mimic intracellular cAMP (forskolin, cholera toxin, cAMP analogues), provided cell division was absent. This phenotype included upregulation of the major myelin protein P0 and downregulation of GFAP, N-CAM, A5E3, and NGF receptor. In contrast, when cells were cultured in conditions where cell division occurred, elevation of intracellular cAMP produced an alternative response, characterized by DNA synthesis and absence of myelin-related differentiation. The cAMP mediated induction of an early Schwann cell antigen, 04, followed a different pattern since it was induced equally in dividing and nondividing cells. These observations are consistent with the proposal that during development of the rat sciatic nerve: (a) cAMP elevation, possibly induced by axon-associated factors, is a primary signal responsible for the induction of 04 expression in proliferating Schwann cells during the premyelination period; (b) subsequent withdrawal of cells associated with the larger axons from the cell cycle acts as a permissive secondary signal for induction of myelination, since in quiescent cells the ongoing cAMP elevation will trigger myelination.  相似文献   

8.
Voltage-dependent sodium (Na(+)) channels are highly concentrated at nodes of Ranvier in myelinated axons and play a key role in promoting rapid and efficient conduction of action potentials by saltatory conduction. The molecular mechanisms that direct their localization to the node are not well understood but are believed to involve contact-dependent signals from myelinating Schwann cells and interactions of Na(+) channels with the cytoskeletal protein, ankyrin G. Two cell adhesion molecules (CAMs) expressed at the axon surface, Nr-CAM and neurofascin, are also linked to ankyrin G and accumulate at early stages of node formation, suggesting that they mediate contact-dependent Schwann cell signals to initiate node development. To examine the potential role of Nr-CAM in this process, we treated myelinating cocultures of DRG (dorsal root ganglion) neurons and Schwann cells with an Nr-CAM-Fc (Nr-Fc) fusion protein. Nr-Fc had no effect on initial axon-Schwann cell interactions, including Schwann cell proliferation, or on the extent of myelination, but it strikingly and specifically inhibited Na(+) channel and ankyrin G accumulation at the node. Nr-Fc bound directly to neurons and clustered and coprecipitated neurofascin expressed on axons. These results provide the first evidence that neurofascin plays a major role in the formation of nodes, possibly via interactions with Nr-CAM.  相似文献   

9.
Protein zero (P0) and peripheral myelin protein 22 (PMP22) are most prominently expressed by myelinating Schwann cells as components of compact myelin of the peripheral nervous system (PNS), and mutants affecting P0 and PMP22 show severe defects in myelination. Recent expression studies suggest a role of P0 and PMP22 not only in myelination but also during embryonic development. Here we show that, in dorsal root ganglia (DRG) and differentiated neural crest cultures, P0 is expressed in the glial lineage whereas PMP22 is also detectable in neurons. In addition, however, P0 and PMP22 are both expressed in a multipotent cell type isolated from early DRG. Like neural crest stem cells (NCSCs), this P0/PMP22-positive cell gives rise to glia, neurons and smooth-muscle-like cells in response to instructive extracellular cues. In cultures of differentiating neural crest, a similar multipotent cell type can be identified in which expression of P0 and PMP22 precedes the appearance of neural differentiation markers. Intriguingly, this P0/PMP22-positive progenitor exhibits fate restrictions dependent on the cellular context in which it is exposed to environmental signals. While single P0/PMP22-positive progenitor cells can generate smooth muscle in response to factors of the TGF-(beta) family, communities of P0/PMP22-positive cells interpret TGF-(beta) factors differently and produce neurons or undergo increased cell death instead of generating smooth-muscle-like cells. Our data are consistent with a model in which cellular association of postmigratory multipotent progenitors might be involved in the suppression of a non-neural fate in forming peripheral ganglia.  相似文献   

10.
11.
12.
Neuregulins comprise a family of epidermal growth factor-like ligands that interact with ErbB receptor tyrosine kinases to control many aspects of neural development. One of the most dramatic effects of neuregulin-1 is on glial cell differentiation. The membrane-bound neuregulin-1 type III isoform is an axonal ligand for glial ErbB receptors that regulates the early Schwann cell lineage, including the generation of precursors. Recent studies have shown that the amount of neuregulin-1 type III expressed on axons also dictates the glial phenotype, with a threshold level triggering Schwann cell myelination. Remarkably, neuregulin-1 type III also regulates Schwann cell membrane growth to adjust myelin sheath thickness to match axon caliber precisely. Whether this signaling system operates in central nervous system myelination remains an open question of major importance for human demyelinating diseases.  相似文献   

