首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pharmacological analysis of ligand binding to the beta-adrenergic receptor (beta AR) has revealed the existence of two distinct receptor subtypes (beta 1 and beta 2) which are the products of different genes. The predicted amino acid sequences of the beta 1 and beta 2 receptors differ by 48%. To identify the regions of the proteins responsible for determining receptor subtype, chimeras were constructed from domains of the human beta 1 and hamster beta 2 receptors. Analysis of the ligand-binding characteristics of these hybrid receptors revealed that residues in the middle portion of the beta AR sequence, particularly around transmembrane regions 4 and 5, contribute to the subtype specific binding of agonists. Smaller molecular replacements of regions of the hamster beta 2 AR with the analogous regions from the avian beta 1 AR, however, failed to identify any single residue substitution capable of altering the subtype specificity of the receptor. These data indicate that, whereas sequences around transmembrane regions 4 and 5 may contribute to conformations which influence the ligand-binding properties of the receptor, the subtype-specific differences in amine-substituted agonist binding cannot be attributed to a single molecular interaction between the ligand and any amino acid residue which is divergent between the beta 1 and beta 2 receptors.  相似文献   

2.
3.
4.
5.
6.
7.
The genes for the degradation of 3-chlorobenzoic acid ( 3Cba ) are present in a 110-kb plasmid pAC27 . A circular map is established using the restriction endonucleases EcoRI, HindIII and Bg/II. The map is derived from the results obtained by partial restriction digestion, complete single and double restriction digestion and finally confirmed with hybridization of the digested fragments using different purified fragments as probes. The 3Cba degradative genes are found to be clustered in one region of the map (EcoRI fragment A) as judged by molecular cloning with a broad host range vector pLAFRI . A portion of the 3Cba degradative gene cluster appears to undergo ready recombination with the chromosome, even in a recA host, suggesting the probable transposable nature of such gene cluster.  相似文献   

8.
Cytosolic sulfotransferases (SULTs) are mammalian enzymes that detoxify a wide variety of chemicals through the addition of a sulfate group. Despite extensive research, the molecular basis for the broad specificity of SULTs is still not understood. Here, structural, protein engineering and kinetic approaches were employed to obtain deep understanding of the molecular basis for the broad specificity, catalytic activity and substrate inhibition of SULT1A1. We have determined five new structures of SULT1A1 in complex with different acceptors, and utilized a directed evolution approach to generate SULT1A1 mutants with enhanced thermostability and increased catalytic activity. We found that active site plasticity enables binding of different acceptors and identified dramatic structural changes in the SULT1A1 active site leading to the binding of a second acceptor molecule in a conserved yet non-productive manner. Our combined approach highlights the dominant role of SULT1A1 structural flexibility in controlling the specificity and activity of this enzyme.  相似文献   

9.
The Dbl homology nucleotide exchange factors (GEFs) activate Rho family cytosolic GTPases in a variety of physiological and pathophysiological events. These signaling molecules typically act downstream of tyrosine kinase receptors and often facilitate nucleotide exchange on more than one member of the Rho GTPase superfamily. Three unique GEFs, i.e. p115, PDZ-RhoGEF, and LARG, are activated by the G-protein coupled receptors via the Galpha(12/13), and exhibit very selective activation of RhoA, although the mechanism by which this is accomplished is not fully understood. Based on the recently solved crystal structure of the DH-PH tandem of PDZ-RhoGEF in complex with RhoA (Derewenda, U., Oleksy, A., Stevenson, A. S., Korczynska, J., Dauter, Z., Somlyo, A. P., Otlewski, J., Somlyo, A. V., and Derewenda, Z. S. (2004) Structure (Lond.) 12, 1955-1965), we conducted extensive mutational and functional studies of the molecular basis of the RhoA selectivity in PDZ-RhoGEF. We show that while Trp(58) of RhoA is intimately involved in the interaction with the DH domain, it is not a selectivity determinant, and its interaction with PDZ-RhoGEF is unfavorable. The key selectivity determinants are dominated by polar contacts involving residues unique to RhoA. We find that selectivity for RhoA versus Cdc42 is defined by a small number of interactions.  相似文献   

