首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Behavior of mercury in the Patuxent River estuary   总被引:12,自引:0,他引:12  
An overview of a comprehensive study of the behavior and fate of mercury in the estuarine Patuxent River is presented. Total Hg (HgT) and methylmercury (MeHg) exhibited weakly non-conservative behavior in the estuary. Total Hg concentrations ranged from 6 ng L-1 in the upper reaches of the sub-urbanized tidal freshwater river to <0.5 ng L-1 in the mesohaline lower estuary. Filterable (0.2 µm) HgT ranged from 0.2 to 1.5 ng L-1. On average, MeHg accounted for <5% of unfiltered HgT and <2% of filterable HgT. Dissolved gaseous section Hg (DGHg) concentrations were highest (up to 150 pg L-1) in the summer in the mesohaline, but were not well correlated with primary production or chlorophyll a, demonstrating the complex nature of Hg0 formation and cycling in an estuarine environment. Organic matter content appeared to control the HgT content of sediments, while MeHg in sediments was positively correlated with HgT and organic matter, and negatively correlated with sulfide. MeHg in sediments was low (0.1 to 0.5% of HgT). Preliminary findings suggest that net MeHg production within sediments exceeds net accumulation. Although HgT in pore waters increased with increasing sulfide, bulk MeHg concentrations decreased. The concentration of MeHg in sediments was not related to the concentration of HgT in pore waters. These observations support the hypothesis that sulfide affects the speciation and therefore bioavailability of dissolved and/or solid-phase Hg for methylation. Comparison with other ecosystems, and the negative correlation between pore water sulfide and sediment MeHg, suggest that sulfide limits production and accumulation of MeHg in this system.  相似文献   

2.
There are spatial differences in methyl mercury (MeHg) concentrations in biota in Water Conservation Areas 2 and 3 in the Everglades, with higher concentrations generally found in the southern areas. Fish and hemipterans had the most MeHg on a wet weight basis, with levels exceeding 30 ng g-1. The magnitude of MeHg accumulation in biota varies seasonally and does not always appear to be associated with changes in water column concentration. This is exemplified by periphyton, the base of the foodweb in the Everglades, at a high nutrient sampling site. Although limited in scope, MeHg concentrations presented for biota provide insight into beginning to understand the dynamic nature of Hg transfer in the Everglades foodweb on a spatial and temporal basis.  相似文献   

3.
Methylmercury (MeHg) concentrations and production rates were examined along with sulfur biogeochemistry in Everglades sediments in March, July and December, 1995, as part of a large, multi-investigator study, the Aquatic Cycling of Mercury in the Everglades (ACME) project. The sites examined constitute a trophic gradient, generated from agricultural runoff, across the Everglades Nutrient Removal (ENR) Area, which is a re-constructed wetland, and Water Conservation Areas (WCA) 2A, 2B and 3 in the northern Everglades. MeHg concentrations and %MeHg (MeHg as a percent of total Hg) were lowest in the more eutrophic areas and highest in the more pristine areas in the south. MeHg concentrations ranged from <0.1 ng gdw-1 sediment in the ENR to 5 ng gdw-1 in WCA3 sediments; and MeHg constituted <0.2% of total Hg (HgT) in ENR, but up to about 2% in two sites in WCA2B and WCA3. Methylation rates in surficial sediments, estimated using tracer-level injections of203 Hg(II) into intact sediment cores, ranged from 0 to 0.12 d-1, or about 1 to 10 ng g-1 d-1when the per day values are multiplied by the ambient total Hg concentration. Methylation was generally maximal at or within centimeters of the sediment surface, and was never observed in water overlying cores. The spatial pattern of MeHg production generally matched that of MeHg concentration. The coincident distributions of MeHg and its production suggest that in situ production controls concentration, and that MeHg concentration can be used as an analog for MeHg production. In addition, the spatial pattern of MeHg in Everglades sediments matches that in biota, suggesting that MeHg bioaccumulation may be predominantly a function of the de novo methylation rate in surficial sediments.Sulfate concentrations in surficial pore waters (up to 400 µm), microbial sulfate-reduction rates (up to 800 nm cc-1 d-1) and resultant pore water sulfide concentrations (up to 300 µm) at the eutrophic northern sites were all high relative to most freshwater systems. All declined to the south, and sulfate concentrations in WCA2B and in central WCA3 resembled those in oligotrophic lakes (50–100 µm). MeHg concentration and production were inversely related to sulfate reduction rate and pore water sulfide. Control of MeHg production in the northern Everglades appears to mimic that in an estuary, where sulfate concentrations are high and where sulfide produced by microbial sulfate reduction inhibits MeHg production.  相似文献   

