首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Toll样受体(TLRs)的信号转导与免疫调节   总被引:6,自引:0,他引:6  
Toll样受体(Toll-like receptors,TLRs)是进化中比较保守的一个受体家族,至少包括10个成员.TLRs能特异地识别病原相关的分子模式(PAMPs),不仅在激活天然免疫中发挥重要的作用,而且还调节获得性免疫,是连接天然免疫和获得性免疫的桥梁.近年来,TLRs信号转导的研究,特别是在负调控研究领域,进展非常迅速.对TLRs信号通路新进展以及TLRs在抗感染免疫中的作用进行了综述.  相似文献   

2.
Liu HZ  Yang HZ  Hu ZW 《生理科学进展》2008,39(2):114-118
Toll样受体(TLRs)广泛表达于固有免疫和获得性免疫系统.它们通过识别内外源性致病原含有的保守病原体相关模式分子,启动宿主防卫反应.TLRs也是沟通固有免疫和获得性免疫反应,尤其是T细胞介导的细胞免疫反应的重要桥梁.新近研究表明,几乎所有亚型TLR均表达在B淋巴细胞,不仅参与B细胞增殖、成熟和功能调节,而且在系统性红斑狼疮和慢性淋巴细胞白血病等疾病发生过程中发挥重要调节作用.以TLRs为靶点,调节B细胞介导的免疫反应,可能成为具有崭新应用前景的免疫治疗途径和方法.  相似文献   

3.
Innate immunity was for a long time considered to be non-specific because the major function of this system is to digest pathogens and present antigens to the cells involved in acquired immunity. However, recent studies have shown that innate immunity is not non-specific, but is instead sufficiently specific to discriminate self from pathogens through evolutionarily conserved receptors, designated Toll-like receptors (TLRs). Indeed, innate immunity has a crucial role in early host defence against invading pathogens. Furthermore, TLRs were found to act as adjuvant receptors that create a bridge between innate and adaptive immunity, and to have important roles in the induction of adaptive immunity. This paradigm shift is now changing our thinking on the pathogenesis and treatment of infectious, immune and allergic diseases, as well as cancers. Besides TLRs, recent findings have revealed the presence of a cytosolic detector system for invading pathogens. I will review the mechanisms of pathogen recognition by TLRs and cytoplasmic receptors, and then discuss the roles of these receptors in the development of adaptive immunity in response to viral infection.  相似文献   

4.
Toll样受体与树突状细胞介导的天然免疫和获得性免疫   总被引:1,自引:0,他引:1  
树突状细胞(dendritic cells,DCs)作为迄今所发现的抗原提呈功能最强的一类抗原提呈细胞,是联结天然免疫和获得性免疫的桥梁。Toll样受体(Toll-like receptors,TLRs)是一类进化保守的胚系编码的模式识别受体,在DCs的抗原识别、递呈及激活T细胞等方面具有重要作用,是机体受外来抗原入侵后作出适当免疫反应的调控点。现就TLRs在不同DCs亚群中的分布、与DCs介导的天然免疫和获得性免疫的关系及DCs功能可塑性的分子基础作一综述。  相似文献   

5.
Toll-like receptors(TLRs)are type I transmembrane proteins that are important components of innate immunity and play essential roles in inducing acquired immune responses[1].These proteins consist of three parts:the cytoplasmic domain,transmembrane domain,and extracellular domain.The extracellular domain is composed of 18–33 leucine-rich repeat(LRR)sequences that enable the host to specifically recognize pathogen-associated molecular patterns and are the core of TLR recognition ligands[2].The cytoplasmic domain is homologous with the interleukin 1 receptor(IL-1R)family and known as the Toll-IL-1 receptor homology domain,which is highly conserved and plays a key role in signal transduction[1].TLR3 recognizes viral dsRNA during immune protection from viruses[3].After the host is infected by a virus,the LRR region of TLR3 recognizes the viral dsRNA,and the Toll/IL-1 receptor(TIR)domain recruits the adaptor protein TIR domain-containing molecule 1(also known as TRIF)for signal cascade transmission[4].The activation of TLR3 finally leads to cytokine secretion,especially the production of type I interferon[4].Lamprey,the most primitive marine jawless vertebrate,is an ideal model for studying vertebrate embryo development,organ differentiation,and immune system evolution[5].Although jawless vertebrates contain three variable lymphocyte receptors,they have not been found to possess the recombinational antigen receptors shared by all jawed vertebrates[6].Compared with that in higher vertebrates,the mechanism of acquired immunity in lampreys is still not complete,and lampreys rely mainly on innate immunity to fight against pathogenic microorganisms.Although TLR3 has been extensively studied in jawed vertebrates,little is known about the molecular evolutionary history and expression patterns of TLR3 in jawless vertebrates.  相似文献   

