首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nuclear envelope in muscular dystrophy and cardiovascular diseases   总被引:1,自引:0,他引:1  
Considerable interest has been focused on the nuclear envelope in recent years following the realization that several human diseases are linked to defects in genes encoding nuclear envelope specific proteins, most notably A-type lamins and emerin. These disorders, described as laminopathies or nuclear envelopathies, include both X-linked and autosomal dominant forms of Emery–Dreifuss muscular dystrophy, dilated cardiomyopathy with conduction system defects, limb girdle muscular dystrophy 1B with atrioventricular conduction disturbances, and Dunnigan-type familial partial lipodystrophy. Certain of these diseases are associated with nuclear structural abnormalities that can be seen in a variety of cells and tissues. These observations clearly demonstrate that A-type lamins in particular play a central role, not only in the maintenance of nuclear envelope integrity but also in the large-scale organization of nuclear architecture. What is not obvious, however, is why defects in nuclear envelope proteins that are found in most adult cell types should give rise to pathologies associated predominantly with skeletal and cardiac muscle and adipocytes. The recognition of these various disorders now raises the novel possibility that the nuclear envelope may have functions that go beyond housekeeping and which impact upon cell-type specific nuclear processes.  相似文献   

2.
Nuclear envelope defects in muscular dystrophy   总被引:2,自引:0,他引:2  
Muscular dystrophies are a heterogeneous group of disorders linked to defects in 20-30 different genes. Mutations in the genes encoding a pair of nuclear envelope proteins, emerin and lamin A/C, have been shown to cause the X-linked and autosomal forms respectively of Emery-Dreifuss muscular dystrophy. A third form of muscular dystrophy, limb girdle muscular dystrophy 1b, has also been linked to mutations in the lamin A/C gene. Given that these two genes are ubiquitously expressed, a major goal is to determine how they can be associated with tissue specific diseases. Recent results suggest that lamin A/C and emerin contribute to the maintenance of nuclear envelope structure and at the same time may modulate the expression patterns of certain mechanosensitive and stress induced genes. Both emerin and lamin A/C may play an important role in the response of cells to mechanical stress and in this way may help to maintain muscle cell integrity.  相似文献   

3.
The nuclear envelope, muscular dystrophy and gene expression   总被引:16,自引:0,他引:16  
Lamins and other nuclear envelope proteins organize nuclear architecture through structural attachments that vary dynamically during the cell cycle and cell differentiation. Genetic studies have now shown that people with mutations in either lamins A/C or emerin, a nuclear membrane protein, develop Emery-Dreifuss muscular dystrophy. A mouse model for this rare disease has been created by knocking out the gene that encodes lamin A/C. This article discusses these and other recent results in the wider context of nuclear envelope function, as a framework for thinking about the possible ways in which defects in nuclear envelope proteins can lead to disease.  相似文献   

4.
Nuclear matrix proteins and hereditary diseases   总被引:1,自引:0,他引:1  
Sjakste N  Sjakste T 《Genetika》2005,41(3):293-298
  相似文献   

5.
A number of diseases associated with specific tissue degeneration and premature aging have mutations in the nuclear envelope proteins A-type lamins or emerin. Those diseases with A-type lamin mutation are inclusively termed laminopathies. Due to various hypothetical roles of nuclear envelope proteins in genome function we investigated whether alterations to normal genomic behaviour are apparent in cells with mutations in A-type lamins and emerin. Even though the distributions of these proteins in proliferating laminopathy fibroblasts appear normal, there is abnormal nuclear positioning of both chromosome 18 and 13 territories, from the nuclear periphery to the interior. This genomic organization mimics that found in normal nonproliferating quiescent or senescent cells. This finding is supported by distributions of modified pRb in the laminopathy cells. All laminopathy cell lines tested and an X-linked Emery-Dreifuss muscular dystrophy cell line also demonstrate increased incidences of apoptosis. The most extreme cases of apoptosis occur in cells derived from diseases with mutations in the tail region of the LMNA gene, such as Dunningan-type familial partial lipodystrophy and mandibuloacral dysplasia, and this correlates with a significant level of micronucleation in these cells.  相似文献   

