首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The stimulated levels of phenylanine hydroxylase activity in liver extracts from streptozotocin-induced diabetic rats (Donlon and Beirne, 1982) have been correlated with an increased rate of phenylalanine catabolism in vivo. 2. The levels of hepatic phenylalanine hydroxylase protein in diabetic rats become elevated. This effect is not seen in diabetic animals concurrently treated with insulin. 3. The rate of synthesis of liver phenylalanine hydroxylase in 5-day diabetics is 260% that of control animals. 4. These observations are discussed with reference to the regulation of hepatic phenylalanine hydroxylase and phenylanine metabolism in rats.  相似文献   

2.
Injections of phenylalanine increased a 2.5-fold in 9 h the hepatic phenylalanine hydroxylase activity of 6-day-old or adult rats that had been pretreated (24h earlier) with p-chlorophenylalanine; without such pretreatment, phenylalanine did not raise the enzyme concentration. This difference is paralleled by the much greater extent to which the injected phenylalanine accumulated in livers of the pretreated compared with the normal animals. The hormonal induction of hepatic phenylalanine hydroxylase activity obeyed different rules: an injection of cortisol was without effect on adult livers but caused a threefold rise in phenylalanine hydroxylase activity of immature ones, both without and after pretreatment with p-chlorophenylalanine. In the latter instance, the effects of cortisol, and of phenylalanine were additive. Actinomycin inhibited the cortisol- but not the substrate-induced increase of phenylalanine hydroxylase, whereas puromycin inhibited both. The results indicate that substrate and hormone, two potential positive regulators of the amount of the hepatic (but not the renal) phenylalanine hydroxylase, act independently by two different mechanisms. The negative effector, p-chlorophenylalanine, also appears to interact with the synthetic (or degradative) machinery rather than with the existing phenylalanine hydroxylase molecules: 24h were required in vivo for an 85% decrease to ensue, and no inhibition occurred in vitro when incubating the enzyme with p-chlorophenylalanine or with liver extracts from p-chlorophenylalanine-treated rats.  相似文献   

3.
The administration of a single dose of p-chlorophenylalanine (360 mg/kg) to rats leads to the irreversible loss of 90% of hepatic phenylalanine hydroxylase activity after 24 h. This loss of activity is not the result of either an alteration in the overall structure of the enzyme, as determined by its antigenicity, or in the total immunologically reactive protein in the liver, as tested with a specific antiserum prepared against native phenylalanine hydroxylase. Neither the rate of synthesis nor the rate of degradation of phenylalanine hydroxylase is changed by p-chlorophenylalanine (pClPhe) treatment. The half-life for the enzyme is about 2 days in control and in pClPhe-treated rats. In addition, there is no detectable incorporation of pClPhe into the phenylalanine hydroxylase molecule itself.  相似文献   

4.
Glucagon administered subcutaneously to rats for 10 days had no significant effect on liver phenylalanine hydroxylase activity, but induced liver dihydropteridine reductase more than twofold. In rats administered a phenylalanine load orally, glucagon treatment stimulated oxidation and depressed urinary phenylalanine excretion. These responses could not be related to an effect of glucagon on hepatic tyrosine-alpha-oxoglutarate aminotransferase activity. Even in rats with phenylalanine hydroxylase activity depressed to 50% of control values by p-chlorophenylalanine administration, glucagon treatment increased the phenylalanine-oxidation rate substantially. Although hepatic phenylalanine-pyruvate aminotransferase was increased tenfold in glucagon-treated rats, glucagon treatment did not increase urinary excretion of phenylalanine transamination products by rats given a phenylalanine load. Glucagon treatment did not affect phenylalanine uptake by the gut or liver, or the liver content of phenylalanine hydroxylase cofactor. It is suggested that dihydropteridine reductase is the rate-limiting enzyme in phenylalanine degradation in the rat, and that glucagon may regulate the rate of oxidative phenylalanine metabolism in vivo by promoting indirectly the maintenance of the phenylalanine hydroxylase cofactor in its active, reduced state.  相似文献   

