首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Gene》1998,208(1):37-42
The two mer operons of the Pseudomonas stutzeri OX plasmid pPB and their flanking regions have been sequenced and found to be part of two aberrant transposons. The narrow spectrum mer operon is almost identical to that of Tn501, but is associated with the remnants of Tn5053 tni genes rather than the Tn501 transposition module. The broad spectrum mer operon shows an overall homology with that of Tn5053, but differs from it in the presence of a merB gene, absent in Tn5053, and a merC gene instead of a merF. The pPB broad spectrum mer operon is associated with an incomplete Tn5053-like transposition module and with the Tn501 tnp genes, which are proximal, respectively, to the end and to the beginning of the mer operon. A hypothesis about pPB evolution is presented.  相似文献   

2.
The trpA gene product was analyzed from a class of strains of Escherichia coli K12 in which the lac operon has been fused by deletion to the trp operon. These are strains that have retained the ability to synthesize tryptophan. Two of these strains are shown to make a wild-type trpA product; these strains retain intact all structural genes of the ttrp operon. It is proposed that the lac operon in these strains is fused to a region of the trp operon between trpA, the last gene in the operon, and the region where trp messenger RNA synthesis terminates. The region where trp messenger RNA synthesis terminates thus is distinct from the trp structural genes.  相似文献   

3.
The spo0K (opp) operon of Bacillus subtilis encodes an oligopeptide permease that is required for uptake of oligopeptides, development of genetic competence, and initiation of sporulation. We made in-frame, non-polar deletion mutations in each of the first four genes of the five-gene spo0K operon and tested effects on oligopeptide transport, sporulation, and expression of competence genes. spo0KA, B, C, and D were required for sporulation, competence development, and oligopeptide transport. Disruption of spo0KE caused a less severe phenotype than did disruption of any of the other genes of the operon.  相似文献   

4.
《FEMS microbiology letters》1998,165(1):193-200
Deletion of a region of DNA 5′ to a previously characterised malQ gene of Clostridium butyricum resulted in increased production of the enzyme activity encoded by malQ, 4-α-glucanotransferase. Nucleotide sequence analysis revealed the presence of an open reading frame capable of encoding a protein of 335 amino acids. This protein was found to share 33% amino acid sequence identity with the Bacillus subtilis CcpA (catabolite control protein) repressor, 28% identity with the Streptomyces coelicolor MalR repressor, and 30%, 25%, and 21% amino acid identity with the Escherichia coli repressors GalR, LacI and MalI, respectively. The amino-terminal domain was predicted to be able to form a helix-turn-helix structure, and shared highest similarity with the equivalent functional domain from the E. coli LacI repressor. Interruption of malR by the generation of a frameshift mutation led to a 10-fold increase in MalQ activity. These data suggest that the identified open reading frame encodes a repressor of the C. butyricum malQ gene, and of the adjacent malP gene. The gene has, therefore, been designated malR, and its encoded gene product MalR.  相似文献   

5.
6.
This work reports the construction of Escherichia coli in-frame deletion strains of tmk, which encodes thymidylate kinase, Tmk. The tmk gene is located at the third position of a putative five-gene operon at 24.9 min on the E. coli chromosome, which comprises the genes pabC, yceG, tmk, holB, and ycfH. To avoid potential polar effects on downstream genes of the operon, as well as recombination with plasmid-encoded tmk, the tmk gene was replaced by the kanamycin resistance gene kka1, encoding amino glycoside 3′-phosphotransferase kanamycin kinase. The kanamycin resistance gene is expressed under the control of the natural promoter(s) of the putative operon. The E. coli tmk gene is essential under any conditions tested. To show functional complementation in bacteria, the E. coli tmk gene was replaced by thymidylate kinases of bacteriophage T4 gp1, E. coli tmk, Saccharomyces cerevisiae cdc8, or the Homo sapiens homologue, dTYMK. Growth of these transgenic E. coli strains is completely dependent on thymidylate kinase activities of various origin expressed from plasmids. The substitution constructs show no polar effects on the downstream genes holB and ycfH with respect to cell viability. The presented transgenic bacteria could be of interest for testing of thymidylate kinase-specific phosphorylation of nucleoside analogues that are used in therapies against cancer and infectious diseases.  相似文献   

