首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thymelaea velutina (Thymelaeaceae) is a dioecious shrub that presents a unique type of heterocarpy which consists of the simultaneous production of dry and fleshy fruits. It is endemic to the Balearic Islands (Western Mediterranean) and is found both in dunes and mountain areas. The goal of this study was to identify which factors influence the production of both fruit types, examining the variation of their effects at a spatio-temporal scale (comparing two localities in different years). Specifically, we investigated (1) whether pollen limitation influences the type of fruit produced, and (2) the possible differences in seed size, mass, dispersal capacity, seed predation, germination patterns and seedling survival between fruit types. We also examined if the production of fleshy fruits was modified with the application of gibberellins to reproductive branches. Although fleshy fruits were consistently more abundant than dry ones at both populations, their proportion was significantly higher at the site with greater precipitation. The addition of either pollen or gibberellins did not affect the proportion of each fruit type. Seeds in fleshy fruits are consistently larger, heavier and more likely to be dispersed than seeds in dry fruits, but germinability, germination rate and seedling survival was similar among fruit types. Heterocarpy in this species is currently maintained as there is no apparent factor that exerts any strong selective pressure on either fruit type. The two fruit types might even have different `functions', one serving especially for dispersal and population expansion and the other for producing a seed bank that ensures an eventual germination.  相似文献   

2.
Kjell Bolmgren  Ove Eriksson 《Oikos》2010,119(4):707-718
Fleshy fruits, like drupes and berries, have evolved many times through angiosperm history. Two hypotheses suggest that fleshy fruit evolution is related to changes in the seed mass fitness landscape. The reduced dispersal capability following from an increase in seed mass may be counterbalanced by evolution of traits mediating seed dispersal by animals, such as fleshy fruits. Alternatively, increasing availability and capabilities of frugivores promote evolution of fleshy fruits and allow an increase in seed size. Both these hypotheses predict an association between evolution of fleshy fruits and increasing seed size. We investigated patterns of fruit and seed evolution by contrasting seed mass between fleshy and non‐fleshy fruited sister clades. We found a consistent association between possession of fleshy fruits and heavier seeds. The direction of fruit type change did not alter this pattern; seed mass was higher in clades where fleshy fruits evolved and lower in clades where non‐fleshy fruits evolved, as compared to their sister clades. These patterns are congruent with the predictions from the two hypotheses, but other evidence is needed to distinguish between them. We emphasize the need to integrate studies of seed disperser effectiveness, seed morphology, and plant recruitment success to better understand the frugivores’ role in fleshy fruit evolution.  相似文献   

3.
Neotropical parrots usually forage in forest canopies for nectar, flowers, leaves, fruit pulp, and seeds. As they have no all-purpose territories, these birds usually exploit vegetation mosaics in order to use plentiful resources as they become available. In this study we examine the use of a gallery forest in the southern Pantanal (Brazil) by a diverse parrot community that ranged from Brotogeris chiriri (a small species) to Ara chloroptera (a large one). Plant food resources principally used by parrots were abundantly available during the rainy season (fleshy fruits), the annual floods (fleshy fruits), and the dry season (flowers). While both smaller and larger species foraged on fruits, parakeets largely consumed the pulp, while larger parrot species used pulp and seeds. In the dry season parakeets foraged extensively on nectar, especially Inga vera nectar that was abundantly available during the last two months of the dry season, the harshest period of the year. Among larger parrots, only Propyrrhura auricollis frequently harvested nectar. Fruits maturing during floods, despite being fish- or water- dispersed were extensively used by the parrots. Hence, unlike what happens in most other Neotropical dry forests, occurrence of a fruiting peak during the annual flooding, which occurs in the transition from the wet to the dry season, constitutes an extra and significant episode of food availability, since in this period, fruit production normally declines. Therefore, the unique and abundant availability of flowers and fruits in this gallery forest may account for the presence of large parrot populations in the southern Pantanal.  相似文献   