5.
A pigmented subclone of Cloudman S91 melanoma cells, PS1-wild type, can grow in medium lacking tyrosine. This ability is conferred by phenylalanine hydroxylase activity, and not by tryptophan hydroxylase, tyrosine hydroxylase or tyrosinase activities, although the latter activity is also present in these cells. Conversion of phenylalanine to tyrosine was measured in living cells by chromatographic identification of the metabolites of [14C]phenylalanine and in cell extracts using a sensitive assay for phenylalanine hydroxylase. Phenylalanine hydroxylase activity in melanoma cell extracts was identified by its inhibition with p-chlorophenylalanine and not with 6-fluorotryptophan, 3-iodotyrosine, phenylthiourea, tyrosine or tryptophan; and by adsorption with antiserum prepared against purified rat liver phenylalanine hydroxylase, and migration of immunoprecipitable activity with authentic phenylalanine hydroxylase subunits in sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

6.
Moderate doses of glucagon (20 g/kg I.V.) are sufficient to stimulate rat hepatic phenylalanine hydroxylase in vivo. In addition, the stimulation of the tetrahydrobiopterin-dependent phenylalanine hydroxylase activity in livers of animals fed on a high-protein diet has been correlated with an elevated phosphate content. The tetrahydrobiopterin-dependent hydroxylase activity in these animals can be further elevated by glucagon-stimulated phosphorylation. These results indicate that physiological changes in glucagon concentration modulate rat liver phenylalanine hydroxylase activity in vivo. The current understanding of the role of phosphorylation in regulating human phenylalanine hydroxylase is also considered.  相似文献   

7.
A method was developed to study the unsupplemented phenylalanine hydroxylase system in rat liver slices. All of the components of the system--tetrahydrobiopterin, dihydropteridine reductase, and the hydroxylase itself--are present under conditions which should be representative of the actual physiological state of the animal. The properties of the system in liver slices have been compared to those of the purified enzyme in vitro. The three pterins, tetrahydrobiopterin, 6,7-dimethyltetrahydropterin, and 6-methyltetrahydropterin, all stimulate the hydroxylation of phenylalanine when added to the liver slice medium in the presence of a chemical reducing agent. The relative velocities found at 1 mM phenylalanine and saturating pterin concentrations are: tetrahydrobiopterin, 1; 6,7-dimethyltetrahydropterin, 2.5; 6-methyltetrahydropterin, 13. This ratio of activities is similar to that found for the purified, native phenylalanine hydroxylase and indicates that the enzyme in vivo is predominantly in the native form. Rats pretreated with 6-methyltetrahydropterin showed enhanced phenylalanine hydroxylase activity in liver slices demonstrating for the first time that an exogenous tetrahydropterin can interact with the phenylalanine hydroxylase system in vivo. This finding opens up the possibility of treating phenylketonurics who still possess some residual phenylalanine hydroxylase activity with a tetrahydropterin like 6-methyltetrahydropterin which can give a large increase in rate over that seen with the natural cofactor, tetrahydrobiopterin.  相似文献   

8.
The plasma concentration of phenylalanine and tyrosine decreases in normal rats during the first few postnatal days; subsequently, the concentration of phenylalanine remains more or less constant, whereas that of tyrosine exhibits a high peak on day 13. The basal concentrations of the two amino acids were not altered by injections of thyroxine or cortisol, except in 13-day-old rats, when an injection of cortisol decreased the concentration of tyrosine. In young rats (13-15 days old), treatment with cortisol increased the activity of phenylalanine hydroxylase in the liver (measured in vitro) and accelerated the metabolism of administered phenylalanine: the rate constant of the disappearance of phenylalanine from plasma and the initial increase in tyrosine in plasma correlated quantitatively with the activity of phenylalanine hydroxylase in the liver. In adult rats, the inhibition of this enzyme (attested by assay in vitro) by p-chlorophenylalanine resulted in a proportionate decrease in tyrosine formation from an injection of phenylalanine. However, the quantitative relationship between liver phenylalanine hydroxylase activity and phenylalanine metabolism within the group of young rats was different from that observed among adult rats.  相似文献   

9.
The effects of tetrahydrofuran (THF) on rat liver microsomes in vitro and in vivo were opposite. In vitro THF inhibited the p-nitrophenol (PNP) hydroxylase activity of microsomes from control rats and from rats treated with PB, acetone, and isoniazide--by 50, 20, 60, and 80%, respectively. THF inhibited dimethylnitrosamine (NDMA) demethylation in control and induced microsomes in a lesser degree. THF increased the total cytochrome P-450 content as well as the contents of cytochromes P-450IIE1 and P-450IIB1/B2. The activities of PNP-hydroxylation and NDMA-demethylation increased also, whereas the PR-dealkylation activity was unchanged. An increase in the THF dose caused inhibition of the rat liver microsomal monooxygenase system.  相似文献   

