共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Arabidopsis mutants deficient in polyunsaturated fatty acid synthesis. Biochemical and genetic characterization of a plant oleoyl-phosphatidylcholine desaturase. 总被引:18,自引:0,他引:18
The overall fatty acid composition of leaf lipids in a mutant of Arabidopsis thaliana was characterized by reduced levels of polyunsaturated 18-carbon fatty acids and an increased proportion of oleate as a consequence of a single recessive nuclear mutation. Quantitative analysis of the fatty acid composition of individual lipids demonstrated that all the major phospholipids of the extrachloroplast membranes are affected by the mutation, whereas the chlorplast lipids show fatty acid compositions only slightly different from those of wild type plants. These results are consistent with the parallel operation of two pathways of lipid synthesis in plant leaf cells (the prokaryotic pathway in the chloroplast and the eukaryotic pathway in the endoplasmic reticulum) and with genetic evidence (Browse, J., Kunst, L., Anderson, S., Hugly, S., and Somerville, C.R. (1989) Plant Physiol 90, 522-529) that an independent 18:1/16:1 desaturase operates on chloroplast membrane lipids. Direct enzyme assays confirmed that the mutant plants are deficient in the activity of a microsomal oleoyl-phosphatidycholine desaturase and demonstrated that this desaturase is the major enzyme responsible for the synthesis of polyunsaturated phospholipids. Despite this deficiency in 18:1-desaturase activity, mutant plants contained relatively high levels of 18:3 in their leaf phospholipids. This finding is interpreted as additional evidence that considerable two-way exchange of lipid occurs between the chloroplast and endoplasmic reticulum and that this exchange allows the chloroplast desaturases to provide lipids containing 18:3 to the extrachloroplast compartment, thus partially alleviating the deficiency in 18:1 desaturase activity. 相似文献
6.
M R Montgomery 《Journal of lipid research》1976,17(1):12-15
Preparations of rat lung microsomes containing 0.030-0.050 nmole of cytochromes P-450 and b5 per mg microsomal protein have been observed to contain significant levels of fatty acid desaturase activity. Both stearoyl CoA and palmitoyl CoA are desaturated to their monounsaturated analogues, oleic acid and palmitoleic acid, respectively. Activity (per mg microsomal protein) of the lung preparations varied according to the diet of the animals prior to killing in the order: fat free diet greater than normal rat chow greater than starvation. All preparations exhibited approximately 50% inhibition when incubated in the presence of 0.10 mM CN-. Maximal activity was obtained with the 0.50 mM NADH less activity with equal amounts of NADPH, and there was no synergistic interaction of NADH and NADPH together. The rate of desaturation was linear with protein concentrations between 0.15-1.5 mg microsomal protein/incubation at incubation times up to 8 min. A pH optimum range of 7.0-7.4 was observed. For all variables of fatty acid desaturase activity which were examined, the rate of desaturation of stearoyl CoA was approximately twice that for palmitoyl CoA. These results indicate that the same fatty acid desaturation system which is functional in the liver is also present in significant amounts in mammalian lungs. 相似文献
7.
8.
9.
The usual rise in phospholipid-bound palmitoleic acid of Tetrahymena pyriformis cells slowly acclimating to low temperature exposure can be prevented by cycloheximide. This reduction in fatty acid desaturation is not caused by specific inhibition of a temperature-induced synthesis of a fatty acid desaturase but rather by a general effect equally conspicuous in isothermal cells. Cycloheximide-inhibited cells chilled and analyzed quickly, before long term ill effects of the drug are expressed, exhibit the rise in unsaturated fatty acids typical of temperature-acclimating cells. 相似文献
10.
A bifunctional delta-fatty acyl acetylenase/desaturase from the moss Ceratodon purpureus. A new member of the cytochrome b5 superfamily. 总被引:2,自引:0,他引:2
P Sperling M Lee T Girke U Z?hringer S Stymne E Heinz 《European journal of biochemistry》2000,267(12):3801-3811
Many plant genes have been cloned that encode regioselective desaturases catalyzing the formation of cis-unsaturated fatty acids. However, very few genes have been cloned that encode enzymes catalyzing the formation of the functional groups found in unusual fatty acids (e.g. hydroxy, epoxy or acetylenic fatty acids). Here, we describe the characterization of an acetylenase from the moss Ceratodon purpureus with a regioselectivity differing from the previously described Delta12-acetylenase. The gene encoding this protein, together with a Delta6-desaturase, was cloned by a PCR-based approach with primers derived from conserved regions in Delta5-, Delta6-fatty-acid desaturases and Delta8-sphingolipid desaturases. The proteins that are encoded by the two cloned cDNAs are likely to consist of a N-terminal extension of unknown function, a cytochrome b5-domain, and a C-terminal domain that is similar to acyl lipid desaturases with characteristic histidine boxes. The proteins were highly homologous in sequence to the Delta6-desaturase from the moss Physcomitrella patens. When these two cDNAs were expressed in Saccharomyces cerevisiae, both transgenic yeast cultures desaturated Delta9-unsaturated C16- and C18-fatty acids by inserting an additional Delta6cis-double bond. One of these transgenic yeast clones was also able to introduce a Delta6-triple bond into gamma-linolenic and stearidonic acid. This resulted in the formation of 9,12,15-(Z,Z,Z)-octadecatrien-6-ynoic acid, the main fatty acid found in C. pupureus. These results demonstrate that the Delta6-acetylenase from C. pupureus is a bifunctional enzyme, which can introduce a Delta6cis-double bond into 9,12,(15)-C18-polyenoic acids as well as converting a Delta6cis-double bond to a Delta6-triple bond. 相似文献
11.
