首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Avrahami D  Shai Y 《Biochemistry》2003,42(50):14946-14956
The dramatically increased frequency of opportunistic fungal infections has prompted research to diversify the arsenal of antifungal agents. Antimicrobial peptides constitute a promising family for future antibiotics with a new mode of action. However, only a few are effective against fungal pathogens because of their ability to self-assemble. Recently, we showed that the conjugation of fatty acids to the potent antibacterial peptide magainin endowed it with antifungal activity concomitant with an increase in its oligomeric state in solution. To investigate whether a high potency of the parental peptide is prerequisite for antifungal activity, we conjugated undecanoic acid (UA) and palmitic acid (PA) to inactive diastereomers of magainin containing four d-amino acids ([D]-4-magainin), as well as to a weakly active diastereomeric lytic peptide containing Lys and Leu ([D]-K(5)L(7)). All lipopeptides gained potent activity toward Cryptococcus neoformans. Most importantly, [D]-K(5)L(7)-UA was highly potent against all microorganisms tested, including bacteria, yeast, and opportunistic fungi. All lipopeptides increased the permeability of Escherichia coli spheroplasts and intact C. neoformans, as well as their corresponding membranes, phosphatidylethanol (PE)/phosphatidylglycerol (PG) and phosphatidylcholine (PC)/PE/phosphatidylinositol (PI)/ergosterol, respectively. The extent of membrane-permeating activity correlated with their biological function, suggesting that the plasma membrane was one of their major targets. Circular dichroism (CD) and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy revealed that their mode of oligomerization in solution, structure, and organization in membranes have important roles regarding their antibacterial and antifungal activities. Together with the advantage of using diastereomers versus all l-amino acid peptides, this study paves the way to the design of a new group of potent antifungal peptides urgently needed to combat opportunistic fungal infection.  相似文献   

2.
We report on the synthesis, biological function, and a plausible mode of action of a new group of lipopeptides with potent antifungal and antibacterial activities. These lipopeptides are derived from positively charged peptides containing d- and l-amino acids (diastereomers) that are palmitoylated (PA) at their N terminus. The peptides investigated have the sequence K(4)X(7)W, where X designates Gly, Ala, Val, or Leu (designated d-X peptides). The data revealed that PA-d-G and PA-d-A gained potent antibacterial and antifungal activity despite the fact that both parental peptides were completely devoid of any activity toward microorganisms and model phospholipid membranes. In contrast, PA-d-L lost the potent antibacterial activity of the parental peptide but gained and preserved partial antifungal activity. Interestingly, both d-V and its palmitoylated analog were inactive toward bacteria, and only the palmitoylated peptide was highly potent toward yeast. Both PA-d-L and PA-d-V lipopeptides were also endowed with hemolytic activity. Mode of action studies were performed by using tryptophan fluorescence and attenuated total reflectance Fourier transform infrared and circular dichroism spectroscopy as well as transmembrane depolarization assays with bacteria and fungi. The data suggest that the lipopeptides act by increasing the permeability of the cell membrane and that differences in their potency and target specificity are the result of differences in their oligomeric state and ability to dissociate and insert into the cytoplasmic membrane. These results provide insight regarding a new approach of modulating hydrophobicity and the self-assembly of non-membrane interacting peptides in order to endow them with both antibacterial and antifungal activities urgently needed to combat bacterial and fungal infections.  相似文献   

3.
Due to the increasing incidence of fungal opportunistic infections and emergence of antibiotic‐resistant fungal strains, antimicrobial peptides (AMPs) are considered as ideal candidates for antifungal compounds. In silico methods can reduce the limitations of natural AMPs such as toxicity and instability and improve their antimicrobial properties and selectivity. In this study, we designed AurH1, a new truncated peptide, based on the six‐amino acid sequence of Aurein1.2. Further , the antimicrobial activities and toxicity effects of AurH1 on human skin fibroblast cells and red blood cells were investigated. Finally, field emission scanning electron microscopy (FE‐SEM) and flow cytometry were performed in order to study the mechanism of action of AurH1. The results indicated that AurH1 had only antifungal activity (at a minimal inhibitory concentration (MIC) of 7.3‐125 μg/mL) without any antibacterial effects on the selected bacteria, while Aurein1.2 had both antifungal and antibacterial activities as positive control. Furthermore, AurH1 did not show any toxicity on Hu02 cells and human red blood cells at its MIC range. In conclusion, it became clear that AurH1 is a selective peptide against fungi with no toxic effects on the selected bacteria and human cells.  相似文献   