4.
Preliminary studies of mercury (Hg) cycling in the Everglades revealed that dissolved gaseous mercury (DGM), total mercury (HgT), and reactive mercury (HgR) show reproducible, diel trends. Peak water-column DGM concentrations were observed on or about noon, with a 3 to 7 fold increase over night-time concentrations. Production of DGM appears to cease during dark periods, with nearly constant water column concentrations that were at or near saturation with respect to the overlying air. A simple mass balance shows that the flux of Hg to the atmosphere from diel DGM production and evasion represents about 10% of the annual input from atmospheric deposition. Production of DGM is likely the result of an indirect photolysis reaction that involves the production of reductive species and/or reduction by electron transfer. Diel variability in HgT and HgR appears to be controlled by two factors: inputs from rainfall and photolytic sorption/desorption processes. A possible mechanism involves photolysis of chromophores on the surface of a solid substrate (e.g., the periphyton mat) giving rise to destabilization of sorbed mercury and net desorption during daylight. At night, the sorption reactions predominate and the water-column HgT decreases. Methylmercury (MeHg) also showed diel trends in concentration but were not clearly linked to the solar cycle or rainfall at the study site.  相似文献   

5.
Seven Wisconsin rivers with contrasting, relativelyhomogeneous watershed composition were selected toassess the factors controlling mercury transport.Together, these watersheds allow comparisons ofwetland, forest, urban and agricultural land-uses.Each site was sampled nine times between September1993 and September 1994 to establish seasonalsignatures and transport processes of total mercury(HgT) and methylmercury (MeHg). Our resultsclearly show that land use and land cover stronglyinfluence mercury transport processes. Under base-flowconditions, unfiltered MeHg yield varies by a factorof sixteen (12–195 mg km-2 d-1), andincreases with the fraction of wetland area in thewatershed. Elevated mercury yields during high floware particle-phase associated in agricultural sites,but filtered-phase associated in wetland sites.Methylmercury represented less than 5% of totalmercury mobilized during the spring thaw across allwatersheds. Autumn MeHg yield was generally 11–15%of HgT in wetland influenced watersheds, thougha maximum of 51% was observed. In some cases, singlehigh-flow events may dominate the annual export ofmercury from a watershed. For example, one high-flowevent on the agricultural Rattlesnake Creek had thelargest HgT and MeHg yield in the study (107 and2.32 mg km-2 d-1, respectively). The mass ofmercury transported downstream by this single eventwas an order of magnitude larger than the eight other(non-event) sampling dates combined. These resultsunderscore the importance of watershed characteristicsand seasonal events on the fate of mercury in freshwater rivers.  相似文献   

6.
Cyanobacterial peri­phyton communities are a dominant feature of oligotrophic Everglades marshes, however, little is known regarding the biogeochemical aspects of this ecosystem component. This study was undertaken to investigate the potential for N2 fixation in the peri­phyton communities of a hydrologically-controlled portion of the northern Everglades marsh (Water Conservation Area 2A, WCA-2A). The objectives of this research were to characterize the temporal patterns of nutrient composition and N2 fixation of the natural WCA-2A peri­phyton communities and to compare fixation rates of peri­phyton with those of other ecosystem components in both natural and nutrient-impacted WCA-2A areas. In general, N2 fixation (measured by the acetylene reduction (AR) method) of natural WCA-2A peri­phyton was enhanced under light conditions showing a nitrogenase pattern characteristic of autotrophic cyanobacteria. Winter (November–March) rates of AR expressed per gram organic carbon (gOC) ranged from 147–240 nmol C2H2 g OC–1 h–1, while summer rates were elevated with an observed peak of 1148 nmol C2H2 g OC–1 h–1 in July 1998. This translates into an estimated yearly contribution of approximately 10 g N m–2 to an unimpacted WCA-2A slough ecosystem. Nitrogenase activity did not correlate seasonally with nutrients (Ca, Mg, Fe, N, P, Mn), but closely followed measured N stable isotopic ratios (15N) in floating peri­phyton. In oligotrophic marsh areas, AR (on a weight basis) decreased in the order floating peri­phyton > benthic peri­phyton floc > soil > water > detrital plant biomass, while highest AR rates were observed for detrital biomass in areas impacted by agricultural discharges.  相似文献   