4.
Floral sexuality is characterized for the flora of the Cape region of South Africa. Among angiosperms (N = 8,497), monostylous hermaphroditism constitutes the largest proportion of species with 77.7%, followed by gynomonoecism (7.1%), dioecism (6.6%), andromonoecism (4.0%), monoecism (2.6%), heterostylous hermaphroditism (1.9%), polygamomonoecism (0.01%) and polygamodioecism (0.01%). The incidence of dioecism is significantly higher (P < 0.001) at the species level for two smaller floras within the Cape flora that consist mostly of species-rich fynbos vegetation (Cape of Good Hope Nature Reserve: 11.6% [N = 1,349], Cape Hangklip: 9.7% [N = 1,046]). The relatively high incidence of dioecism in all three floras compared to other temperate floras is due to the large number of Restionaceae species. Excluding these rush-like plants, dioecism at the species level is only 3.0% for the Cape flora, 4.2% for the Cape Hangklip flora and 3.6% for the Cape of Good Hope flora. At the generic level there are no significant differences in the incidence of dioecism between the three floras. Among dioecious species and genera in the Cape flora, there is a higher than expected incidence of wind pollination, fleshy fruits and nonwoodiness when each variable is analyzed independently. The association between nonwoodiness and dioecy has not been reported for other floras and is due to the large proportion of nonwoody wind-pollinated Restionaceae. If this family is excluded from the analysis, dioecy becomes associated with biotic pollination, fleshy fruits, and woodiness. Interactions among the variables themselves as well as with dioecism indicate the need for a joint analysis of the variables. At the genus level, analyses reveal the following: 1) There is a higher than expected incidence of wind pollination among dioecious plants with dry fruits. If the Restionaceae are excluded from the analysis, wind pollination is more common than expected only for woody plants with dry fruits. 2) Dioecious plants that are biotically pollinated have a significantly higher incidence of fleshy fruits than expected. 3) Dioecious plants with dry fruits that are biotically pollinated have a higher than expected incidence of woodiness. If the Restionaceae are excluded from the analysis, woodiness is more common than expected among both nonwind and wind-pollinated dioecious genera.  相似文献   

5.
6.
Parakeets usually forage for massive and ephemeral plant resources at forest canopies. Fruit pulp is widely cited as a major food resource for these birds, which often eat seeds and nectar. In this study, I assessed flower and fruit production at a gallery forest in the Pantanal flood plain (Brazil) in order to evaluate the relationship between food resource production and abundance of a common parakeet, Brotogeris chiriri. Also, I evaluated the relationship between food resource production and foraging activity. Parakeet abundance varied markedly along the year, coinciding with massive episodes of flower and fleshy fruit availability. Inga vera nectar, intensely used during the latter part of dry season, was by far the most exploited food item by parakeets when they were very abundant. The nectar comprised 34% of the parakeets' diet (N = 131 feeding records) at the gallery forest, while fleshy fruits made up the rest. Parakeets principally exploited fruits of Cecropia pachystachya and Ficus luschnathiana, besides palm fruits and Inga vera arils. The consistent relationship between foraging activity and parakeet abundance, as well as the coincidence between fluctuations of these parameters and availability of major food resources, suggests that food availability mostly influenced B. chiriri occurrence in the gallery forest. Furthermore, I found no evidence for gallery forest use for roosting and/or breeding, in spite of the fact that such factors usually influence local parakeet abundance.  相似文献   

7.
Key innovations may increase the number of taxa in a clade that possesses the proposed innovation in comparison to its sister group that lacks the trait through either increased speciation or reduced extinction rates. Comparing sister clades across several independent lineages provides statistical support that the trait has increased species diversity. Previous studies have indicated that there may not be a relationship between biotic dispersal and higher species diversity, but only a few of these studies specified habit, habitat, or type of disperser. No previous study has specified all of the above parameters and used a phylogenetic approach. This article examines species diversity in numerous lineages of tropical understory plants with small, fleshy, bird-dispersed fruits for which a reliable estimate of phylogenetic relationships is available. Clades with fleshy fruits are significantly more diverse than sister clades with dry fruits.  相似文献   