10.
1. Phenylalanine hydroxylase activity has been analyzed in Drosophila melanogaster using as cofactors the natural tetrahydropteridine 5,6,7,8-tetrahydrobiopterin (H4Bip) and the synthetic one 5,6-dimethyl-5,6,7,8-tetrahydropterin (H4Dmp). 2. The apparent Vmax and KM for substrate and cofactor showed that the enzyme has two times more affinity for the substrate when H4Bip is the cofactor in the reaction. Similarly to what was found with purified rat liver phenylalanine hydroxylase, H4Bip was the most effective cofactor, leading to 4-5 times more activity than that obtained with H4Dmp. 3. With the natural cofactor H4Bip, no activation of the enzyme with Phe was necessary (in contrast to mammalian phenylalanine hydroxylase), and this tetrahydropteridine inhibits phenylalanine hydroxylase activity when the enzyme is exposed to it before phenylalanine addition. With the synthetic H4Dmp, both types of preincubations led to an increase of phenylalanine hydroxylase activity. 4. The enzyme is highly unstable compared to mammalian phenylalanine hydroxylase, even at -20 degrees C. 5. Thorax and abdomen extracts caused significant inhibition of phenylalanine hydroxylase activity from third instar larvae or newborn adult head extracts, when assayed with the synthetic cofactor H4Dmp. This inhibition did not happen with H4Bip. The presence of the pteridine 7-xanthopterin in adult bodies was not the cause of this inhibition.  相似文献   

11.
We report here the identification of a cultured human hepatoma cell line which possesses an active phenylalanine hydroxylase system. Phenylalanine hydroxylation was established by growth of cells in a tyrosine-free medium and by the ability of a cell-free extract to convert [14C]phenylalanine to [14C]tyrosine in an enzyme assay system. This enzyme activity was abolished by the presence in the assay system of p-chlorophenylalanine but no significant effect on the activity was observed with 3-iodotyrosine and 6-fluorotryptophan. Use of antisera against pure monkey or human liver phenylalanine hydroxylase has detected a cross-reacting material in this cell line which is antigenically identical to the human liver enzyme. Phenylalanine hydroxylase purified from this cell line by affinity chromatography revealed a multimeric molecular weight (estimated 275,000) and subunit molecular weights (estimated 50,000 and 49,000) which are similar to those of phenylalanine hydroxylase purified from a normal human liver. This cell line should be a useful tool for the study of the human phenylalanine hydroxylase system.  相似文献   

12.
Rats were given intraperitoneal injections of 2 mCi of carrier-free 32Pi and substances known to activate liver phenylalanine hydroxylase. After 30 min, these animals were anesthetized and their livers removed for analysis of enzyme activity, 32Pi incorporation into immunoprecipitated phenylalanine hydroxylase and [gamma-32P]ATP specific activity. Following glucagon treatment, rat liver phenylalanine hydroxylase activity was stimulated more than 6-fold when assayed in the presence of the natural cofactor, tetrahydrobiopterin (BH4). Glucagon injection also resulted in an incorporation of 0.41 mol of 32Pi/mol of hydroxylase subunit (approximately 50,000 Da). In vivo stimulation of phenylalanine hydroxylase activity and 32Pi incorporation by glucagon had been previously observed in this laboratory (Donlon, J., and Kaufman, S. (1978) J. Biol. Chem. 253, 6657-6659). However, we show for the first time in the present study that in vivo treatment with phenylalanine alone results in a 4-fold increase in the BH4-dependent activity of phenylalanine hydroxylase concomitant with a significant incorporation of phosphate into phenylalanine hydroxylase (0.51 mol of 32Pi/mol of hydroxylase subunit). It is further demonstrated in vivo that the combined treatment with phenylalanine and glucagon results in a greater than 10-fold stimulation of BH4-dependent activity and the greatest level of 32Pi incorporation (0.75 mol of 32Pi/mol of hydroxylase subunit). Phenylalanine did not produce an elevation in plasma glucagon in these animals. A model is, thereby, proposed with respect to the ligand binding effects of phenylalanine on the state of phosphorylation and activation of phenylalanine hydroxylase. The significance of these regulatory roles are considered in light of the probable physiological environment of the enzyme.  相似文献   