7.
8.
The arsenic resistance (ars) operon from plasmid pKW301 of Acidiphilium multivorum AIU 301 was cloned and sequenced. This DNA sequence contains five genes in the following order: arsR, arsD, arsA, arsB, arsC. The predicted amino acid sequences of all of the gene products are homologous to the amino acid sequences of the ars gene products of Escherichia coli plasmid R773 and IncN plasmid R46. The ars operon cloned from A. multivorum conferred resistance to arsenate and arsenite on E. coli. Expression of the ars genes with the bacteriophage T7 RNA polymerase-promoter system allowed E. coli to overexpress ArsD, ArsA, and ArsC but not ArsR or ArsB. The apparent molecular weights of ArsD, ArsA, and ArsC were 13,000, 64,000, and 16,000, respectively. A primer extension analysis showed that the ars mRNA started at a position 19 nucleotides upstream from the arsR ATG in E. coli. Although the arsR gene of A. multivorum AIU 301 encodes a polypeptide of 84 amino acids that is smaller and less homologous than any of the other ArsR proteins, inactivation of the arsR gene resulted in constitutive expression of the ars genes, suggesting that ArsR of pKW301 controls the expression of this operon.  相似文献   

9.
10.
The phenylalanyl-tRNA synthetase operon is composed of two adjacent, cotranscribed genes, pheS and pheT, corresponding respectively to the small and large subunit of phenylalanyl-tRNA synthetase. A fusion between the regulatory regions of phenylalanyl-tRNA synthetase operon and the lac structural genes has been constructed to study the regulation of the operon. The pheS,T operon was shown, using the fusion, to be derepressed when phenylalanine concentrations were limiting in a leaky auxotroph mutated in the phenylalanine biosynthetic pathway. Furthermore, a mutational alteration in the phenylalanyl-tRNA synthetase gene, bradytrophic for phenylalanine, was also found to be derepressed under phenylalanine starvation. These results indicate that the pheS,T operon is derepressed when the level of tRNAPhe aminoacylation is lowered. By analogy with other well-studied amino acid biosynthetic operons known to be controlled by attenuation, these in vivo results indicate that phenylalanyl-tRNA synthetase levels are controlled by an attenuation-like mechanism.  相似文献   

11.
12.
The narA locus required for nitrate reduction in Synechococcus sp. strain PCC 7942 is shown to consist of a cluster of genes, namely, moeA, moaC, moaD, moaE, and moaA, involved in molybdenum cofactor biosynthesis. The product of the moaC gene of strain PCC 7942 shows homology in its N-terminal half to MoaC from Escherichia coli and in its C-terminal half to MoaB or Mog. Overexpression of the Synechococcus moaC gene in E. coli resulted in the synthesis of a polypeptide of 36 kDa, a size that would conform to a protein resembling a fusion of the MoaC and MoaB or Mog polypeptides of E. coli. Insertional inactivation of the moeA, moaC, moaE, and moaA genes showed that the moeA-moa gene cluster is required for growth on nitrate and expression of nitrate reductase activity in strain PCC 7942. The moaCDEA genes constitute an operon which is transcribed divergently from the moeA gene. Expression of the moeA gene and the moa operon was little affected by the nitrogen source present in the culture medium.  相似文献   

13.
Construction and Characterization of a 1,3-Propanediol Operon   总被引:19,自引:0,他引:19       下载免费PDF全文
The genes for the production of 1,3-propanediol (1,3-PD) in Klebsiella pneumoniae, dhaB, which encodes glycerol dehydratase, and dhaT, which encodes 1,3-PD oxidoreductase, are naturally under the control of two different promoters and are transcribed in different directions. These genes were reconfigured into an operon containing dhaB followed by dhaT under the control of a single promoter. The operon contains unique restriction sites to facilitate replacement of the promoter and other modifications. In a fed-batch cofermentation of glycerol and glucose, Escherichia coli containing the operon consumed 9.3 g of glycerol per liter and produced 6.3 g of 1,3-PD per liter. The fermentation had two distinct phases. In the first phase, significant cell growth occurred and the products were mainly 1,3-PD and acetate. In the second phase, very little growth occurred and the main products were 1,3-PD and pyruvate. The first enzyme in the 1,3-PD pathway, glycerol dehydratase, requires coenzyme B12, which must be provided in E. coli fermentations. However, the amount of coenzyme B12 needed was quite small, with 10 nM sufficient for good 1,3-PD production in batch cofermentations. 1,3-PD is a useful intermediate in the production of polyesters. The 1,3-PD operon was designed so that it can be readily modified for expression in other prokaryotic hosts; therefore, it is useful for metabolic engineering of 1,3-PD pathways from glycerol and other substrates such as glucose.  相似文献   

