首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
The adaptive immune system in vertebrates emerged in a multistep process that can be reconstructed on the basis of the data concerning the structure of immune systems of modern cartilaginous and bony fishes, as well as of cyclostomes. The most probable evolutionary scenario is likely to be as follows: the T cell receptor loci emerged on the basis of NK cell-like receptor genes; the antibody loci evolved on the basis of T cell receptor loci; the MHC locus arose on the basis of the locus responsible for innate immunity of early chordates. The ancestral MHC molecules likely participated in the transplantation immunity before they acquired the ability of antigen peptide presentation.  相似文献   

5.
6.
Rapid production of nitric oxide (NO) and reactive oxygen species (ROS) has been implicated in the regulation of innate immunity in plants. A potato calcium-dependent protein kinase (StCDPK5) activates an NADPH oxidase StRBOHA to D by direct phosphorylation of N-terminal regions, and heterologous expression of StCDPK5 and StRBOHs in Nicotiana benthamiana results in oxidative burst. The transgenic potato plants that carry a constitutively active StCDPK5 driven by a pathogen-inducible promoter of the potato showed high resistance to late blight pathogen Phytophthora infestans accompanied by HR-like cell death and H2O2 accumulation in the attacked cells. In contrast, these plants showed high susceptibility to early blight necrotrophic pathogen Alternaria solani, suggesting that oxidative burst confers high resistance to biotrophic pathogen, but high susceptibility to necrotrophic pathogen. NO and ROS synergistically function in defense responses. Two MAPK cascades, MEK2-SIPK and cytokinesis-related MEK1-NTF6, are involved in the induction of NbRBOHB gene in N. benthamiana. On the other hand, NO burst is regulated by the MEK2-SIPK cascade. Conditional activation of SIPK in potato plants induces oxidative and NO bursts, and confers resistance to both biotrophic and necrotrophic pathogens, indicating the plants may have obtained during evolution the signaling pathway which regulates both NO and ROS production to adapt to wide-spectrum pathogens.  相似文献   

7.
8.
9.
Molecular mechanisms of olfaction   总被引:4,自引:0,他引:4  
  相似文献   

10.
Protein glycosylation with O-linked N-acetylglucosamine (O-GlcNAc) is a reversible post-translational modification of serines/threonines on metazoan proteins and occurring with similar time scales, dynamics and stoichiometry as protein phosphorylation. Levels of this modification are regulated by two enzymes-O-GlcNAc transferase (OGT) and O-GlcNAc hydrolase (OGA). Although the biochemistry of these enzymes and functional implications of O-GlcNAc have been studied extensively, until recently the structures and molecular mechanisms of OGT/OGA were not understood. This review covers a body of recent work that has led to an understanding of the structure of OGA, its catalytic mechanism and the development of a plethora of different inhibitors that are finding their use in cell biological studies towards the functional implications of O-GlcNAc. Furthermore, the very recent structure determination of a bacterial OGT orthologue has given the first insights into the contribution of the tetratricopeptide repeats (TPRs) to the active site and the role of some residues in catalysis and substrate binding.  相似文献   

11.
12.
Xenotransplantation is one of the most attractive solutions for the current worldwide shortage of organs. The knocking out of alpha1,3-galactosyltransferase in pigs resulted in a drastic reduction in xenoantigenicity. However, more recent studies indicate that other xeno-antigens, so-called non-Gal antigens, will also need to be downregulated. In this study, pig N-acetylglucosaminyltransferase I (GnT-I), a key enzyme that initiates the biosynthesis of hybrid- and complex-type N-linked sugar chains, was isolated and the pigGnT-I.2 specific for the O-linked sugar chain was also isolated. Point mutants, pigGnT-I(123) and pigGnT-I(320), were subsequently constructed. While pigGnT-I(123) shows an indistinct dominant negative effect for endogenous GnT-I in pig cells, pigGnT-I(320) had a drastic effect. In addition, in the case of pig cell transfectants with pigGnT-I(320), cell surface carbohydrate structures were significantly altered and its antigenicity to human serum was reduced. Consequently, pigGnT-I(320) appears to be potentially useful in xenotransplantation by remodeling the carbohydrate structures on pig cells.  相似文献   