13.
The inhibitory properties of beta-2-thienyl-dl-alanine on rat phenylalanine hydroxylase from crude liver and kidney homogenates were assessed in vitro and in vivo, as well as its effects on the intestinal transport of phenylalanine, by using a perfusion procedure in vivo. The apparent K(m) for liver phenylalanine hydroxylase changed from 0.61mm in the absence of the inhibitor to 2.70mm in the presence of 24mm-beta-2-thienyl-dl-alanine, with no significant change in the V(max.). For kidney the corresponding values were 0.50 and 1.60mm respectively. A single dose of beta-2-thienyl-dl-alanine (2mmol/kg) failed to inhibit phenylalanine hydroxylase in either organ. Repeated injections during a 4-day period caused a decline of the enzymic activity to about 40% of controls. Intestinal absorption of phenylalanine when perfused at 0.2-2.0mm concentration was also competitively inhibited by beta-2-thienyl-dl-alanine. Its K(i) value was estimated at 81mm. The limited inhibitory effects of beta-2-thienyl-dl-alanine towards hepatic phenylalanine hydroxylase and phenylalanine intestinal transport, and its rapid metabolism, as suggested by the small elimination of this compound in the urine and its virtual absence from animal tissues, are factors that restrict its potential usefulness as an inducer of phenylketonuria in rats or as an effective blocker of phenylalanine absorption by the gut.  相似文献   

14.
Phenylalanine hydroxylase activities in extracts of livers from rats pretreated with glucagon are higher than in controls. This time-dependent activation is seen when the hydroxylase is assayed in the presence of tetrahydrobiopterin, but not in the presence of 2-amino-4-hydroxy-6,7-dimethyltetrahydropterin. A maximum 4-fold stimulation of hydroxylase activity was correlated with a conversion of the multiple forms of the enzyme to a single form. This form is characterized by an increased extent of phosphorylation compared to the unactivated enzyme. Incorporation of radioactive inorganic phosphate into phenylalanine hydroxylase following administration of glucagon was determined after specific immunoprecipitation of the enzyme from partially purified preparations. Sodium dodecyl sulfate disc gel electrophoresis showed that stimulation of enzyme activity is accompanied by incorporation of 32Pi into the protein to the extent of 0.7 mol/mol of hydroxylase subunit. These results demonstrate the phosphorylation of hepatic phenylalanine hydroxylase in vivo and strongly support the idea that the activity of this enzyme can be hormonally regulated through a phosphorylation mechanism.  相似文献   

15.
L T Murthy 《Life sciences》1975,17(12):1777-1783
Inhibitors of phenylalanine hydroxylase and tyrosine hydroxylase were used in the assay of phenylalanine hydroxylase in liver and kidney of rats and mice. Parachlorophenylalanine (PCPA), methyl tyrosine methyl ester and dimethyl tyrosine methyl ester showed 5–15% inhibition while α-methyl tyrosine seemed to inhibit phenylalanine hydroxylase to the extent of 95–98% at concentrations of 5 × 10 −5M –1 × 10 −4M. After a phenylketonuric diet (0.12% PCPA + 3% excess phenylalanine), the liver showed 60% phenylalanine hydroxylase activity and kidney 82% that present in pair-fed normals. Hepatic activity was normal after 8 days refeeding normal diet whereas kidney showed 63% of normal activity. The PCPA-fed animals showed 34% in liver and 38% in kidney as compared to normals; in both cases normal activity was noticed after refeeding. The phenylalanine-fed animals showed activity similar to that seen in phenylketonuric animals. The temporary inducement of phenylketonuria in these animals may be due to a slight change in conformation of the phenylalanine hydroxylase molecule; once the normal diet is resumed, the enzyme reverts back to its active form. This paper also suggests that α-methyl tyrosine when fed in conjunction with the phenylketonuric diet may suppress phenylalanine hydroxylase activity completely in the experimental animals thus yielding normal tyrosine levels as seen in human phenylketonurics.  相似文献   

16.
Induction of diabetes in rats is associated with a significant elevation in the phenylalanine hydroxylating capacity of the liver. This phenomenon reflects an increase in the abundance of both phenylalanine hydroxylase protein and phenylalanine hydroxylase-specific mRNA. These changes can be abolished by insulin-dependent control of diabetes. We show here that the control of diabetes by oral administration of sodium orthovanadate will also nullify the diabetes-related alterations in phenylalanine hydroxylase expression. In addition, diabetes-induced changes in the extent of phosphorylation of phenylalanine hydroxylase are reversed by either insulin or vanadate treatment in vivo. These treatments also abolished the diabetes-related, approx. 30-fold, decrease in glucagon sensitivity of phenylalanine hydroxylation in isolated liver cells.  相似文献   

