首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydroxycinnamic acid amides have been identified as the main phenolic constituents in the reproductive organs of a range of flowering plants.  相似文献   

2.
The arsenal of plants to fight off microorganisms and herbivores include hydroxycinnamic acid amides (HCAA) and their oxidation products. Hydroxycinnamic acid amides are widespread in the plant kingdom and in the recent years our knowledge of their biosynthesis and catabolism has increased substantially. Peroxidases are the primary candidates as the oxidative enzymes responsible for the turnover of hydroxycinnamic acid amide monomers. In barley, hydroxycinnamoylagmatine derivatives accumulate in young seedlings and in tissues infected with fungi. Hydroxycinnamoylagmatine is found as anti-fungal soluble dimers, called hordatines, and it is also a likely constituent of cell walls. Current evidence suggest that peroxidases are involved in the cross-linking of hydroxycinnamoylagmatine with cell wall components and possibly also in the synthesis of hordatines. Epidermal cell walls of barley respond to infection by the powdery mildew fungus with the deposition of polyphenolic material, that apparently contains hydroxycinnamic acid amides, at the site of attempted penetration. Accumulation of these compounds lowers the successful penetration by the fungus. The recent characterization of agmatine coumaroyl transferase (ACT), the N-hydroxycinnamoyltransferase responsible for the synthesis of hydroxycinnamoylagmatine in barley, has indicated that the production of these metabolites is widespread in the plant body and suggests multiple physiological functions for HCAA derivatives. The cloning of ACT has enabled the revelation of homologues genes in several monocots and the presence of a range of structurally diverse HCAAs in cereals suggests that their peroxidase-mediated metabolism is a common theme. The prospects for metabolic engineering of these pathways into other crops are discussed. Abbreviations: HCAA – hydroxycinnamic acid amide; HRPC – horseradish peroxidase C; ACT – agmatine coumaroyl transferase; THT – tyramine hydroxycinnamoyl transferase; HCBT – hydroxycinnamoyl/benzoyl-CoA:anthranilate N-hydroxycinnamoyl/benzoyl transferase; PHT – putrescine hydroxycinnamoyl transferase; SHT – spermidine/spermine hydroxycinnamoyl transferase; HHT – hydroxyanthranilate hydroxycinnamoyl transferase; p-CHA –p-coumaroyl hydroxyagmatine; p-CHDA –p-coumaroyl hydroxydehydroagmatine; PAL – phenylalanine ammonia lyase.  相似文献   

3.
Many plants contain hydroxycinnamic acid conjugates of polyamines that are remarkably similar in general structure to the acylated polyamines found in spider and wasp toxins. In an effort to determine whether these compounds might play a role in the chemical defense of plants against arthropod pests we synthesized a variety of analogues of the coumaric (4-hydroxycinnamic) acid conjugates of di-, tri-, and tetraamines using common protection and acylation strategies. N(1)- and N(8)-coumaroyl spermidine were tested in feeding trials with insect larvae including the European corn borer (Ostrinia nubilalis), the tobacco budworm (Heliothis verescens) and the oblique banded leaf roller (Choristoneura rosaceana). Antifeedant assays with the rice weevil Sitophilus oryzae were also performed. Neither the naturally occurring coumaric acid conjugates of polyamines nor their analogues showed notable toxicity towards insects, despite precautions to maintain these easily oxidized materials in the wet diet. However, more direct bioassays of these compounds on glutamate dependent neuroreceptors including the deep abdominal extensor muscles of crayfish, or mammalian NMDA, delta2, and AMPA receptors, clearly showed that these compounds were inhibitory. N(1)-Coumaoryl spermine, a dodecyl and a cyclohexyl analogue were especially active at NMDA NR1/NR2B receptors. The latter had an IC(50) of 300 microM in the crayfish. N(1)-Coumaroyl spermine had an IC(50) in the crayfish preparation of 70-300 microM and against the mammalian NR1/NR2B receptor of 38 nM. Structure-activity variations show similar trends of length and hydrophobicity as has been seen previously with analogues of spider toxins. We conclude from this work that while the coumaric acid polyamine conjugates are active when directly applied to neuroreceptors, they show no overt toxicity when ingested by insect larvae.  相似文献   