6.
Emerin and specific isoforms of nesprin-1 and -2 are nuclear membrane proteins which are binding partners in multi-protein complexes spanning the nuclear envelope. We report here the characterisation of the residues both in emerin and in nesprin-1alpha and -2beta which are involved in their interaction and show that emerin requires nesprin-1 or -2 to retain it at the nuclear membrane. Using several protein-protein interaction methods, we show that residues 368 to 627 of nesprin-1alpha and residues 126 to 219 of nesprin-2beta, which show high homology to one another, both mediate binding to emerin residues 140-176. This region has previously been implicated in binding to F-actin, beta-catenin and lamin A/C suggesting that it is critical for emerin function. Confirmation that these protein domains interact in vivo was shown using GFP-dominant negative assays. Exogenous expression of either of these nesprin fragments in mouse myoblast C2C12 cells displaced endogenous emerin from the nuclear envelope and reduced the targeting of newly synthesised emerin. Furthermore, we are the first to report that emerin mutations which give rise to X-linked Emery-Dreifuss muscular dystrophy, disrupt binding to both nesprin-1alpha and -2beta isoforms, further indicating a role of nesprins in the pathology of Emery-Dreifuss muscular dystrophy.  相似文献   

7.
Lamins are nuclear intermediate filaments that, together with lamin-associated proteins, maintain nuclear shape and provide a structural support for chromosomes and replicating DNA. We have determined the solution structure of the human lamin A/C C-terminal globular domain which contains specific mutations causing four different heritable diseases. This domain encompasses residues 430-545 and adopts an Ig-like fold of type s. We have also characterized by NMR and circular dichroism the structure and thermostability of three mutants, R453W and R482W/Q, corresponding to "hot spots" causing Emery-Dreifuss muscular dystrophy and Dunnigan-type lipodystrophy, respectively. Our structure determination and mutant analyses clearly show that the consequences of the mutations causing muscle-specific diseases or lipodystrophy are different at the molecular level.  相似文献   

8.
Nuclear envelope-related muscular dystrophies, in particular those referred to as laminopathies, are relatively novel and unclear diseases, also considering the increasing number of mutations identified so far in genes of the nuclear envelope. As regard LMNA gene, only tentative relations between phenotype, type and localization of the mutations have been established in striated muscle diseases, while laminopathies affecting adipose tissue, peripheral nerves or progerioid syndromes could be linked to specific genetic variants. This study describes the biochemical phenotype of neuromuscular laminopathies in samples derived from LMNA mutant patients. Since it has been reported that nuclear alterations, due to LMNA defects, are present also in fibroblasts from Emery-Dreifuss muscular dystrophy and familial partial lipodystrophy patients, we analyzed 2D-maps of skin fibroblasts of patients carrying 12 different LMNA mutations spread along the entire gene. To recognize distinctive proteins underlying affected biochemical pathways, we compared them with fibroblasts from healthy controls and, more importantly, fibroblasts from patients with non-lamin related neuromuscular disorders. We found less abundance of cytoskeletal/structural proteins, confirming a dominant role for Lamin A/C in structural support of nuclear architecture. Interestingly, we also established significant changes in the expression of proteins involved in cellular energy production and oxidative stress response. To our knowledge, this is the first report where proteomics was applied to characterize ex-vivo cells from LMNA patients, suggesting that this may represent a new approach to better understand the molecular mechanisms of these rare diseases and facilitate the development of novel therapeutic treatments.  相似文献   

9.
Emery-Dreifuss muscular dystrophy (EDMD) is a late onset-disease characterized by skeletal muscle wasting and heart defects with associated risk of sudden death. The autosomal dominant form of the disease is caused by mutations in the LMNA gene encoding LaminA and C, the X-linked form results from mutations in the gene encoding the inner nuclear membrane protein Emerin (STA). Both Emerin and LaminA/C interact with the nuclear envelope proteins Nesprin-1 and -2 and mutations in genes encoding C-terminal isoforms of Nesprin-1 and -2 have also been implicated in EDMD. Here we analyse primary fibroblasts from patients affected by either Duchenne muscular dystrophy (DMD) or Emery-Dreifuss muscular dystrophy/Charcot-Marie-Tooth syndrome (EDMD/CMT) that in addition to the disease causing mutations harbour mutations in the Nesprin-1 gene and in the SUN1 and SUN2 gene, respectively. SUN proteins together with the Nesprins form the core of the LINC complex which connects the nucleus with the cytoskeleton. The mutations are accompanied by changes in cell adhesion, cell migration, senescence, and stress response, as well as in nuclear shape and nuclear envelope composition which are changes characteristic for laminopathies. Our results point to a potential influence of mutations in components of the LINC complex on the clinical outcome and the molecular pathology in the patients.  相似文献   