17.
Phenylalanine hydroxylase purified from rat liver shows positive co-operativity in response to variations in phenylalanine concentration when assayed with the naturally occurring cofactor tetrahydrobiopterin. In addition, preincubation of phenylalanine hydroxylase with phenylalanine results in a substantial activation of the tetrahydrobiopterin-dependent activity of the enzyme. The monoclonal antibody PH-1 binds to phenylalanine hydroxylase only after the enzyme has been preincubated with phenylalanine and is therefore assumed to recognize a conformational epitope associated with substrate-level activation of the hydroxylase. Under these conditions, PH-1 inhibits the activity of phenylalanine hydroxylase; however, at maximal binding of PH-1 the enzyme is still 2-3 fold activated relative to the native enzyme. The inhibition by PH-1 is non-competitive with respect to tetrahydropterin cofactor. This suggests that PH-1 does not bind to an epitope at the active site of the hydroxylase. Upon maximal binding of PH-1, the positive co-operativity normally expressed by phenylalanine hydroxylase with respect to variations in phenylalanine concentration is abolished. The monoclonal antibody may therefore interact with phenylalanine hydroxylase at or near the regulatory or activator-binding site for phenylalanine on the enzyme molecule.  相似文献   

18.
The range of phenylalanine hydroxylase activity was determined by measuring the conversion of radioactive phenylalanine to tyrosine in liver and kidney of various vertebrates. Rodents (rats, mouse, gerbil, hamster and guinea pig) were found to have the highest liver phenylalanine hydroxylase activity among all animals studied. They are also the only species that possessed a significant kidney phenylalanine hydroxylase activity which was about 25% of that found in the liver of the same animal. The synthetic dimethyl-tetrahydro-pteridine, used as a cofactor for the enzyme assay in most studies, catalyzed non-enzymatic hydroxylation of phenylalanine to tyrosine. Inclusion of boiled-blank and strict control of timing between incubation and product measurement were essential precautions to minimize erroneous results from substrate contamination and non-enzymatic hydroxylation.  相似文献   

19.
Maximum inhibition of phenylalanine hydroxylase activity in the liver (85%) and in the kidney (50%) of suckling rats required the administration of over 9 mumol of p-chlorophenylalanine/10g body weight. Despite the decrease in the total activity from 184 to 34 units per 10g body weight, the injection of as much as 26 mumol of phenylalanine was required for its concentration in plasma to be still considerably elevated 12h later. In rats injected with p-chlorophenylalanine every 48h and with phenylalanine every 24h from 3 to 18 days of age, the hepatic and renal phenylalanine hydroxylase remained inhibited, whereas the activities of three other hepatic enzymes were unchanged. There was about 20% inhibition of brain and body growth, but no interference with the developmental formation of several cerebral enzymes (four dehydrogenases, hexokinase and glutaminase) was detected. In the course of this prolonged treatment, the phenylalanine concentrations in plasma increased gradually; on day 2 and day 8 (measured 12h after the last injection) they were 800 and 1395 nmol/ml respectively; on day 15, 12 and 18h after the usual injection, the values were 2030 and 1030 respectively as opposed to the 96 nmol in untreated rats. This degree of hyperphenylalaninaemia, persisting for 18h per day throughout a critical period of development, fulfils the primary criterion of a suitable animal model for phenylketonuria.  相似文献   

20.
In vitro and in vivo modulation of drug metabolizing enzymes by piperine was investigated in microsomes of rats and guinea pigs. In vitro piperine caused concentration related inhibition (50% at 100 microM) of arylhydrocarbon hydroxylase (AHH) and 7-ethoxycourmarin deethylase (7ECDE) activities, which were comparable in control and 3-methylcholanthrene (3MC) treated rats. In guinea pig microsomes however, piperine caused strong inhibition at lower concentrations (35% at 10 microM) and relatively much lesser inhibition with further increase in piperine concentrations. A Dixon plot of the kinetic data of both AHH and 7ECDE indicated noncompetitive inhibition with a Ki of approx. 100 microM. In vivo, piperine given at a dose of 25 mg/kg body wt to rats caused a maximal inhibition at 1 hr of both the enzymes, while only AHH returned to normal value within 4 hr. Similarly, upon daily treatment of piperine (15 mg/kg body wt) to rats for 7 days, 7ECDE was consistently inhibited, while AHH showed faster recovery. Piperine thus appeared to cause differential inhibition of two forms of cytochrome P450 and thus would accordingly affect the steady-state level of those drugs metabolized by these pulmonary forms of cytochromes P450.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号