10.
Members of polo-like kinases (collectively, Plks) have been identified in various eukaryotic organisms and play pivotal roles in cell proliferation. They are characterized by the presence of a distinct region of homology in the C-terminal noncatalytic domain, called polo-box domain (PBD). Among them, Plk1 and its functional homologs in other organisms have been best characterized because of its strong association with tumorigenesis. Plk1 is overexpressed in a wide spectrum of cancers in humans, and is thought to be an attractive anti-cancer drug target. Plk1 offers, within one molecule, two functionally different drug targets with distinct properties-the N-terminal catalytic domain and the C-terminal PBD essential for targeting the catalytic activity of Plk1 to specific subcellular locations. In this review, we focused on discussing the recent development of small-molecule and phosphopeptide inhibitors for their potency and specificity against Plk1. Our effort in understanding the binding mode of various inhibitors to Plk1 PBD are also presented.  相似文献   

11.
FabH (β-ketoacyl-acyl carrier protein synthase III) is unique in that it initiates fatty acid biosynthesis, is inhibited by long-chain fatty acids providing means for feedback control of the process, and dictates the fatty acid profile of the organism by virtue of its substrate specificity. We report the crystal structures of bacterial FabH enzymes from four different pathogenic species: Enterococcus faecalis, Haemophilus influenzae, Staphylococcus aureus and Escherichia coli. Structural data on the enzyme from different species show important differences in the architecture of the substrate-binding sites that parallel the inter-species diversity in the substrate specificities of these enzymes.  相似文献   

12.
Although smallpox has been eradicated from the human population, it is presently feared as a possible agent of bioterrorism. The smallpox virus codes for its own topoisomerase enzyme that differs from its cellular counterpart by requiring a specific DNA sequence for activation of catalysis. Here we present crystal structures of the smallpox virus topoisomerase enzyme bound both covalently and noncovalently to a specific DNA sequence. These structures reveal the basis for site-specific DNA recognition, and they explain how catalysis is likely activated by formation of a specific enzyme-DNA interface. Unexpectedly, the poxvirus enzyme uses a major groove binding alpha helix that is not present in the human enzyme to recognize part of the core recognition sequence and activate the enzyme for catalysis. The topoisomerase-DNA complex structures also provide a three-dimensional framework that may facilitate the rational design of therapeutic agents to treat poxvirus infections.  相似文献   

13.
14.
15.
Deoxyribonucleoside kinases (dNKs) catalyze the transfer of a phosphoryl group from ATP to a deoxyribonucleoside (dN), a key step in DNA precursor synthesis. Recently structural information concerning dNKs has been obtained, but no structure of a bacterial dCK/dGK enzyme is known. Here we report the structure of such an enzyme, represented by deoxyadenosine kinase from Mycoplasma mycoides subsp. mycoides small colony type (Mm-dAK). Superposition of Mm-dAK with its human counterpart's deoxyguanosine kinase (dGK) and deoxycytidine kinase (dCK) reveals that the overall structures are very similar with a few amino acid alterations in the proximity of the active site. To investigate the substrate specificity, Mm-dAK has been crystallized in complex with dATP and dCTP, as well as the products dCMP and dCDP. Both dATP and dCTP bind to the enzyme in a feedback-inhibitory manner with the dN part in the deoxyribonucleoside binding site and the triphosphates in the P-loop. Substrate specificity studies with clinically important nucleoside analogs as well as several phosphate donors were performed. Thus, in this study we combine structural and kinetic data to gain a better understanding of the substrate specificity of the dCK/dGK family of enzymes. The structure of Mm-dAK provides a starting point for making new anti bacterial agents against pathogenic bacteria.  相似文献   