4.
We report a theoretical and experimental study on a new series of small-sized antibacterial peptides. Synthesis and bioassays for these peptides are reported here. In addition, we evaluated different physicochemical parameters that modulate antimicrobial activity (charge, secondary structure, amphipathicity, hydrophobicity and polarity). We also performed molecular dynamic simulations to assess the interaction between these peptides and their molecular target (the membrane). Biophysical characterization of the peptides was carried out with different techniques, such as circular dichroism (CD), linear dichroism (LD), infrared spectroscopy (IR), dynamic light scattering (DLS), fluorescence spectroscopy and TEM studies using model systems (liposomes) for mammalian and bacterial membranes. The results of this study allow us to draw important conclusions on three different aspects. Theoretical and experimental results indicate that small-sized peptides have a particular mechanism of action that is different to that of large peptides. These results provide additional support for a previously proposed four-step mechanism of action. The possible pharmacophoric requirement for these small-sized peptides is discussed. Furthermore, our results indicate that a net +4 charge is the adequate for 9 amino acid long peptides to produce antibacterial activity. The information reported here is very important for designing new antibacterial peptides with these structural characteristics.  相似文献   

5.
Pleurocidin (Ple) is a peptide derived from the winter flounder. In our previous study, we reported the antifungal effect of Ple and its mode of action. To develop novel antifungal peptides useful as therapeutic agents, two analogs, with amino acid substitutions, were designed to decrease the net hydrophobicity by Arg (R) or Ser (S)-substitution at the hydrophobic face of Ple without changing the amphipathic structure. By substituting Ser, the hydrophobicity of the peptide (anal-S) was decreased, and by substituting Arg, though the hydrophobicity of the peptide (anal-R) was decreased, the cationicity of this peptide was increased. CD measurements showed the substitution of Arg or Ser decrease the α-helical conformation of analog peptides. Studies with analog peptides have shown decreases in hydrophobicity and α-helicity do not affect antifungal activity but decrease hemolytic activity. These results suggest that highly hydrophobic and α-helical natures are not desirable in the design of antimicrobial peptides.  相似文献   

6.
Lepidoptera have been reported to produce several antibacterial peptides in response to septic injury. However, in marked contrast to other insect groups, no inducible antifungal molecules had been described so far in this insect order. Surprisingly, also cysteine-rich antimicrobial peptides, which predominate in the antimicrobial defense of other insects, had not been discovered in Lepidoptera. Here we report the isolation from the hemolymph of immune induced larvae of the lepidopteran Heliothis virescens of a cysteine-rich molecule with exclusive antifungal activity. We have fully characterized this antifungal molecule, which has significant homology with the insect defensins, a large family of antibacterial peptides directed against Gram-positive strains. Interestingly, the novel peptide shows also similarities with the antifungal peptide drosomycin from Drosophila. Thus, Lepidoptera appear to have built their humoral immune response against bacteria on cecropins and attacins. In addition, we report that Lepidoptera have conferred antifungal properties to the well conserved structure of antibacterial insect defensins through amino acid replacements.  相似文献   

7.
Structure-activity relationship study: short antimicrobial peptides.   总被引:3,自引:0,他引:3  
Many short antimicrobial peptides (< 18mer) have been identified for the development of therapeutic agents. However, Structure-activity relationship (SAR) studies about short antimicrobial peptides have not been extensively performed. To investigate the relationship between activity and structural parameters such as an alpha-helical structure, a net positive charge and a hydrophobicity, we synthesized and characterized diastereomers, scramble peptides and substituted peptides of the short antimicrobial peptide identified by combinatorial libraries. Circular dichroism (CD) spectra and in vitro activity indicated that an alpha-helical structure correlated with the antimicrobial activity and a beta-sheet structure also satisfied a structural requirement for antimicrobial activity. Most peptides consisting of L-amino acids lost antifungal activity in the presence of heat-inactivated serum, while active diastereomers and a scramble peptide with the beta-sheet structure retained antifungal activity in the same condition.  相似文献   