10.
11.
The X-linked form of Emery-Dreifuss muscular dystrophy (X-EDMD) is caused by absence, or greatly reduced amounts, of the inner nuclear-membrane protein, emerin. The autosomal dominant form (AD-EDMD) is caused by missense mutations in lamins A and C, two components of the nuclear lamina that interact directly with emerin. Lamin A/C mutations also cause one form of dilated cardiomyopathy (CMD1A) and one form of limb-girdle muscular dystrophy (LGMD1B), both of which have clinical features in common with EDMD, as well as a rare, unrelated form of lipodystrophy (FPLD). Evidence is now emerging that defective assembly of the nuclear lamina is a feature of all these diseases, although not necessarily the direct cause. Why only heart and skeletal muscle, and possibly connective tissue, are affected in EDMD and why expression of the disease is so extremely variable between individuals remains to be explained.  相似文献   

12.
Emery-Dreifuss muscular dystrophy (EMD) is a condition characterized by the clinical triad of early-onset contractures, progressive weakness in humeroperoneal muscles, and cardiomyopathy with conduction block. The disease was described for the first time as an X-linked muscular dystrophy, but autosomal dominant and autosomal recessive forms were reported. The genes for X-linked EMD and autosomal dominant EMD (AD-EMD) were identified. We report here that heterozygote mutations in LMNA, the gene for AD-EMD, may cause diverse phenotypes ranging from typical EMD to no phenotypic effect. Our results show that LMNA mutations are also responsible for the recessive form of the disease. Our results give further support to the notion that different genetic forms of EMD have a common pathophysiological background. The distribution of the mutations in AD-EMD patients (in the tail and in the 2A rod domain) suggests that unique interactions between lamin A/C and other nuclear components exist that have an important role in cardiac and skeletal muscle function.  相似文献   

13.
The dystrophin-glycoprotein complex (DGC) can be considered as a specialized adhesion complex, linking the extracellular matrix to the actin cytoskeleton, primarily in muscle cells. Mutations in several components of the DGC lead to its partial or total loss, resulting in various forms of muscular dystrophy. These typically manifest as progressive wasting diseases with loss of muscle integrity. Debate is ongoing about the precise function of the DGC: initially a strictly mechanical role was proposed but it has been suggested that there is aberrant calcium handling in muscular dystrophy and, more recently, changes in MAP kinase and GTPase signalling have been implicated in the aetiology of the disease. Here, we discuss new and interesting developments in these aspects of DGC function and attempt to rationalize the mechanical, calcium and signalling hypotheses to provide a unifying hypothesis of the underlying process of muscular dystrophy.  相似文献   

14.
《Autophagy》2013,9(1):108-109
A-type lamins, generated from the LMNA gene by differential splicing, are type V intermediate filament proteins that polymerize to form part of the nuclear lamina, and are of considerable medical interest because missense mutations in LMNA give rise to a wide range of dystrophic and progeroid syndromes. Among these are dilated cardiomyopathy and two forms of muscular dystrophy (limb-girdle and Emery-Dreifuss), which are modeled in lmna?/? mice and mice engineered to express human disease mutations. Our recent study demonstrates that cardiac and skeletal muscle pathology in lmna?/? mice can be attributed to elevated MTORC1 signaling leading to impairment of autophagic flux. An accompanying paper from another laboratory shows similar impairments in mice engineered to express the LMNA H222P associated with dilated cardiomyopathy in humans and also in left ventricular tissue from human subjects. MTORC1 inhibition with rapalogs restores autophagic flux and improves cardiac function in both mouse models, and extends survival in the lmna?/? mice. These findings elaborate a potential treatment option for dilated cardiomyopathy and muscular dystrophy associated with LMNA mutation and supplement growing evidence linking impaired autophagy to human disease.  相似文献   

15.
The genetic understanding of the muscular dystrophies has advanced considerably in the last two decades. Over 25 different individual genes are now known to produce muscular dystrophy, and many different "private" mutations have been described for each individual muscular dystrophy gene. For the more common forms of muscular dystrophy, phenotypic variability can be explained by precise mutations. However, for many genetic mutations, the presence of the identical mutation is associated with marked phenotypic range that affects muscle function as well as cardiac function. The explanation for phenotype variability in the muscular dystrophies is only now being explored. The availability of genetically engineered animal models has allowed the generation of single mutations on the background of highly inbred strain. Phenotypic variation that is altered by genetic background argues for the presence of genetic modifier loci that can ameliorate or enhance aspects of the dystrophic phenotype. A number of individual genes have been implicated as modifiers of muscular dystrophy by studies in genetically engineered mouse models of muscular dystrophy. The value of these genes and products is that the pathways identified through these experiments may be exploited for therapy.  相似文献   