14.
Pseudomonas putida G7 carries a naphthalene-catabolic and self-transmissible plasmid, NAH7, which belongs to the IncP-9 incompatibility group. Adjacent to the putative origin of conjugative transfer (oriT) of NAH7 are three genes, traD, traE, and traF, whose functions and roles in conjugation were previously unclear. These three genes were transcribed monocistronically and thus were designated the traD operon. Mutation of the three genes in the traD operon resulted in 10- to 105-fold decreases in the transfer frequencies of the plasmids from Pseudomonas to Pseudomonas and Escherichia coli and from E. coli to E. coli. On the other hand, the traD operon was essential for the transfer of NAH7 from E. coli to Pseudomonas strains. These results indicated that the traD operon is a host-range modifier in the conjugative transfer of NAH7. The TraD, TraE, and TraF proteins were localized in the cytoplasm, periplasm, and membrane, respectively, in strain G7 cells. Our use of a bacterial two-hybrid assay system showed that TraE interacted in vivo with other essential components for conjugative transfer, including TraB (coupling protein), TraC (relaxase), and MpfH (a channel subunit in the mating pair formation system).  相似文献   

15.
Lactococcus lactis F10, isolated from freshwater catfish, produces a bacteriocin (BacF) active against Staphylococcus aureus, Staphylococcus carnosus, Lactobacillus curvatus, Lactobacillus plantarum, and Lactobacillus reuteri. The operon encoding BacF is located on a plasmid. Sequencing of the structural gene revealed no homology to other nisin genes. Nisin F is described.  相似文献   

16.
Bacillus subtilis, likeEscherichia coli, possesses several sets of genes involved in the utilization ofβ-glucosides. InE. coli, all these genes are cryptic, including the genes forming thebgl operon, thus leading to a Bgl? phenotype. We screened forB. subtilis chromosomal DNA fragments capable of reverting the Bgl+ phenotype associated with anE. coli hns mutant to the Bgl? wild-type phenotype. OneB. subtilis chromosomal fragment having this property was selected. It contained a putative Ribonucleic AntiTerminator binding site (RAT sequence) upstream from thebglP gene. Deletion studies as well as subcloning experiments allowed us to prove that the putativeB. subtilis bglP RAT sequence was responsible for the repression of theE. coli bgl operon. We propose that this repression results from the titration of the BglG antiterminator protein ofE. coli bgl operon by our putativeB. subtilis bglP RAT sequence. Thus, we report evidence for a new cross interaction between heterologous RAT-antiterminator protein pairs.  相似文献   

17.
In Escherichia coli, the phn operon encodes proteins responsible for the uptake and breakdown of phosphonates. The C-P (carbon-phosphorus) lyase enzyme encoded by this operon which catalyzes the cleavage of C-P bonds in phosphonates has been recalcitrant to biochemical characterization. To advance the understanding of this enzyme, we have cloned DNA from Rhizobium (Sinorhizobium) meliloti that contains homologues of the E. coli phnG, -H, -I, -J, and -K genes. We demonstrated by insertional mutagenesis that the operon from which this DNA is derived encodes the R. meliloti C-P lyase. Furthermore, the phenotype of this phn mutant shows that the C-P lyase has a broad substrate specificity and that the organism has another enzyme that degrades aminoethylphosphonate. A comparison of the R. meliloti and E. coli phn genes and their predicted products gave new information about C-P lyase. The putative R. meliloti PhnG, PhnH, and PhnK proteins were overexpressed and used to make polyclonal antibodies. Proteins of the correct molecular weight that react with these antibodies are expressed by R. meliloti grown with phosphonates as sole phosphorus sources. This is the first in vivo demonstration of the existence of these hitherto hypothetical Phn proteins.  相似文献   