8.
The origins of interactions between angiosperms and fruit‐eating seed dispersers have attracted much attention following a seminal paper on this topic by Tiffney (1984). This review synthesizes evidence pertaining to key events during the evolution of angiosperm–frugivore interactions and suggests some implications of this evidence for interpretations of angiosperm–frugivore coevolution. The most important conclusions are: (i) the diversification of angiosperm seed size and fleshy fruits commenced around 80 million years ago (Mya). The diversity of seed sizes, fruit sizes and fruit types peaked in the Eocene around 55 to 50 Mya. During this first phase of the interaction, angiosperms and animals evolving frugivory expanded into niche space not previously utilized by these groups, as frugivores and previously not existing fruit traits appeared. From the Eocene until the present, angiosperm–frugivore interactions have occurred within a broad frame of existing niche space, as defined by fruit traits and frugivory, motivating a separation of the angiosperm–frugivore interactions into two phases, before and after the peak in the early Eocene. (ii) The extinct multituberculates were probably the most important frugivores during the early radiation phase of angiosperm seeds and fleshy fruits. Primates and rodents are likely to have been important in the latter part of this first phase. (iii) Flying frugivores, birds and bats, evolved during the second phase, mainly during the Oligocene and Miocene, thus exploiting an existing diversity of fleshy fruits. (iv) A drastic climate shift around the Eocene–Oligocene boundary (around 34 Mya) resulted in more semi‐open woodland vegetation, creating patchily occurring food resources for frugivores. This promoted evolution of a ‘flying frugivore niche’ exploited by birds and bats. In particular, passerines became a dominant frugivore group worldwide. (v) Fleshy fruits evolved at numerous occasions in many angiosperm families, and many of the originations of fleshy fruits occurred well after the peak in the early Eocene. (vi) During periods associated with environmental change altering coevolutionary networks and opening of niche space, reciprocal coevolution may result in strong directional selection formative for both fruit and frugivore evolution. Further evidence is needed to test this hypothesis. Based on the abundance of plant lineages with various forms of fleshy fruits, and the diversity of frugivores, it is suggested that periods of rapid coevolution in angiosperms and frugivores occurred numerous times during the 80 million years of angiosperm–frugivore evolution.  相似文献   

9.
统计了分布在西藏自治区的被子植物及各生活型果实的类型及比例,并与藏东南地区做了比较。结果如下,西藏自治区果实以蒴果为主(占37.74%),其次为瘦果、坚果、浆果等;干果的比例远远大于肉果;不同生活型的果实类型谱差异较大,乔木中核果的比例最高,藤本中浆果比例最高,灌木中瘦果比例最高,草本中蒴果占优势;4个生活型中,肉果的比例乔木为最高,其次为藤本、灌木、草本。藏东南地区植物的果实类型也以蒴果为主,其次为瘦果、浆果、核果等;藏东南乔木中核果比例最高,藤本中浆果比例最高,灌木和草本植物以蒴果占优势;乔木肉果的比例最高,其次为藤本、灌木、草本。藏东南肉果比例大于全藏区,而干果比例则相反。果实类型的这些性状特征与各自的环境相适应,是植物长期适应自然环境的进化结果,该研究对于理解植物果实对生态环境的长期适应进化具有一定的意义。  相似文献   

10.
To test the hypothesis that primate populations are limited by food resources, we studied the feeding ecology of three cercopithecines and one colobine in a rain forest in central Gabon. Simultaneously, we monitored the fruiting phenology of trees and estimated the biomass of the monkey community. The Makandé Forest is dominated by Caesalpiniaceae and characterized by a lack of secondary vegetation and of trees species producing fleshy fruits. Fruit production was irregular intra- and interannually. Fruiting peaks of dry fruits (mainly Caesalpiniaceae) and of fleshy fruits occurred at the same period. However, interseasonal and interannual variability was greater in Caesalpiniaceae than in other families. As a result, the Makandé forest is subject to bottlenecks when food is scarce. On an annual basis, seeds (primarily Caesalpiniaceae) dominated the diet of all monkeys. On a seasonal basis, cercopithecines preferentially consumed fleshy fruits as long as they were available, whereas colobines increased consumption of young leaves when seed availability declined. The consumption of mature leaves was low. The monkey community biomass (ca. 204 kg/km2) is one of the lowest in Central Africa. We suggest that both cercopithecine and colobine populations are limited as a result of the combined effect of the dominance of Caesalpiniaceae, which provide dry fruits according to a mast-fruiting pattern and mature leaves of low quality, and the lack of seral successional stages, which provide fleshy fruit on a more regular pattern and leaves of better quality. During the period of food scarcity, cercopithecines should suffer from the low availability of fleshy fruit, which are their favorite food. At the same period, colobines should be limited by the low availability of edible leaves. Similar low primate biomasses are found in forests dominated by Caesalpiniaceae or Lecythidaceae in South America and in Dipterocarpaceae forests in South Asia, which suggests that their biological characteristics, in particular dry fruits and mast fruiting, are unfavorable to monkey populations. Our results confirm that habitat mosaics may support larger populations of primary consumers than homogeneous primary forests can.  相似文献   