16.
17.
Muscular dystrophies comprise a diverse group of genetic disorders that lead to muscle wasting and, in many instances, premature death. Many mutations that cause muscular dystrophy compromise the support network that connects myofilament proteins within the cell to the basal lamina outside the cell, rendering the sarcolemma more permeable or leaky. Here we show that deletion of the gene encoding cyclophilin D (Ppif) rendered mitochondria largely insensitive to the calcium overload-induced swelling associated with a defective sarcolemma, thus reducing myofiber necrosis in two distinct models of muscular dystrophy. Mice lacking delta-sarcoglycan (Scgd(-/-) mice) showed markedly less dystrophic disease in both skeletal muscle and heart in the absence of Ppif. Moreover, the premature lethality associated with deletion of Lama2, encoding the alpha-2 chain of laminin-2, was rescued, as were other indices of dystrophic disease. Treatment with the cyclophilin inhibitor Debio-025 similarly reduced mitochondrial swelling and necrotic disease manifestations in mdx mice, a model of Duchenne muscular dystrophy, and in Scgd(-/-) mice. Thus, mitochondrial-dependent necrosis represents a prominent disease mechanism in muscular dystrophy, suggesting that inhibition of cyclophilin D could provide a new pharmacologic treatment strategy for these diseases.  相似文献   

18.
Muscular dystrophy and peripheral neuropathy have been linked to mutations in genes encoding nuclear envelope proteins; however, the molecular mechanisms underlying these disorders remain unresolved. Nuclear envelope protein p19A is a protein of unknown function encoded by a gene at chromosome 4q35. p19A levels are significantly reduced in human muscle as cells differentiate from myoblasts to myotubes; however, its levels are not similarly reduced in all differentiation systems tested. Because 4q35 has been linked to facioscapulohumeral muscular dystrophy (FSHD) and some adjacent genes are reportedly misregulated in the disorder, levels of p19A were analyzed in muscle samples from patients with FSHD. Although p19A was increased in most cases, an absolute correlation was not observed. Nonetheless, p19A downregulation in normal muscle differentiation suggests that in the cases where its gene is inappropriately re-activated it could affect muscle differentiation and contribute to disease pathology.  相似文献   

19.
Congenital muscular dystrophies involving the O-mannose pathway   总被引:1,自引:0,他引:1  
A number of forms of congenital muscular dystrophy (CMD) have been identified that involve defects in the glycosylation of dystroglycan with O-mannosyl-linked glycans. There are at least six genes that can affect this type of glycosylation, and defects in these genes give rise to disorders that have many aspects of muscle and brain pathology in common. Overexpression of one gene implicated in CMD, LARGE, was recently shown to increase dystroglycan glycosylation and restore its function in cells taken from CMD patients. Overexpression of Galgt2, a glycosyltransferase not implicated in CMD, also alters dystroglycan glycosylation and inhibits muscular dystrophy in a mouse model of Duchenne muscular dystrophy. These findings suggest that a common approach to therapy in muscular dystrophies may be to increase the glycosylation of dystroglycan with particular glycan structures.  相似文献   

20.
Mouse models of the laminopathies   总被引:3,自引:0,他引:3  
The A and B type lamins are nuclear intermediate filament proteins that comprise the bulk of the nuclear lamina, a thin proteinaceous structure underlying the inner nuclear membrane. The A type lamins are encoded by the lamin A gene (LMNA). Mutations in this gene have been linked to at least nine diseases, including the progeroid diseases Hutchinson-Gilford progeria and atypical Werner's syndromes, striated muscle diseases including muscular dystrophies and dilated cardiomyopathies, lipodystrophies affecting adipose tissue deposition, diseases affecting skeletal development, and a peripheral neuropathy. To understand how different diseases arise from different mutations in the same gene, mouse lines carrying some of the same mutations found in the human diseases have been established. We, and others have generated mice with different mutations that result in progeria, muscular dystrophy, and dilated cardiomyopathy. To further our understanding of the functions of the lamins, we also created mice lacking lamin B1, as well as mice expressing only one of the A type lamins. These mouse lines are providing insights into the functions of the lamina and how changes to the lamina affect the mechanical integrity of the nucleus as well as signaling pathways that, when disrupted, may contribute to the disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号