7.
In this paper we investigate the hypothesis that long-term sulphate (SO4 2−) deposition has made peatlands a larger source of methyl mercury (MeHg) to remote boreal lakes. This was done on experimental plots at a boreal, low sedge mire where the effect of long-term addition of SO4 2− on peat pore water MeHg concentrations was observed weekly throughout the snow-free portion of 1999. The additions of SO4 2− started in 1995. The seasonal mean of the pore water MeHg concentrations on the plots with 17 kg ha−1 yr−1 of sulphur (S) addition (1.3±0.08 ng L−1, SE; n = 44) was significantly (p<0.0001) higher than the mean MeHg concentration on the plots with 3 kg ha−1 yr−1 of ambient S deposition (0.6±0.02 ng L−1, SE; n = 44). The temporal variation in pore water MeHg concentrations during the snow free season was larger in the S-addition plots, with an amplitude of >2 ng L−1 compared to +/−0.5 ng L−1 in the ambient S deposition plots. The concentrations of pore water MeHg in the S-addition plots were positively correlated (r2 = 0.21; p = 0.001) to the groundwater level, with the lowest concentrations of MeHg during the period with the lowest groundwater levels. The pore water MeHg concentrations were not correlated to total Hg, DOC concentration or pH. The results from this study indicate that the persistently higher pore water concentrations of MeHg in the S-addition plots are caused by the long-term additions of SO4 2− to the mire surface. Since these waters are an important source of runoff, the results support the hypothesis that SO4 2− deposition has increased the contribution of peatlands to MeHg in downstream aquatic systems. This would mean that the increased deposition of SO4 2− in acid rain has contributed to the modern increase in the MeHg burdens of remote lakes hydrologically connected to peatlands.  相似文献   

8.
A column transport experiment was conducted to examine the release and methylation of Hg using Hg contaminated sediment from the floodplain of the South River near Waynesboro, Virginia. Three input solutions were sequentially introduced into the column. Input 1 was unamended South River water, Input 2 was river water amended with 100 mg L?1 SO4 and 3600 mg L?1 lactate, and Input 3 was river water amended with 500 mg L?1 SO4 and 340 mg L?1 lactate. During the first stage of the experiment (Input 1) the effluent Hg concentration was initially 4 µg L?1 and peaked at 21 µg L?1 and after 21 pore volumes stabilized at 13 µg L?1. During the second stage, at high lactate to SO4 ratios, elevated concentrations of acetic and propionic acids were detected, indicating that fermentative bacteria were dominant. During the third stage, at high SO4 to lactate ratios, a decrease in SO4 and an increase in H2S concentrations were detected in the column effluent indicating that SO4 reduction was occurring. Concentrations of methyl Hg (MeHg) in the effluent were variable over the duration of the experiment. During the first phase, concentrations of MeHg remained <3.3 ng L?1. During the fermentative stage, concentrations of MeHg increased to a maximum value of 32 ng L?1, and during the sulfate-reducing stage to a maximum value of 266 ng L?1. When the column was deconstructed both molecular and cultural techniques indicated that sulfate reducing bacteria were most dominant near the influent port. These results indicate that the formation of MeHg in the sediment is not limited by the availability of Hg and that the bacterial community that contributes to mercury methylation can respond quickly to changes in the abundances of electron donors and acceptors.  相似文献   