13.
14.
The present paper is devoted to the evolutionary role of genetic modules shuffing. The mechanisms capable to produce new molecular functions and significant complications of ontogenesis are reviewed. Two-step model of macroevolution is proposed. This model comprises: (1) Arising of a new combination of genetic modules. This step does not result in formation of a new taxon but makes necessary ground for that process. (2) Precise structure completing of the new combination of modules and corresponding genome optimization by use of various mechanisms including point mutations. This step concerns many genes and finally leads to formation of a new taxon. It is shown that arising of new combinations of genetic modules might work out as molecular basis for progressive evolution, while alternative structural completing of the same combination might result in adaptive radiation.  相似文献   

15.
Data on molecular mechanisms of stress are presented (appearance of stress-proteins in the blood, as well as products of peroxidation products of lipids, and changes of the cell ion balance in stress). Particular accent was made on appearance of endogenous inhibiting agents in the blood: Na+,K+-ATPase, in response to extremal factor actions inducing stress.  相似文献   

16.
温度适应的分子生物学机制   总被引:5,自引:0,他引:5  
Ge WW  Wang ZX 《生理科学进展》1997,28(3):268-270
对温度的适应是机体对抗环境的一种主动行为,表现在细胞内转录和表达模式的改变,出现新基因的开放和新蛋白因子的合成。已在多种动植物中找到温度诱导产生的特异性蛋白。深入的研究表明,它们往往与糖代谢、渗透压调节及蛋白质代谢有关。这些分子大多具有相同的特征,它们同属于一种称作dehydrin的蛋白家族,对热稳定,表现亲水特征等。它们以多种机制保护细胞,抵抗恶劣环境温度的损害。  相似文献   

17.
18.
In Brassica species, self-incompatibility has been mapped genetically to a single chromosomal location. In this region several closely linked genes have been identified. One of them, S-locus receptor kinase (SRK), determines S haplotype specificity of the stigma and it's the key protein for SI reaction. The role of the S locus glycoprotein (SLG) gene remains unclear. In the last decade approximately 15 additional genes linked to S-locus have been found. Recently, a gene has been identified (SCR) that encodes a small cysteine-rich protein which is a candidate for the pollen ligand. In addition to S locus linked genes there are unlinked SLRgenes (S-locus related genes). In this review, we discuss the role of these genes and the current view on the self-incompatibility mechanism in Brassica.  相似文献   

19.
病理性疼痛的分子机制   总被引:2,自引:0,他引:2  
张旭 《生命科学》2008,20(5):707-708
持续性或慢性疼痛是很多患者的主要描述症状。然而,现在的治疗手段还不能充分解决某些疼痛或会引起不能忍受的副作用。近来疼痛生物学者阐明了大量的参与疼痛发生和维持的细胞和分子活动。如何更好的理解这些分子活动的机制将有助于发展高效的,特异性的治疗手段。背根神经节中小细胞神经元向脊髓传递温觉和伤害性信息的感觉传递。这些神经元的外周突感受生理性和化学性刺激后,可以在脊髓背角的中枢突通过突触囊泡和大致密性囊泡释放兴奋性的神经递质和神经肽。这种兴奋性突触传递可以被一些抑制因子调控如脊髓中间神经元和下行系统中分泌的阿片肽、GABA、甘氨酸、5-羟色胺。本文将回顾脊髓抑制性系统所取得的一些研究进展,将重点介绍在阿片受体转运,阿片镇痛以及吗啡耐晋研究中的进展,这些发现可能的治疗前景也会一并讨论。  相似文献   

20.
Inflammation is one of the most fundamental and pronounced protective reactions of the organism. From ancient times to the present day, complex and diverse patterns of inflammation development and their role in various diseases have attracted attention of investigators. This issue of Biokhimiya/Biochemistry (Moscow) includes experimental studies and reviews dedicated to various aspects of this important and interesting problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号