8.
Three antimicrobial peptides exhibiting in vitro antifungal activity were expressed in Arabidopsis to compare their in planta activity. β-Purothionin, cecropin B, and phor21 were expressed under an endogenous promoter with moderate-level activity and excreted extracellularly. Expression of β-purothionin rendered the greatest antibacterial and antifungal resistance while cecropin B enhanced only antibacterial activity and phor21 did not improve antimicrobial resistance. The transgenic β-purothionin arrested fungal growth on leaf surfaces and infection of stomata. Leaf extracts from plants producing β-purothionin and cecropin B displayed membrane permeabilizing activity. The in planta antimicrobial activity of the tested peptides was consistent with previously reported in vitro experiments. The expression strategy allowed enhanced antifungal resistance without high-level transgene expression.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

9.
The design of antimicrobial peptides could have benefited from structural studies of known peptides having specific activity against target microbes, but not toward other microorganisms. We have previously reported the identification of a series of peptides (PAF-series) active against certain postharvest fungal phytopathogens, and devoid of toxicity towards E. coli and S. cerevisiae [López-García et al. Appl. Environ. Microbiol. 68 (2002) 2453]. The peptides inhibited the conidia germination and hyphal growth. Here, we present a comparative structural characterisation of selected PAF peptides obtained by single-amino-acid replacement, which differ in biological activity. The peptides were characterised in solution using fluorescence and circular dichroism (CD) spectroscopies. Membrane and membrane mimetic-peptide interactions and the lipid-bound structures were studied using fluorescence with the aid of extrinsic fluorescent probes that allowed the identification of mixed peptide/lipid complexes. A direct correlation was found between the capability of complex formation and antifungal activity. These studies provide a putative structural basis for the mechanism of action of selective antifungal peptides.  相似文献   

10.
A series of peptide dendrimers and their conjugates with antimicrobial agent FMDP (N3‐(4‐methoxyfumaroyl)‐(S)‐2,3‐diamino‐propanoic acid) were synthesized. The obtained compounds were tested for the antibacterial and antifungal activity. All novel dendrimers displayed much better activity against the tested strains than FMDP itself. Moreover, their conjugates with FMDP also exhibited antimicrobial activity. The most promising molecules were tested against a broad selection of fungal strains. The analysis of their antifungal properties indicates that the examined molecules are efficient growth inhibitors of fluconazole‐resistant hospital‐acquired strains. Moreover, an application of amphiphilic branched peptides such as FMDP carriers suggests that transport mechanism involves more likely the cell membrane perturbation than the mediation of the specific transport proteins. The activity of obtained compounds strongly depends on the specific structure of the molecule.  相似文献   

11.
Despite the availability of various classes of antimycotics, the treatment of patients with systemic fungal infections is challenging. Therefore the development of new antifungals is urgently required. Promising new antifungal candidates are antimicrobial peptides. In the present review, we provide an overview of antifungal peptides isolated from plants, insects, amphibians and mammals that induce apoptosis. Their antifungal spectrum, mode of action and toxicity are discussed in more detail.  相似文献   

12.
The dermaseptins S are closely related peptides with broad-spectrum antibacterial activity that are produced by the skin of the South American hylid frog, Phyllomedusa sauvagei. These peptides are polycationic (Lys-rich), alpha-helical, and amphipathic, with their polar/charged and apolar amino acids on opposing faces along the long axis of the helix cylinder. The amphipathic alpha-helical structure is believed to enable the peptides to interact with membrane bilayers, leading to permeation and disruption of the target cell. We have identified new members of the dermaseptin S family that do not resemble any of the naturally occurring antimicrobial peptides characterized to date. One of these peptides, designated dermaseptin S9, GLRSKIWLWVLLMIWQESNKFKKM, has a tripartite structure that includes a hydrophobic core sequence encompassing residues 6-15 (mean hydrophobicity, +4.40, determined by the Liu-Deber scale) flanked at both termini by cationic and polar residues. This structure is reminiscent of that of synthetic peptides originally designed as transmembrane mimetic models and that spontaneously become inserted into membranes [Liu, L., and Deber, C. M. (1998) Biopolymers 47, 41-62]. Dermaseptin S9 is a potent antibacterial, acting on gram-positive and gram-negative bacteria. The structure of dermaseptin S9 in aqueous solution and in TFE/water mixtures was analyzed by circular dichroism and two-dimensional NMR spectroscopy combined with molecular dynamics calculations. Dermaseptin S9 is aggregated in water, but a monomeric nonamphipathic alpha-helical conformation, mostly in residues 6-21, is stabilized by the addition of TFE. These results, combined with membrane permeabilization assays and surface plasmon resonance analysis of the peptide binding to zwitterionic and anionic phospholipid bilayers, demonstrate that spatial segregation of hydrophobic and hydrophilic/charged residues on opposing faces along the long axis of a helix is not essential for the antimicrobial activity of cationic alpha-helical peptides.  相似文献   