9.
Water draining from the Everglades marshes of southern Florida containshigh concentrations of dissolved organic C (DOC), N (DON), and in somelocations, P (DOP). These dissolved organic nutrients carry over 90% of the Nand organic C, and about 25% of the P exported downstream in the Everglades.Ourobjectives were to describe the most important aspects of the origin and fateofdissolved organic matter (DOM) in the Everglades, and to describe the processescontrolling its concentration and export. Concentrations of dissolved organicnutrients are influenced by local plant production, decomposition, and sorptionequilibrium with peat. The drained peat soils of the Everglades AgriculturalArea and the more productive marshes of the northern Everglades produce some ofthe highest concentrations of DOC and DON in the Everglades watershed. Inportions of the marshes of the northern Everglades, P enrichment was correlatedwith higher local DOC and DON concentrations and greater production of solubleplant matter. Microbial degradation of Everglades DOM was very slow; less than10% of the DOC was lost after 6 months of incubation in the laboratory andsupplements of inorganic nutrients failed to speed the decomposition. Exposureto solar radiation increased the subsequent decay rate of the remaining DOC(25%in 6 mo.). Solar radiation alone mineralized 20.5% of the DOC, 7%of the DON, and degraded about 50% of the humic substances over 21 days insterile porewater samples and thus degraded DOM faster than microbialdegradation. The humic substances appeared to inhibit biodegradation of theother fractions of the DOC since hydrophilic organic acids decomposed fasterwhen isolated from the humic substances.The fate of DOC and DON is closely linked as indicated by a generally narrowrange of C/N ratios. In contrast, high concentrations of DOP were associatedwith P enrichment (at least in pore water). The DOC was composed of about 50%humic substances, 33% hydrophilic acids, and 15% hydrophilic neutralsubstances,typical of DOC from other environments, despite the fact that it originatesfroma neutral to slightly alkaline peatland. Despite high exports of DON (3.9g m–2 y–1 from one area), themarshes of the northern Everglades are a sink for DON on a landscape scale. Theagricultural fields of the Everglades Agricultural Area, however, exported netquantities of DON. High concentrations of DOC desorbed from the agriculturalsoils when water with no DOC was added. Sorption experiments indicated thathighconcentrations of dissolved organic matter flowing into the marshes from theEverglades Agricultural Area could suppress the further desorption ofadditionalsoluble organic matter through physicochemical mechanisms. While biologicalfactors, plant production and microbial decomposition are important inproducingpotentially soluble organic nutrients, physicochemical sorption equilibria,hydrology, and degradation by solar radiation are also likely to control theexport of this material on the landscape scale.  相似文献   

10.
Conifer needles are an important link in the cycling of Total Mercury (THg) and Methylmercury (MeHg) in the boreal ecosystem due to the high THg and MeHg concentrations in litterfall. Translocation within the tree of Hg from soils to the crown canopy has been assumed to be a minor source of the Hg in litterfall. This paper, however, is the first to present direct observations of THg/MeHg transport from the soil via xylem sap. Xylem sap concentrations of THg and MeHg were measured in sap drained from different levels along the boles of freshly cut 100 year old Norway spruce (Picea abies) and Scots pine (Pinus sylvestris). The trees came from a mixed stand growing on podzolized till soils at the Svartberget Forest Research Station in N. Sweden. Soil solution concentrations of THg and MeHg at different levels in the soil profile were measured for comparison.Concentrations of THg in xylem sap ranged from 10–15 ng L-1 in both the Scots pine and Norway spruce. Concentrations of MeHg varied from 0.03 ng L-1to 0.16 ng L-1, with higher values in Scots pine than Norway spruce. If these concentrations are representative of the transport from soils to needles in xylem sap at this site, then only 3% of the MeHg in litterfall (0.12 mg ha-1 yr-1) and 11% of the THg (26 mg ha-1 yr-1) can originate via this pathway. The upward transport via xylem sap is larger relative to the open field inputs (84% of THg and 17% of MeHg). Comparison of soil solution and xylem sap THg/MeHg suggested some degree of THg exclusion during water uptake in Scots pine and Norway spruce, but MeHg exclusion only in Norway spruce.  相似文献   