13.
Extracellular matrix regulates expression of the TGF-beta 1 gene   总被引:11,自引:3,他引:8       下载免费PDF全文
  相似文献   

14.
Schwann cells form basal laminae (BLs) containing laminin-2 (Ln-2; heterotrimer alpha2beta1gamma1) and Ln-8 (alpha4beta1gamma1). Loss of Ln-2 in humans and mice carrying alpha2-chain mutations prevents developing Schwann cells from fully defasciculating axons, resulting in partial amyelination. The principal pathogenic mechanism is thought to derive from structural defects in Schwann cell BLs, which Ln-2 scaffolds. However, we found loss of Ln-8 caused partial amyelination in mice without affecting BL structure or Ln-2 levels. Combined Ln-2/Ln-8 deficiency caused nearly complete amyelination, revealing Ln-2 and -8 together have a dominant role in defasciculation, and that Ln-8 promotes myelination without BLs. Transgenic Ln-10 (alpha5beta1gamma1) expression also promoted myelination without BL formation. Rather than BL structure, we found Ln-2 and -8 were specifically required for the increased perinatal Schwann cell proliferation that attends myelination. Purified Ln-2 and -8 directly enhanced in vitro Schwann cell proliferation in collaboration with autocrine factors, suggesting Lns control the onset of myelination by modulating responses to mitogens in vivo.  相似文献   

15.
Glial cell line-derived neurotrophic factor (GDNF), a known survival factor for neurons, has recently been shown to stimulate the migration of Schwann cells (SCs) and to enhance myelination. GDNF exerts its biological effects by activating the Ret tyrosine kinase in the presence of glycosylphosphatidylinositol-linked receptor, GDNF family receptor (GFR) alpha1. In Ret-negative cells, the alternative transmembrane coreceptor is the 140-kDa isoform of neural cell adhesion molecule (NCAM) associated with a non-receptor tyrosine kinase Fyn. We confirmed that GDNF, GFRalpha1 and NCAM are expressed in neonatal rat SCs. We found that GDNF induces an increase in the partitioning of NCAM and heparan sulfate proteoglycan agrin into lipid rafts and that heparinase inhibits GDNF-signaling in SCs. In addition to activation of extracellular signal-regulated kinases, and phosphorylation of cAMP response element binding protein, we found that cAMP-dependent protein kinase A and protein kinase C are involved in GDNF-mediated signaling in SCs. Although GDNF did not promote the differentiation of purified SCs into the myelinating phenotype, it enhanced myelination in neuron-SC cocultures. We conclude that GDNF utilizes NCAM signaling pathways to regulate SC function prior to myelination and at early stages of myelin formation.  相似文献   

16.
During brain development, polysialylated (polySia) neural cell adhesion molecules (polySia–NCAMs) modulate cell–cell adhesive interactions involved in synaptogenesis, neural plasticity, myelination, and neural stem cell (NSC) proliferation and differentiation. Our findings show that polySia–NCAM is expressed on NSC isolated from adult guinea pig spiral ganglion (GPSG), and in neurons and Schwann cells after differentiation of the NSC with epidermal, glia, fibroblast growth factors (GFs) and neurotrophins. These differentiated cells were immunoreactive with mAb’s to polySia, NCAM, β-III tubulin, nestin, S-100 and stained with BrdU. NSC could regenerate and be differentiated into neurons and Schwann cells. We conclude: (1) polySia is expressed on NSC isolated from adult GPSG and on neurons and Schwann cells differentiated from these NSC; (2) polySia is expressed on neurons primarily during the early stage of neuronal development and is expressed on Schwann cells at points of cell–cell contact; (3) polySia is a functional biomarker that modulates neuronal differentiation in inner ear stem cells. These new findings suggest that replacement of defective cells in the inner ear of hearing impaired patients using adult spiral ganglion neurons may offer potential hope to improve the quality of life for patients with auditory dysfunction and impaired hearing disorders.  相似文献   