18.
To identify components of the copper homeostatic mechanism of Lactococcus lactis, we employed two-dimensional gel electrophoresis to detect changes in the proteome in response to copper. Three proteins upregulated by copper were identified: glyoxylase I (YaiA), a nitroreductase (YtjD), and lactate oxidase (LctO). The promoter regions of these genes feature cop boxes of consensus TACAnnTGTA, which are the binding site of CopY-type copper-responsive repressors. A genome-wide search for cop boxes revealed 28 such sequence motifs. They were tested by electrophoretic mobility shift assays for the interaction with purified CopR, the CopY-type repressor of L. lactis. Seven of the cop boxes interacted with CopR in a copper-sensitive manner. They were present in the promoter region of five genes, lctO, ytjD, copB, ydiD, and yahC; and two polycistronic operons, yahCD-yaiAB and copRZA. Induction of these genes by copper was confirmed by real-time quantitative PCR. The copRZA operon encodes the CopR repressor of the regulon; a copper chaperone, CopZ; and a putative copper ATPase, CopA. When expressed in Escherichia coli, the copRZA operon conferred copper resistance, suggesting that it functions in copper export from the cytoplasm. Other member genes of the CopR regulon may similarly be involved in copper metabolism.  相似文献   

19.
Modulation of Gene Expression Made Easy   总被引:4,自引:2,他引:2       下载免费PDF全文
A new approach for modulating gene expression, based on randomization of promoter (spacer) sequences, was developed. The method was applied to chromosomal genes in Lactococcus lactis and shown to generate libraries of clones with broad ranges of expression levels of target genes. In one example, overexpression was achieved by introducing an additional gene copy into a phage attachment site on the chromosome. This resulted in a series of strains with phosphofructokinase activities from 1.4 to 11 times the wild-type activity level. In this example, the pfk gene was cloned upstream of a gusA gene encoding β-glucuronidase, resulting in an operon structure in which both genes are transcribed from a common promoter. We show that there is a linear correlation between the expressions of the two genes, which facilitates screening for mutants with suitable enzyme activities. In a second example, we show that the method can be applied to modulating the expression of native genes on the chromosome. We constructed a series of strains in which the expression of the las operon, containing the genes pfk, pyk, and ldh, was modulated by integrating a truncated copy of the pfk gene. Importantly, the modulation affected the activities of all three enzymes to the same extent, and enzyme activities ranging from 0.5 to 3.5 times the wild-type level were obtained.  相似文献   

20.
《Gene》1997,189(2):195-201
Motility has been implicated in the invasive process of Borrelia burgdorferi (Bb), the etiologic agent of Lyme disease. To identify Bb motility related genes, we used a method termed `semi-random PCR chromosome walking' (SRPCW) to walk through a large motility gene cluster. The major advantage of this approach over other PCR walking methods is that it employs a secondary PCR amplification of cloned fragments which can be readily sequenced and analyzed. Starting with a primer specific to flgE, we identified and sequenced 14 open reading frames (ORFs) spanning 11 kb downstream of the flgE gene. The genes identified include flbD, motA, motB, fliL, fliM, fliN, fliZ, fliP, fliQ, fliR, flhB, flhA, flhF and flbE. Twelve of the deduced proteins shared extensive homology with flagellar proteins from other bacteria. The gene products and order of genes within this cluster are most similar to those of Treponema pallidum (Tp) and Bacillus subtilis (Bs). One of the unique genes identified, flbD, demonstrated homology to an ORF from the same operon of Tp. Another ORF, flbE, showed similarity to genes from both Tp and Bs. RT-PCR and primer extension analysis revealed that this gene cluster is transcribed as a single unit indicating that it is part of a large motility operon spanning more than 21 kb. Antisera to Escherichia coli and Salmonella typhimurium FliN, FliM, FlhB and FlhA reacted with proteins of the predicted molecular weights in cell lysates of Bb. The results suggest that the flagellar system is highly conserved in evolution and thus underscore the importance of motility in bacterial survival and pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号