11.
Organic mercury (Hg) species exert their toxicity primarily in the central nervous system. The food relevant Hg species methylmercury (MeHg) has been frequently studied regarding its neurotoxic effects in vitro and in vivo. Neurotoxicity of thiomersal, which is used as a preservative in medical preparations, is to date less characterised. Due to dealkylation of organic Hg or oxidation of elemental Hg, inorganic Hg is present in the brain albeit these species are not able to readily cross the blood brain barrier. This study compared for the first time toxic effects of organic MeHg chloride (MeHgCl) and thiomersal as well as inorganic mercury chloride (HgCl2) in differentiated human neurons (LUHMES) and human astrocytes (CCF-STTG1). The three Hg species differ in their degree and mechanism of toxicity in those two types of brain cells. Generally, neurons are more susceptible to Hg species induced cytotoxicity as compared to astrocytes. This might be due to the massive cellular mercury uptake in the differentiated neurons. The organic compounds exerted stronger cytotoxic effects as compared to inorganic HgCl2. In contrast to HgCl2 exposure, organic Hg compounds seem to induce the apoptotic cascade in neurons following low-level exposure. No indicators for apoptosis were identified for both inorganic and organic mercury species in astrocytes. Our studies clearly demonstrate species-specific toxic mechanisms. A mixed exposure towards all Hg species in the brain can be assumed. Thus, prospectively coexposure studies as well as cocultures of neurons and astrocytes could provide additional information in the investigation of Hg induced neurotoxicity.  相似文献   

12.
Litterfall from trees has been identified as an important pathway for deposition of mercury (Hg) and methylmercury (MeHg) in forested catchments, but very little is known about the role of ground vegetation in deposition and cycling of Hg compounds. This study was conducted to identify the origin of Hg compounds in the ground vegetation, and to estimate the role of its litterfall with respect to pools and fluxes of Hg in a coniferous forest in the German Fichtelgebirge mountains. Above and below ground biomass of the dominant ground vegetation (Vaccinium myrtillus, Deschampsia flexuosa and Calamagrostis villosa) were sampled at several plots successively during the growing season. The fluxes to the soil via litterfall of the ground vegetation were calculated using contents of Hg and MeHg in the annual fractions of aboveground biomass. With fluxes of 0.4 – 7.8 mg Hgtotal ha–1 a–1 and 0.01 – 0.04 mg MeHg ha–1 a–1 (depending on the plant species) this pathway contributes only a few percent to the total deposition of both compounds in the catchment. To identify the uptake pathways of Hg compounds, the same plant species were grown in a pot experiment with addition of isotope labelled Hg compounds (202Hg2+, Me198Hg) to a clean sand substrate. Only small proportions of 202Hg and Me198Hg in the substrate were taken up by the plants, but in all cases the proportion translocated into aboveground biomass after uptake was greater in case of Me198Hg. Thus, internal recycling in the plant-soil system is a source especially for MeHg in the ground vegetation. However, as compared to the input of Hg compounds by tree litterfall and storage in the forest floor, Hgtotal and MeHg in ground vegetation are of minor importance. High volatilization of added Hg isotopes raises the question of a re-emission of Hg compounds by the transpiration flux of the ground vegetation.  相似文献   

13.
The accumulation of total mercury (HgT) andmethylmercury (MeHg) was evaluated in sediments ofTivoli South Bay, a freshwater tidal mudflat wetlandin the Hudson River National Estuarine ResearchReserve system. HgT concentrations in sedimentcores were measured to evaluate the spatialvariability of HgT deposition, and to establisha chronology of HgT accumulation. Cores takenfrom the northern, middle, and southern sections ofthe bay had similar distribution patterns andconcentrations of HgT, suggesting a common sourceof HgT throughout the bay. Sedimentconcentrations ranged from 190 to 1040 ng Hg g–1,2 to 10 times greater than concentrations expected insediments from non-anthropogenic sources. HgTdeposition rates were similar in different regions ofthe bay, and increased from 200 ng Hg cm–2yr–1in the 1930s to a maximum of 300 ngHg cm–2 yr–1 in the 1960s. Deposition rateshave steadily declined since the 1970s and arecurrently at 80 ng Hg cm–2 yr–1. Transportof HgT by tidal waters from the Hudson River islikely the main source of HgT in the bay.Distribution patterns and absolute concentrations ofMeHg in sediment cores were similar throughout thebay, with concentrations ranging from 0.43 to 2.95ng g–1. Maxima in MeHg concentration profilesoccurred just below the sediment-water interface andat a depth of 30 cm. The maximum at 30 cm wascoincident with maximum HgT concentrations. MeHgconcentrations in suspended particulate matter (SPM)from the Hudson River suggest that MeHg in the baycould be derived from riverine SPM rather than formedin situ.  相似文献   