13.
《Biological Control》2013,66(3):312-321
Two strains of Bacillus sp., SS-12.6 and SS-13.1, showed very strong antibacterial and antifungal activity against phytopathogens. The PCR analysis showed that both strains have the genes for biosynthesis of iturin, bacillomycin and surfactin. Kinetics of production of antimicrobial substances in these strains showed that synthesis started at the beginning of exponential phase of growth. Maximum of activity was slowly reached at the beginning of stationary growth phase and was maintained until the end of observed period. Ethyl acetate extracts of cell-free supernatants of both strains were particularly active against several postharvest fungal pathogens, in vitro and in vivo, in the experiment with apple fruits. Mass spectrometry analysis of ethyl acetate extract of the supernatant of strain SS-12.6 confirmed the presence of antimicrobial lipopeptide surfactin.  相似文献   

14.
表面活性素(surfactin)、伊枯草菌素(iturin)和丰原素(fengycin)是一类主要由革兰阳性芽胞杆菌通过非核糖体合成途径产生的抗菌肽,一般是由1个β-羟基脂肪酸与7~10个氨基酸肽链以酰胺键连接而成的环肽,具有抗细菌、抗真菌、抗病毒、抗肿瘤等生物活性,在医疗方面具有良好的应用前景。目前,人们对这3种新型抗菌肽在医药领域中的研究进展所知甚少,故本文对其发现历史、结构特点、作用机制、生物合成和应用价值进行阐述,为后续研究提供借鉴。  相似文献   

15.
16.
Many drugs are available for the treatment of systemic or superficial mycoses, but only a limited number of them are effective antifungal drugs, devoid of toxic and undesirable side effects. Furthermore, resistance development and fungistatic rather than fungicidal activities represent limitations of current antifungal therapy. Therefore there remains an urgent need for a new generation of antifungal agents. According to a polypharmacological approach, the present work concerns the synthesis and antifungal activity of a set of peptides designed to simultaneously target the fungal cell surface and lanosterol demethylase, a key enzyme involved in ergosterol synthesis. Our peptides include amino acid sequences characteristic of membrane-active antimicrobial peptides (AMP), and due to the presence of His residues, they carry the imidazole ring characteristic of azole compounds. The peptides synthesized by us, were tested against different yeast species, and displayed general antifungal activity, with a therapeutically promising antifungal specificity against Cryptococcus neoformans.  相似文献   

17.
Two lipopeptide antibiotics, pelgipeptins C and D, were isolated from Paenibacillus elgii B69 strain. The molecular masses of the two compounds were both determined to be 1,086 Da. Mass-spectrometry, amino acid analysis and NMR spectroscopy indicated that pelgipeptin C was the same compound as BMY-28160, while pelgipeptin D was identified as a new antibiotic of the polypeptin family. These two peptides were active against all the tested microorganisms, including antibiotic-resistant pathogenic bacterial strains such as methicillin-resistant Staphylococcus aureus (MRSA). Time-kill assays demonstrated that pelgipeptin D exhibited rapid and effective bactericidal action against MRSA at 4×MIC. Based on acute toxicity test, the intraperitoneal LD50 value of pelgipeptin D was slightly higher than that of the structurally related antimicrobial agent polymyxin B. Pelgipeptins are highly potent antibacterial and antifungal agents, particularly against MRSA, and warrant further investigation as possible therapeutic agents for bacteria infections resistant to currently available antibiotics.  相似文献   