11.
Thymelaea velutina (Thymelaeaceae) is a unique dioecious and heterocarpic shrub, each female producing both dry and fleshy fruits. It is endemic to the Balearic Islands (western Mediterranean) and has suffered an important regression in recent decades, especially due to habitat loss. It lives in coastal areas, mainly in dunes, but a few populations occur up to 1300 m in the mountains of Mallorca. In the present study, we examined its breeding system and pollen vectors, determined whether seed production is pollen-limited, and quantified the relative importance of different insect visitors at coastal and mountain sites. Selective exclusions showed no differences between populations in the relative importance of insects and wind as pollen vectors. Pollen was limiting at both populations, though not consistently in time. Flowers of T. velutina were visited mostly by generalist insects, and species composition and abundance of flower visitors varied both in space and time. The flowering period is about a month later in the mountain than in the dune, and this results in a higher frequency of insect visits to plants in the mountain due to the higher insect abundance; insects were also more diverse in the mountain, although they visited a proportionally lower number of flowers than in the dune. Despite this spatio-temporal variation in the frequency of insect visits and in the importance of a particular insect group, the ambophilous system in this species (previously described as anemophilous) ensures a relatively high fruit set at the two different sites.  相似文献   

12.
Botanical fruits derive from ovaries and their most important function is to favor seed dispersal. Fleshy fruits do so by attracting frugivorous animals that disperse seeds together with their own excrements (endozoochory). Gymnosperms make seeds but have no ovaries to be transformed into fruits. Many species surround their seeds with fleshy structures and use endozoochory to disperse them. Such structures are functionally fruits and can derive from different anatomical parts. Ginkgo biloba and Taxus baccata fruit-like structures differ in their anatomical origin since the outer seed integument becomes fleshy in Ginkgo, whereas in Taxus, the fleshy aril is formed de novo. The ripening characteristics are different, with Ginkgo more rudimentary and Taxus more similar to angiosperm fruits. MADS-box genes are known to be necessary for the formation of flowers and fruits in Angiosperms but also for making both male and female reproductive structures in Gymnosperms. Here, a series of different MADS-box genes have been shown for the first time to be involved also in the formation of gymnosperm fruit-like structures. Apparently, the same gene types have been recruited in phylogenetically distant species to make fleshy structures that also have different anatomical origins. This finding indicates that the main molecular networks operating in the development of fleshy fruits have independently appeared in distantly related Gymnosperm taxa. Hence, the appearance of the seed habit and the accompanying necessity of seed dispersal has led to the invention of the fruit habit that thus seems to have appeared independently of the presence of flowers.  相似文献   

13.
潘扬  罗芳  鲁长虎 《生态学报》2014,34(10):2490-2497
在种子植物-动物的互惠关系中,植物果实成熟后需要吸引种子传播者取食果实,传播其种子至适宜萌发的生境,同时又要防御种子捕食者过度消耗种子。果实内的次生物质(如:配糖生物碱、大黄素、辣椒素)在此过程中起到重要的调控作用。依赖脊椎动物传播的肉质果中往往含有与植物茎、叶内相同的次生物质,其种类繁多,主要分为含氮化合物、酚类化合物和萜类化合物。未成熟果实内富含次生物质(如:单宁、大黄素),主要保护未成熟种子不被潜在的捕食者和食果动物取食,这些次生物质的含量通常随果实成熟而降低;其它次生物质(如:脱辅基类胡萝卜素)的含量随果实成熟而增多,可能起到吸引食果动物的作用。在对脊椎动物捕食的抵御中,果实内不同类型的次生物质促使成熟果实对所有脊椎动物都有毒性(专毒性)或者仅对种子捕食者有毒性(泛毒性)。肉质果内的次生物质对植物-食果动物相互关系的调控作用,还可以通过调节动物取食频次和数量、抑制和促进种子萌发、改变种子在肠道的滞留时间、吸引传播者等生态作用而实现。某种次生物质往往集多种生态作用于一身。目前对肉质果内次生物质与脊椎动物相互关系的探讨还不够深入。未来研究需要综合考虑植物次生物质与果实生理生化、形态学等特征对食果者的综合调控机理;次生物质在种子传播后的调控作用对植物种群或群落结构和分布格局的影响;从动植物协同进化角度探讨植物次生物质的产生、防御和吸引策略与脊椎动物对果实的选择和消费之间的关系等。开展脊椎动物传播肉质果实中次生物质的研究,对完善种子传播机制、植物繁殖和更新格局,丰富动植物相互作用、协同进化理论具有重要的意义。  相似文献   