R. S. Moreton 《Applied microbiology and biotechnology》1985,22(1):42-45
Summary The effect of cyclopropene fatty acids, sterculic and malvalic, on the lipids of yeasts grown under nitrogen limiting, lipid accumulating, conditions was studied. The ratio of stearic to oleic acid showed a dose response effect, with an increase in stearic acid content as the dose of cyclopropene fatty acid increased, and a corresponding reduction in oleic acid. Linoleic and linolenic acids were not affected to the same extent. These effects are shown for the yeasts Candida sp. 107, Trichosporon cutaneum, and Rhodosporidium toruloides. 相似文献
12.
Modification of the fatty acid composition of Escherichia coli by coexpression of a plant acyl-acyl carrier protein desaturase and ferredoxin. 总被引:3,自引:0,他引:3 下载免费PDF全文
Expression of a plant delta 6-palmitoyl (16:0)-acyl carrier protein desaturase in Escherichia coli resulted in the accumulation of the novel monounsaturated fatty acids delta 6-hexadecenoic acid (16:1 delta 6) and delta 8-octadecenoic acid. Amounts of 16:1 delta 6 accumulated by E. coli were increased more than twofold by the expression of a plant ferredoxin together with the delta 6-16:0-acyl carrier protein desaturase. 相似文献
13.
14.
15.
Biosynthesis of polyunsaturated fatty acids in C. elegans is initiated by the introduction of a double bond at the delta9 position of a saturated fatty acid. We identified three C. elegans fatty acid desaturase genes related to the yeast delta9 desaturase OLE1 and the rat stearoyl-CoA desaturase SCD1. Heterologous expression of all three genes rescues the fatty acid auxotrophy of the yeast delta9 desaturase mutant ole1. Examination of the fatty acid composition of the transgenic yeast reveals striking differences in the substrate specificities of these desaturases. Two desaturases, FAT-6 and FAT-7, readily desaturate stearic acid (18:0) and show less activity on palmitic acid (16:0). In contrast, the other desaturase, FAT-5, readily desaturates palmitic acid (16:0), but shows nearly undetectable activity on the common delta9 substrate stearic acid. This is the first report of a palmitoyl-CoA-specific membrane fatty acid desaturase. 相似文献
16.
《Biochimica et Biophysica Acta (BBA)/Lipids and Lipid Metabolism》1979,572(2):376-381
The usual rise in phospholipid-bound palmitoleic acid of Tetrahymena pyriformis cells slowly acclimating to low temperature exposure can be prevented by cycloheximide. This reduction in fatty acid desaturation is not caused by specific inhibition of a temperature-induced synthesis of a fatty acid desaturase but rather by a general effect equally conspicuous in isothermal cells. Cycloheximide-inhibited cells chilled and analyzed quickly, before long term ill effects of the drug are expressed, exhibit the rise in unsaturated fatty acids typical of temperature-acclimating cells. 相似文献
17.
Utilization of C20-polyunsaturated fatty acids by a yeast fatty acid desaturase mutant 总被引:1,自引:0,他引:1
M A Williams D W Taylor J Tinoco M A Ojakian A D Keith 《Biochemical and biophysical research communications》1973,54(4):1560-1566
A study was made of the utilization of C20-polyunsaturated fatty acids by the fatty acid desaturase mutant , Arachidonic acid, 8,11,14-eicosatrienoic acid, and 5,8,11,14,17-eicosapentaenoic acid were about equally effective in supporting growth with lactate as the carbon source. The relative proportion of these fatty acids in total cell fatty acids was . 50%. 5,8,11-eicosatrienoic acid synthesized from oleate was less effective. Very little growth occurred with 11,14,17-eicosatrienoic acid or with 11,14-eicosadienoic acid. These results indicate the usefulness of the yeast mutant as a eucaryotic model for study of membrane systems enriched in specific C20-polyunsaturated fatty acids. 相似文献
18.
The activity of microsomal fatty acid delta 9-desaturase was significantly higher in liver microsomes of vitamin A-deficient rats as compared with their controls. Feeding of vitamin A-supplemented control diet to the deficient rats restored the delta 9-desaturase activity to the control values. The activity of delta 6-desaturase was not affected by vitamin A deficiency. 相似文献
19.