4.
King RR  Calhoun LA 《Phytochemistry》2005,66(20):2468-2473
Four feruloyl amides, N-trans-feruloyloctopamine (1), N-cis-feruloyloctopamine (2), N-trans-feruloyltyramine (3), N-cis-feruloyltyramine (4), a cross-linked N-trans-feruloyltyramine dimer (5), and a cross-linked N-cis-feruloyltyramine dimer (6) were isolated from potato common scab lesions. The compounds were purified by TLC and characterized by a combination of (1)H and (13)C NMR spectroscopic techniques. The presence of an accompanying minor complex of cross-linked dimers containing both feruloyltyramines and feruloyloctopamines was also demonstrated. This is the first characterization of cross-linked hydroxycinnamic acid amides associated with wound healing in potato (Solanum tuberosum) tubers.  相似文献   

5.
The synthesis and the biological (antioxidant and antiviral) activities of novel hydroxycinnamic acid amides of a thiazole containing TFA.valine-4-carboxylic acid ethyl ester are reported. The amides have been synthesized from p-coumaric, ferulic and sinapic acids with the corresponding TFA.valine-thiazole-4-carboxylic acid ethyl ester using the coupling reagent N-ethyl-N′-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) and 4-(dimethylamino) pyridine (DMAP) as a catalyst. The antioxidant properties of the newly synthesized amides have been studied for then antioxidative activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH)* test. The newly synthesized compounds have been tested against the replication in vitro of influenza virus A (H3N2) and human herpes virus 1 and 2 (HSV-1 and HSV-2).  相似文献   

6.
7.
8.
The effects of jasmonic acid (JA) and abscisic aid (ABA) on secondary metabolism in barley (Hordeum vulgare L.) were investigated. Treatment with JA at 100 microM for 48 h induced accumulation of four compounds in barley primary leaves. The accumulation of these compounds was also observed after treatment with ABA at 100 microM. The induced compounds were identified as p-coumaroylputrescine, p-coumaroylagmatine, p-coumaroyl-3-hydroxyagmatine and tryptophan by spectroscopic methods. The profiles of compounds induced by application of JA and ABA were different. JA exhibited stronger inducing activity for hydroxycinnamic acid amides than ABA, while ABA was more active in tryptophan accumulation. The major hydroxycinnamic acid amides in JA- and ABA-treated leaves were p-coumaroylagmatine and p-coumaroyl-3-hydroxyagmatine, respectively. These differences suggested that JA and ABA act in distinct modes. The induction of these compounds was also observed in leaf segments treated with 1 M sorbitol and glucose. These findings suggested that JA and ABA are involved in accumulation of hydroxycinnamic acid amides and tryptophan in response to osmotic stress in barley.  相似文献   

9.
The wound-activated biosynthesis of phytoalexin hydroxycinnamic acid amides of tyramine was compared in untransformed and transgenic tobacco (Nicotiana tabacum) lines that express tryptophan decarboxylase (TDC), tyrosine decarboxylase (TYDC), or both activities. Transgenic in vitro-grown tobacco lines expressing TDC activity accumulated high levels of tryptamine but not hydroxycinnamic amides of tryptamine. In contrast, transgenic tobacco lines expressing TYDC accumulated tyramine as well as p-coumaroyltyramine and feruloyltyramine. The MeOH-soluble and cell wall fractions showed higher concentrations of wound-inducible p-coumaroyltyramine and feruloyltyramine, especially at and around wound sites, in TYDC and TDC xTYDC tobacco lines compared to wild-type or TDC lines. All the enzymes involved in the biosynthesis of hydroxycinnamic acid amides of tyramine were found to be similarly wound inducible in all tobacco genotypes investigated. These results provide experimental evidence that, under some circumstances, TYDC activity can exert a rate-limiting control over the carbon flux allocated to the biosynthesis of hydroxycinnamic acid amides of tyramine.  相似文献   