18.
The iron-binding protein lactoferrin is a multifunctional protein that has antibacterial, antifungal, antiviral, antitumour, anti-inflammatory, and immunoregulatory properties. All of these additional properties appear to be related to its highly basic N-terminal region. This part of the protein can be released in the stomach by pepsin cleavage at acid pH. The 25-residue antimicrobial peptide that is released is called lactoferricin. In this work, we review our knowledge about the structure of the peptide and attempt to relate this to its many functions. Microcalorimetry and fluorescence spectroscopy data regarding the interaction of the peptide with model membranes show that binding to net negatively charged bacterial and cancer cell membranes is preferred over neutral eukaryotic membranes. Binding of the peptide destabilizes the regular membrane bilayer structure. Residues that are of particular importance for the activity of lactoferricin are tryptophan and arginine. These two amino acids are also prevalent in "penetratins", which are regions of proteins or synthetic peptides that can spontaneously cross membranes and in short hexapeptide antimicrobial peptides derived through combinatorial chemistry. While the antimicrobial, antifungal, antitumour, and antiviral properties of lactoferricin can be related to the Trp/Arg-rich portion of the peptide, we suggest that the anti-inflammatory and immunomodulating properties are more related to a positively charged region of the molecule, which, like the alpha- and beta-defensins, may act as a chemokine. Few small peptides are involved in as wide a range of host defense functions as bovine and human lactoferricin.  相似文献   

19.
Park Y  Park SC  Park HK  Shin SY  Kim Y  Hahm KS 《Biopolymers》2007,88(2):199-207
HP (2-20) (AKKVFKRLEKLFSKIQNDK) is a 19-aa antimicrobial peptide derived from N-terminus of Helicobacter pylori Ribosomal protein L1 (RpL1). In the previous study, several analogs with amino acid substitutions were designed to increase or decrease only the net hydrophobicity. In particular, substitutions of Gln(16) and Asp(18) with Trp (Anal 3) for hydrophobic amino acid caused a dramatic increase in antibiotic activity without a hemolytic effect. HP-A3 is a potent antimicrobial peptide that forms, in a hydrophobic medium, an amphipathic structure consisting of an N-terminal random coil region (residues 2-5) and extended C-terminal regular alpha-helical region (residues 6-20). To obtain the short and potent alpha-helical antimicrobial peptide, we synthesized a N-terminal random coil deleted HP-A3 (A3-NT) and examined their antimicrobial activity and mechanism of action. The resulting 15mer peptide showed increased antibacterial and antifungal activity to 2- and 4-fold, respectively, without hemolysis. Confocal fluorescence microscopy studies showed that A3-NT was accumulated in the plasma membrane. Flow cytometric analysis revealed that A3-NT acted in salt- and energy-independent manner. Furthermore, A3-NT causes significant morphological alterations of the bacterial surfaces as shown by scanning electron microscopy. Circular dichroism (CD) analysis revealed that A3-NT showed higher alpha-helical contents than the HP-A3 peptide in 50% TFE solution. Therefore, the cell-lytic efficiency of HP-A3, which depended on the alpha-helical content of peptide, correlated linearly with their antimicrobial potency.  相似文献   

20.
Lactoferrin (LF) is believed to contribute to the host's defense against microbial infections. This work focuses on the antibacterial and antifungal activities of a designed peptide, L10 (WFRKQLKW) by modifying the first eight N-terminal residues of bovine LF by selective homologous substitution of amino acids on the basis of hydrophobicity, L10 has shown potent antibacterial and antifungal properties against clinically isolated extended spectrum beta lactamases (ESBL), producing gram-negative bacteria as well as Candida strains with minimal inhibitory concentrations (MIC) ranging from 1 to 8 μg/mL and 6.5 μg/mL, respectively. The peptide was found to be least hemolytic at a concentration of 800 μg/mL. Interaction with lipopolysaccharide (LPS) and lipid A (LA) suggests that the peptide targets the membrane of gram-negative bacteria. The membrane interactive nature of the peptide, both antibacterial and antifungal, was further confirmed by visual observations employing electron microscopy. Further analyses, by means of propidium iodide based flow cytometry, also supported the membrane permeabilization of Candida cells. The peptide was also found to possess anti-inflammatory properties, by virtue of its ability to inhibit cyclooxygenase-2 (COX-2). L10 therefore emerges as a potential therapeutic remedial solution for infections caused by ESBL positive, gram-negative bacteria and multidrug-resistant (MDR) fungal strains, on account of its multifunctional activities. This study may open up new approach to develop and design novel antimicrobials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号