17.
We have established functions of the stimulus-dependent MAPKs, ERK1/2 and ERK5, in DRG, motor neuron, and Schwann cell development. Surprisingly, many aspects of early DRG and motor neuron development were found to be ERK1/2 independent, and Erk5 deletion had no obvious effect on embryonic PNS. In contrast, Erk1/2 deletion in developing neural crest resulted in peripheral nerves that were devoid of Schwann cell progenitors, and deletion of Erk1/2 in Schwann cell precursors caused disrupted differentiation and marked hypomyelination of axons. The Schwann cell phenotypes are similar to those reported in neuregulin-1 and ErbB mutant mice, and neuregulin effects could not be elicited in glial precursors lacking Erk1/2. ERK/MAPK regulation of myelination was specific to Schwann cells, as deletion in oligodendrocyte precursors did not impair myelin formation, but reduced precursor proliferation. Our data suggest a tight linkage between developmental functions of ERK/MAPK signaling and biological actions of specific RTK-activating factors.  相似文献   

18.
The myelin sheaths that surround the thick axons of the peripheral nervous system are produced by the highly specialized Schwann cells. Differentiation of Schwann cells and myelination occur in discrete steps. Each of these requires coordinated expression of specific proteins in a precise sequence, yet the regulatory mechanisms controlling protein expression during these events are incompletely understood. Here we report that Schwann cell-specific ablation of the enzyme Dicer1, which is required for the production of small non-coding regulatory microRNAs, fully arrests Schwann cell differentiation, resulting in early postnatal lethality. Dicer−/− Schwann cells had lost their ability to myelinate, yet were still capable of sorting axons. Both cell death and, paradoxically, proliferation of immature Schwann cells was markedly enhanced, suggesting that their terminal differentiation is triggered by growth-arresting regulatory microRNAs. Using microRNA microarrays, we identified 16 microRNAs that are upregulated upon myelination and whose expression is controlled by Dicer in Schwann cells. This set of microRNAs appears to drive Schwann cell differentiation and myelination of peripheral nerves, thereby fulfilling a crucial function for survival of the organism.  相似文献   

19.
The signals that determine whether axons are ensheathed or myelinated by Schwann cells have long been elusive. We now report that threshold levels of neuregulin-1 (NRG1) type III on axons determine their ensheathment fate. Ensheathed axons express low levels whereas myelinated fibers express high levels of NRG1 type III. Sensory neurons from NRG1 type III deficient mice are poorly ensheathed and fail to myelinate; lentiviral-mediated expression of NRG1 type III rescues these defects. Expression also converts the normally unmyelinated axons of sympathetic neurons to myelination. Nerve fibers of mice haploinsufficient for NRG1 type III are disproportionately unmyelinated, aberrantly ensheathed, and hypomyelinated, with reduced conduction velocities. Type III is the sole NRG1 isoform retained at the axon surface and activates PI 3-kinase, which is required for Schwann cell myelination. These results indicate that levels of NRG1 type III, independent of axon diameter, provide a key instructive signal that determines the ensheathment fate of axons.  相似文献   

20.
目的:研究有髓轴突横断损伤后郎飞结区钠通道聚集状态的变化.方法:用雪旺细胞-背根神经元髓鞘化共培养系统复制周围神经髓鞘形成和郎飞结发育,于髓鞘化培养基中共培养第14天用前房角切开刀造成有髓轴突横断损伤,在损伤后1、2、3、4、5、6、7、14天进行髓鞘碱性蛋白和钠通道免疫荧光染色,损伤前共培养作为对照.利用SPOT图像分析软件测量钠通道聚集簇的直径、长度和直径/长度比.结果:损伤前钠通道蛋白在有髓轴突郎飞结区形成直径/长度比略大于1的聚集簇;有髓轴灾横断损伤后钠通道蛋白沿轴突纵向扩散,钠通道聚集簇的直径/长度比逐渐减小,损伤后第14天已无法检测到钠通道表达.损伤区出现节段性脱髓鞘.结论:轴突横断损伤可造成钠通道聚集簇扩散、消失,导致郎飞结结构破坏.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号