10.
11.
The LT50 values and soluble carbohydrate levels in wheat ( Triticum aestivum L.) crowns and leaves were monitored throughout autumn and winter in cultivars varying in freezing tolerance and snow mold resistance during 1993/1994 and 1994/1995 in the field at Sapporo, Japan. During the first stage of hardening, from sowing to mid‐November, the pattern of accumulation of mono‐ and disaccharides was similar for all cultivars. During the second stage of cold hardening, from mid‐November to mid‐December, the greatest accumulation of mono‐ and disaccharides, without a corresponding increase in fructan, was observed among the freezing‐tolerant cultivars; and levels of simple saccharides rapidly decreased under snow cover. Conversely, levels of mono‐ and disaccharides in snow mold‐resistant cultivars were less than 70% of those in freezing‐tolerant cultivars before snow cover and maintained low levels throughout winter, while polysaccharide levels in snow mold‐resistant cultivars were about 120% of those in freezing‐tolerant cultivars in December. Sugar metabolism during the winter was examined using 18 cultivars in 1994/1995. LT50 values were correlated to the greatest extent with total mono‐ and disaccharide and fructan content among wheat cultivars excluding snow mold‐resistant cultivars in December. Snow mold‐resistant cultivars tended to metabolize carbohydrates more slowly until the end of the snow cover period. This result suggested that the enzymatic metabolism of the synthesis of sugars and the conversion of fructan to cryoprotective sugars in response to low temperatures, especially subzero ones, might be different between the two contrasting types in resistance to winter stress.  相似文献   

12.
13.
14.
15.
A very low, for the most part unmeasurable glutamic-aspartio transminase activity and a very high glutamic-alanine transaminase activity was found in the overground parts and roots of young wheat plants. The roots had a higher glutamic-alanine transaminase activity than the overground parts in the first and second leaf stage. Plants cultivated in Knop’s nutrient solution (variant with humate and without) showed a higher glutamic-alanine transaminase activity than poorly growing plants, cultivated in distilled water (with humate and without). In plants cultivated in nutrient solutions, transaminase activity increased with the age of the wheat plants. As in the previous experiments, the effect of humate was only significant, in the roots of plants cultivated in distilled water with humate, where transamination activity was greater than in the control without humate. The roots of this variant with a stimulatory growth effect showed a large accumulation of free sugars in the previous experiments. The connection between these effects of humate on the roots of young winter wheat plants is discussed.  相似文献   

16.
节水栽培冬小麦对下层土壤残留氮素的利用   总被引:8,自引:0,他引:8  
吴永成  周顺利  王志敏  张霞 《生态学报》2005,25(8):1869-1873
为了进一步明确华北地区冬小麦-夏玉米种植体系周年氮肥利用效率及其影响因素与机制,试验在大田和原状土柱条件下进行了深层土壤放置15N标记氮肥试验,重点研究节水栽培冬小麦对夏玉米生育期淋洗到下层土壤的氮素利用能力。试验结果表明,大田条件下冬小麦根系空间分布与夏玉米存在明显差异,冬前苗期根系下扎深度可达1.0m,开花期最大根深已经超过2.0m。而且,小麦节水栽培(春季不灌水、春季灌2次水)相对于传统充分灌水模式(春季灌4次水)明显提高了根群中的下层根系比例。大田春不灌水和春灌2水条件下,冬小麦对于100~200cm深层土壤放置的15N标记氮肥均能吸收利用。土柱条件下15N标记氮肥试验进一步验证了春灌2水条件下小麦对深层土壤氮素的吸收作用,并表明植株对100~110cm、120~130cm、140~150cm各层土壤标记15N的回收率分别为16.26%、7.33%和4.38%。研究表明,节水栽培促进冬小麦根系深扎,较多的深层根系增强了小麦对深层土壤氮素的吸收和利用能力,有利于截获夏玉米季淋溶到下层土体的肥料氮,从而可减少肥料氮损失。  相似文献   