16.
Members of the Src family of non-receptor tyrosine kinases play a critical role in mesoderm formation in the frog, Xenopus laevis, acting as required mediators downstream of the fibroblast growth factor receptor. At least four members of this gene family, Src, Fyn, Yes, and Laloo, are expressed during early embryonic development. Ectopic expression of Laloo and Fyn, but not Src, induce mesoderm in ectodermal explants, indicating that these factors are non-redundant during early vertebrate development. Here we investigate the basis for the differential activity of the Src and Laloo kinases during mesoderm formation. We demonstrate that although both Src and Laloo physically interact with the substrate protein SNT-1/FRS2alpha only Laloo phosphorylates SNT-1, an event previously shown to be required for the activity of the latter and for mesoderm induction in vivo. We show that Src is enzymatically capable of stimulating mesoderm formation, as an activated Src construct both phosphorylates SNT-1 and induces mesoderm in explant cultures. However, a chimeric Laloo construct containing a Src C-terminal tail is inactive, suggesting that the early embryo contains a specific Laloo-activating, or Src-inactivating, factor. Finally, through further chimeric analysis, we provide evidence to suggest that differences in Laloo and Src activity are also mediated by the SH2, SH3, and kinase domains of these molecules.  相似文献   

17.
The positional specificity of arachidonic acid oxygenation is currently the decisive parameter for classification of mammalian lipoxygenases but, unfortunately, the structural reasons for lipoxygenase specificity are not well understood. Although there are no direct structural data on lipoxygenase/substrate interaction, experiments with modified fatty acid substrates and mutagenesis studies suggest that for 12- and 15-lipoxygenases, arachidonic acid slides into the substrate-binding pocket with its methyl end ahead. For arachidonate 5- and/or 8-lipoxygenation two alternative models for the enzyme/substrate interaction have been developed: 1) The orientation-determined model and 2) the space-determined model. This review explores the experimental data available on the mechanistic reasons for lipoxygenase specificity and concludes that each of the above-mentioned hypotheses may be valid for arachidonate 5-lipoxygenation under certain circumstances.  相似文献   

18.
X-linked agammaglobulinemia (XLA) is caused by mutations in the Bruton's tyrosine kinase (Btk). The absence of functional Btk leads to failure of B-cell development that incapacitates antibody production in XLA patients leading to recurrent bacterial infections. Btk SH2 domain is essential for phospholipase C-gamma phosphorylation, and mutations in this domain were shown to cause XLA. Recently, the B-cell linker protein (BLNK) was found to interact with the SH2 domain of Btk, and this association is required for the activation of phospholipase C-gamma. However, the molecular basis for the interaction between the Btk SH2 domain and BLNK and the cause of XLA remain unclear. To understand the role of Btk in B-cell development, we have determined the stability and peptide binding affinity of the Btk SH2 domain. Our results indicate that both the structure and stability of Btk SH2 domain closely resemble with other SH2 domains, and it binds with phosphopeptides in the order pYEEI > pYDEP > pYMEM > pYLDL > pYIIP. We expressed the R288Q, R288W, L295P, R307G, R307T, Y334S, Y361C, L369F, and 1370M mutants of the Btk SH2 domain identified from XLA patients and measured their binding affinity with the phosphopeptides. Our studies revealed that mutation of R288 and R307 located in the phosphotyrosine binding site resulted in a more than 200-fold decrease in the peptide binding compared to L295, Y334, Y361, L369, and 1370 mutations in the pY + 3 hydrophobic binding pocket (approximately 3- to 17-folds). Furthermore, mutation of the Tyr residue at the betaD5 position reverses the binding order of Btk SH2 domain to pYIIP > pYLDL > pYDEP > pYMEM > pYEEI. This altered binding behavior of mutant Btk SH2 domain likely leads to XLA.  相似文献   

19.
20.
Forkhead-associated (FHA) domains are a class of ubiquitous signaling modules that appear to function through interactions with phosphorylated target molecules. We have used oriented peptide library screening to determine the optimal phosphopeptide binding motifs recognized by several FHA domains, including those within a number of DNA damage checkpoint kinases, and determined the X-ray structure of Rad53p-FHA1, in complex with a phospho-threonine peptide, at 1.6 A resolution. The structure reveals a striking similarity to the MH2 domains of Smad tumor suppressor proteins and reveals a mode of peptide binding that differs from SH2, 14-3-3, or PTB domain complexes. These results have important implications for DNA damage signaling and CHK2-dependent tumor suppression, and they indicate that FHA domains play important and unsuspected roles in S/T kinase signaling mechanisms in prokaryotes and eukaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号