14.
This study suggests that the fruits of Sacoglottis gabonensis (Baill.) Urb. (Humiriaceae) are a keystone resource for forest elephants ( Loxodonta cyclotis Matschie) in a coastal rain forest, the Réserve de Faune du Petit Loango, Gabon (now part of Loango National Park). Faecal counts demonstrated that forest elephants used Sacoglottis -dominated forest more when Sacoglottis was abundant and electivity indices suggest that Sacoglottis is a preferred food. The flora of Petit Loango is characterized by the absence of herbaceous vegetation such as Marantaceae and Zingiberaceae, and during the prolonged dry season few fleshy fruits are present other than Sacoglottis fruits, which are produced in a glut during this time. While inter-annual fruiting reliability remains to be confirmed, fruit production in 1998 and high stem density relative to other study sites provide indirect evidence that Sacoglottis fruits are a reliable inter-annual resource at Petit Loango. It is thus proposed that Sacoglottis gabonensis fruits fulfil an important role as a keystone 'fallback' resource for forest elephants during the dry season at Petit Loango.  相似文献   

15.
I studied Brotogeris chiriri abundance and foraging activity at a dry forest of the Urucum mountains in western Mato Grosso do Sul, Brazil, to evaluate their relationships with food resource production. Brotogeris chiriri abundance sharply increased during the early wet season (mainly October 2001) when it mostly foraged for fleshy fruits. At that time Protium heptaphyllum, one of the most common tree species, bore a large crop of fruits, the arils of which were extensively consumed by B. chiriri. Conversely, only a few parakeets were recorded foraging from the late wet to the late dry season, when dry fruit production predominated. The monthly pattern of parakeet abundance paralleled both its monthly pattern of foraging activity and fleshy fruit availability. Moreover, the variations in foraging activity were highly correlated to fleshy fruit production. Thus, data presented here evidenced the effect of both fruiting pulses and a common tree species that produced a large and ephemeral fruit crop, on the dynamic of a small and mobile canopy forager at a primary dry forest.  相似文献   

16.
This study investigated the fleshy fruit characteristics of 28 woody species in a Japanese temperate forest where large sedentary seed-dispersing mammals are present. We tested whether the findings in previous studies in temperate forests of Europe and North America are universal or not. Results have suggested that fruits of all species were eaten both by birds and mammals except for four species with larger fruits, which were eaten only by mammals. A gradient was found from a syndrome characterized by small, oily, and large-seeded fruits to a syndrome characterized by large, succulent, non-oily, and small-seeded fruits. The sizes and colors of the fruits were not conspicuously different from previous findings in Europe and North America. On the other hand, nitrogen and lipids in the fleshy part did not show seasonally increasing trends, or even seasonally decreasing trends in terms of dry weight. This result, suggesting the absence of community-level adaptation of fruit traits to migratory bird dispersers, contrasted with findings in Europe and North America. Large sedentary arboreal or tree-climbing mammals may have a greater effect on the evolution of fruit-disperser relations than opportunistic migratory birds.  相似文献   

17.
Trees in pastures attract seed dispersers, leading to increased seed arrival under their canopies and more rapid regrowth around them. The characteristics that make some trees better `recruitment foci' than others, however, are poorly understood. In a neotropical pasture, we examined the arrival of seeds to open areas and underneath four genera of trees that varied in canopy architecture and type of fruit produced: Ficus trees had dense canopies and fleshy fruits, Pentaclethra trees had dense canopies and dry fruits, Cecropia trees had sparse canopies and fleshy fruits, and Cordia trees had sparse canopies and dry fruits. We found that all trees received more seeds than open pasture, probably because trees provided seed dispersers with better perches, protection from predators, nesting sites, etc. Among the tree genera, more seeds arrived under trees that produced fleshy fruits than trees that did not. This occured even during periods when trees were not fruiting (i.e., non-fruiting Ficus and Cecropia trees received more seeds than Cordia or Pentaclethra trees). Seed dispersers may periodically check Ficus and Cecropia trees for fruits, or they may become familiar with these trees while feeding and thereafter use them for other reasons. Height of trees had a slight positive effect on seed arrival, possibly because taller trees offered more protection from predators. Canopy architecture and distance to forest edge did not significantly affect seed arrival. This study demonstrates that trees in general are potentially important recruitment foci, but that different types of trees vary in the kind of recruitment that they foster in pastures.  相似文献   