17.
Twelve day old winter wheat seedlings (cvs Kharkov, frost hardy and Champlein, less hardy) accumulated linolenic acid at the expense of linoleic acid during controlled hardening. The change was most pronounced in the roots, where it was not specific to the phospholipid fraction. It was less marked in the leaves, but occurred there mainly in the phospholipids. The lack of differences between fatty acid profiles of the two cultivars rules out the explanation of varietal differences in frost hardiness in winter wheat on the basis of major changes in fatty acid unsaturation.  相似文献   

18.
The roots and leaves of 7-day seedlings of three winter wheat cultivars differing in frost resistant were used to study changes in lectin activity under cytoskeleton modifiers (DMSO-7%; colchicine-1 m m; oryzalin-15 microm; cytochalasin B-15 microm) of non-hardened (23 degrees C) and hardened (2-3 degrees C, 3-7 day) plants. Plants were grown with ABA (30 microm) or without ABA. Pretreatment with colchicine, oryzalin [inhibitors of microtubules (MT) polymerization], cytochalasin B [inhibitor of microfilament (MF) polymerization] increased the activity of cell wall lectins, although pretreatment with DMSO (stabilizer of microtubules) decreased the activity. Both hardening and ABA decreased the effect of the cytoskeletal modifiers. These results could be explained by the appearance of tolerant MTs with less affinity. It is probable that increase in the activity of cell wall lectins may be the compensatory mechanism which stabilizes the cytoskeleton structure in conditions tending to disrupt it. The genotype with low resistance had higher sensitivity of lectin activity to cytoskeleton modifiers than the frost resistant genotype. The results suggest that leaves have more stable MTs and MFs and stronger MT-MF binding than roots.  相似文献   

19.
A library of hydroxycinnamic acid amides (HCAAs) and analogues were synthesized using solid-phase synthesis technique. These compounds were screened for antibacterial against methicillin-resistant Staphylococcus aureus (MRSA) (11 strains) and vancomycin-resistant S. aureus (VRSA) (4 strains). Dihydrocaffeoyl analogues showed activity against VRSA which were better than the reference drugs, vancomycin and oxacillin. These compounds also exhibited antibacterial activity against MRSA, which were more potent than oxacillin.  相似文献   

20.
Root growth and water uptake in winter wheat under deficit irrigation   总被引:20,自引:0,他引:20  
Root growth is critical for crops to use soil water under water-limited conditions. A field study was conducted to investigate the effect of available soil water on root and shoot growth, and root water uptake in winter wheat (Triticum aestivum L.) under deficit irrigation in a semi-arid environment. Treatments consisted of rainfed, deficit irrigation at different developmental stages, and adequate irrigation. The rainfed plots had the lowest shoot dry weight because available soil water decreased rapidly from booting to late grain filling. For the deficit-irrigation treatments, crops that received irrigation at jointing and booting had higher shoot dry weight than those that received irrigation at anthesis and middle grain filling. Rapid root growth occurred in both rainfed and irrigated crops from floral initiation to anthesis, and maximum rooting depth occurred by booting. Root length density and dry weight decreased after anthesis. From floral initiation to booting, root length density and growth rate were higher in rainfed than in irrigated crops. However, root length density and growth rate were lower in rainfed than in irrigated crops from booting to anthesis. As a result, the difference in root length density between rainfed and irrigated treatments was small during grain filling. The root growth and water use below 1.4 m were limited by a caliche (45% CaCO3) layer at about 1.4 m profile. The mean water uptake rate decreased as available soil water decreased. During grain filling, root water uptake was higher from the irrigated crops than from the rainfed. Irrigation from jointing to anthesis increased seasonal evapotranspiration, grain yield, harvest index and water-use efficiency based on yield (WUE), but did not affect water-use efficiency based on aboveground biomass. There was no significant difference in WUE among irrigation treatments except one-irrigation at middle grain filling. Due to a relatively deep root system in rainfed crops, the higher grain yield and WUE in irrigated crops compared to rainfed crops was not a result of rooting depth or root length density, but increased harvest index, and higher water uptake rate during grain filling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号