14.
Abstract

Mature starfish Leptasterias polaris were exposed to labelled mercury (II) species via food contaminated at a level of 5.0 μg g?1. The distribution of inorganic Hg and methylmercury (MeHg) in starfish organs and tissues and the effect of a series of complexing agents on mercury translocation between organs and tissues were examined over a 24-h period. The distribution of mercury species in coelomic fluid components, ammonia excretion rate and mercury excretion were also measured. The highest concentrations were observed in the stomach (the source organ) and in pyloric caecum (up to 0.32 μg g?1 wet weight for inorganic Hg and 0.22 μg g?1 for MeHg). Concentrations of MeHg in gonads ranged from ≤ 0.01 to 0.08 μg g?1 whereas concentrations of inorganic Hg never exceeded 0.06 μg g?1. In all studied cases, mercury concentration was very low the coelomic fluid (≤ 0.01 μg g?1). The short-term distribution of Hg species via contaminated food in starfish L. polaris seems to be controlled by the haemal system, a primitive circulatory system responsible for the transport of soluble nutrients from the digestive track towards organs and tissues, but a possible role of the coelomic fluid can not be excluded. Very low Hg contents were observed in gonads and in the coelomic fluid which fills the general cavity. Except for mercaptoethanol (merOH) and dimercaptosuccinic acid (DMSA), the addition of complexing agents to the food had little effect on the distribution of Hg species. MerOH appeared as an efficient carrier for methylmercury transport through the digestive system. DMSA enhanced the translocation of inorganic mercury from stomach and pyloric caecum toward external tissues and markedly increased its excretion.  相似文献   

15.
Large quantities of Hg remain in tailings dumps from historical Nova Scotian gold mines. Depth profiles of total Hg (HgT) and methylmercury (MeHg) were compared with geochemical and microbiological variables, to identify factors influencing MeHg levels in tailings. HgT and MeHg were highly variable in tailings (0.2–73.5 μ mol kg? 1 and < dl-56.4 nmol kg? 1, respectively), and were influenced by a complex set of in situ factors. Elevated MeHg was linked with > 5 μ mol kg?1 HgT, organic matter, hydrology, abundance and activity of sulfate reducing bacteria, and demethylation processes. Methylmercury levels in tailings from a wet, bog-like site appeared to undergo seasonal fluctuations, with higher concentrations measured in September and October, and lower concentrations in May. Evaluations of amalgamation tailings should examine MeHg and HgT transport out of low-lying, saturated tailings dumps after snowmelt and major rainfall events, and should take into account the possibility of seasonal variation in MeHg levels in northern regions.  相似文献   

16.
17.
We examined the net exchange of total mercury (THg) and methylmercury (MeHg) between a tidal marsh and its adjacent estuary over a 1-year period from August 2007 to July 2008. Our objectives were to estimate the importance of tidal salt marshes as sources and sinks of mercury within the Chesapeake Bay system, and to examine the hydrologic and biogeochemical controls on mercury fate and transport in tidal marshes. Tidal flows and water chemistry were measured at an established tidal flume at the mouth of the principal tidal creek of a 3-ha marsh section at the Smithsonian Environmental Research Center. Fluxes were estimated by combining continuous tidal flow measurement for the entire study year, with discrete, hourly, flow-weighted measurements of filterable and particulate THg and MeHg, dissolved organic carbon (DOC), and suspended particulate matter (SPM) made over 20 tidal cycles during the year. We found that the marsh was a relatively small net tidal source of MeHg, mainly during the warmer growing season. We also confirmed that the marsh was a substantial source of DOC to the adjacent estuary. DOC was a significant predictor of both filterable THg and MeHg fluxes. However, although the marsh was a source of filterable THg, it was overall a net sink for THg because of particulate trapping. The net per-area annual flux of MeHg from tidal marshes is greater than other MeHg pathways within Chesapeake Bay. The annual load of MeHg from tidal marshes into Chesapeake Bay, however, is likely small relative to fluvial fluxes and efflux from bottom sediment. This study suggests that MeHg production within the tidal marsh has greater consequences for biota inhabiting the marsh than for the efflux of MeHg from the marsh.  相似文献   