18.
We propose a new classification of rain forest plants into eight fruit syndromes, based on fruit morphology and other traits relevant to fruit‐feeding insects. This classification is compared with other systems based on plant morphology or traits relevant to vertebrate fruit dispersers. Our syndromes are based on fruits sampled from 1,192 plant species at three Forest Global Earth Observatory plots: Barro Colorado Island (Panama), Khao Chong (Thailand), and Wanang (Papua New Guinea). The three plots differed widely in fruit syndrome composition. Plant species with fleshy, indehiscent fruits containing multiple seeds were important at all three sites. However, in Panama, a high proportion of species had dry fruits, while in New Guinea and Thailand, species with fleshy drupes and thin mesocarps were dominant. Species with dry, winged seeds that do not develop as capsules were important in Thailand, reflecting the local importance of Dipterocarpaceae. These differences can also determine differences among frugivorous insect communities. Fruit syndromes and colors were phylogenetically flexible traits at the scale studied, as only three of the eight seed syndromes, and one of the 10 colors, showed significant phylogenetic clustering at either genus or family levels. Plant phylogeny was, however, the most important factor explaining differences in overall fruit syndrome composition among individual plant families or genera across the three study sites. Abstract in Melanesian is available with online material.  相似文献   

19.
Relatively few studies have examined the evolution of the mutualism between endozoochorous plants and seed dispersers. Most seed dispersal studies are ecological and examine the role of fruit pulp in promoting seed dispersal. This interaction is often assumed to have originated due to selection stemming from seed dispersers. Here I suggest a "defence scenario" wherein fleshy fruits originated as mechanisms to defend seeds and secondarily became structures to promote seed dispersal. I suggest that frugivory followed from herbivores that specialized on consuming seed defensive tissues and that enhanced seed dispersal was initially a consequence of seed defence. The proposed defence scenario is not posited as an explanation for the sequence that led to all modern frugivores. However, it is suggested that seed predation was the initial source of selection that led to fleshy fruits; the necessary precursor to frugivory. Support is described from the fossil record and from modern structures and interactions. Testable predictions are made in hope that greater interest will be focused on the defensive role of fleshy fruit pulp both in modern interactions and historically.  相似文献   

20.

Background and Aims

The evolution of seeds together with the mechanisms related to their dispersal into the environment represented a turning point in the evolution of plants. Seeds are produced by gymnosperms and angiosperms but only the latter have an ovary to be transformed into a fruit. Yet some gymnosperms produce fleshy structures attractive to animals, thus behaving like fruits from a functional point of view. The aim of this work is to increase our knowledge of possible mechanisms common to the development of both gymnosperm and angiosperm fruits.

Methods

B-sister genes from two gymnosperms (Ginkgo biloba and Taxus baccata) were isolated and studied. The Ginkgo gene was also functionally characterized by ectopically expressing it in tobacco.

Key Results

In Ginkgo the fleshy structure derives from the outer seed integument and the B-sister gene is involved in its growth. In Taxus the fleshy structure is formed de novo as an outgrowth of the ovule peduncle, and the B-sister gene is not involved in this growth. In transgenic tobacco the Ginkgo gene has a positive role in tissue growth and confirms its importance in ovule/seed development.

Conclusions

This study suggests that B-sister genes have a main function in ovule/seed development and a subsidiary role in the formation of fleshy fruit-like structures when the latter have an ovular origin, as occurs in Ginkgo. Thus, the ‘fruit function’ of B-sister genes is quite old, already being present in Gymnosperms as ancient as Ginkgoales, and is also present in Angiosperms where a B-sister gene has been shown to be involved in the formation of the Arabidopsis fruit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号