18.
Mercury inputs and outputs at a small lake in northern Minnesota   总被引:1,自引:0,他引:1  
Storages and cycling of total mercury (HgT), methylmercury (MeHg), and Hg0 are described for Spring Lake, a small bog lake in the Marcell Experimental Forest in north-central Minnesota. We quantified photoredox transformations, MeHg photolysis, burial to the sediments, and internal and external loadings of HgT and MeHg. Atmospheric deposition was the main input of HgT; MeHg was supplied by a combination of atmospheric, near-shore wetland, and biotic (methylation) sources. HgT outputs were dominated by burial (67%), and Hg0 evasion accounted for 26% of HgT outputs. The watershed of Spring Lake is small (3.7× lake surface area), and accordingly, bog and upland runoff were minor contributors to both HgT and MeHg inputs. Wet deposition was ∼9% of total MeHg input, and other external inputs (runoff, sediment porewater) provided only an additional 7%, indicating that internal production of MeHg was occurring in the lake. Photolysis of MeHg, measured in the field and laboratory, removed ∼3× the lake mass of MeHg (20 mg) annually, and was the dominant sink for MeHg. Residence times of MeHg and HgT in the lake were 48 and 61 days, respectively, during the open-water season, compared with only 8 days for the residence time of MeHg on settling particles (seston). Photoreduction of Hg2+ to Hg0 was greater than the reverse reaction (Hg0 photooxidation), and the residence time of Hg0 in the photic zone was short (hours). Data from this study show active cycling of all the measured species of mercury (HgT, MeHg, and Hg0) and the importance of MeHg photolysis and photo-redox processes.  相似文献   

19.
The effects of inorganic mercury (HgII) and methylmercury (MeHg) on the colonization of artificial substrates by periphytic diatoms were studied using indoor freshwater microcosms. These consisted of a mixed biotope– water column + natural sediment – with rooted macrophyte cuttings (Elodea densa) and benthic bivalve molluscs (Corbicula fluminea).The periphyton was collected on glass slides in the water column after 34and 71 days. The two Hg sources were introduced either by daily additions to the water column, or once at the beginning into the sediment, using two nominal concentrations: water column, 0.5 μgL-1 and 2 μg L-1 for both compounds: sediment, 0.5 mg kg-1 (fw) and 2 mgkg-1 (fw) for MeHg and 1 mg kg-1 (fw) and 10 mgkg-1 (fw) for HgII. Several complementary criteria were used to analyse the structural and functional perturbations induced: cell density, species richness, diatom size, relative abundance. Exposure to MeHg added to the water column resulted in reduced cell density and changes in species composition with enhancement of e.g. Fallacia pygmaea or Nitzschia palea; inorganic Hg had less effect on the population structure. After contamination via the sediment, the effects of the two compounds were less pronounced than for the water source. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
The purpose of this study was to investigate the effect of sewage treatment on total mercury (THg) and methylmercury (MeHg) concentrations in domestic effluents and the contribution of urban sewage treatment facilities to THg and MeHg in rivers. We determined the concentrations of THg and MeHg in unfiltered samples of untreated and treated domestic sewage from the three treatment facilities and receiving river water within the City of Winnipeg. The concentrations of THg in the Red and Assiniboine rivers ranged from 3–31 ng/L. THg was related positively to suspended sediment concentrations in the rivers. The concentrations of MeHg in these rivers were usually 0.2–0.3 ng/L. THg concentrations in raw sewage varied widely, from 2–150 ng/L. Treatment removed an average of 88% of this mercury. MeHg concentrations in raw sewage were 0.5–4.3 ng/L, however, after treatment at two treatment facilities, MeHg was greatly reduced, usually to 0.1–0.4 ng/L. Most treated sewage, therefore, had MeHg concentrations that were similar to levels in the receiving rivers and the effect of discharged effluent was usually a change of about 2% or less on concentrations in the rivers. However, one of the facilities (the West End plant) was discharging higher concentrations of MeHg, up to 2 ng/L, causing calculated increases of up to 11% in the concentration of MeHg in the Assiniboine River.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号