6.
The Toll-like receptor (TLR) family plays a fundamental role in host innate immunity by mounting a rapid and potent inflammatory response to pathogen infection. TLRs recognize distinct microbial components and activate intracellular signaling pathways that induce expression of host inflammatory genes. Several studies have indicated that TLRs are implicated in many inflammatory and immune disorders. Extensive research in the past decade to understand TLR-mediated mechanisms of innate immunity has enabled pharmaceutical companies to begin to develop novel therapeutics for the purpose of controlling an inflammatory disease. The roles of TLRs in the development of autoimmune diseases have been studied. TLR7 and TLR9 have key roles in production of autoantibodies and/or in development of systemic autoimmune disease. It remains to be determined their role in apoptosis, in the pathogenesis of RNA containing immune complexes, differential expression of TLRs by T regulatory cells.  相似文献   

7.
The innate immune system provides the first line of host defense against invading microorganisms before the development of adaptive immune responses. Innate immune responses are initiated by germline-encoded pattern recognition receptors (PRRs), which recognize specific structures of microorganisms. Toll-like receptors (TLRs) are pattern-recognition receptors that sense a wide range of microorganisms, including bacteria, fungi, protozoa and viruses. TLRs exist either on the cell surface or in the lysosome/endosome compartment and induce innate immune responses. Recently, cytoplasmic PRRs have been identified which detect pathogens that have invaded the cytosol. This review focuses on the pathogen recognition of PRRs in innate immunity.  相似文献   

8.
Toll样受体(Toll-like receptors, TLRs)在先天免疫系统中广泛表达,可通过促进抗原提呈细胞(antigen presenting cells,APC)共刺激分子的表达从而间接导致T细胞活化。然而研究发现,TLR也可在T细胞中表达,并可在没有APC的情况下直接调节T细胞的代谢与功能。本文综述了TLR信号对不同T细胞亚群代谢和免疫功能的直接调控作用,为T细胞介导的癌症及自身免疫病等疾病的预防和治疗提供了新的思路。  相似文献   

9.
Variability in the susceptibility to HIV-1 infection and disease progression depends on both virus and host determinants. Some exposed individuals remain HIV-1-uninfected and HIV-1-infected subjects develop disease at varying intervals with a small percentage remaining long-term non-progressors. As innate immunity is the earliest response to microbial entry and injury, host factors that impact innate immunity may play a role in viral infectivity and pathogenesis. In the pediatric population the interactions between the virus and the host may be of particular relevance due to the still developing adaptive immune system. Data indicate that genetic variants of defensins and Toll-Like Receptors (TLRs), key elements of innate immunity, play a role in mother-to-child transmission (MTCT) of HIV-1, and in the outcome of pediatric HIV-1 disease. Although the mechanisms by which these genetic variants influence HIV-1 interactions with the host are still largely unknown, defensins and TLRs, along with their link with regulatory T cells (Tregs), may play a critical role in the onset and persistence of immune activation, a hallmark of HIV-1 disease.  相似文献   

10.
Research into intracellular sensing of microbial products is an up and coming field in innate immunity. Toll-like receptors (TLRs) recognize Brucella spp. and bacterial components and initiate mononuclear phagocyte responses that influence both innate and adaptive immunity. Recent studies have revealed the intracellular signaling cascades involved in the TLR-initiated immune response to Brucella infection. TLR2, TLR4 and TLR9 have been implicated in host interactions with Brucella; however, TLR9 has the most prominent role. Further, the relationship between specific Brucella molecules and various signal transduction pathways needs to be better understood. MyD88-dependent and TRIF-independent signaling pathways are involved in Brucella activation of innate immune cells through TLRs. We have recently reported the critical role of MyD88 molecule in dendritic cell maturation and interleukin-12 production during B. abortus infection. This article discusses recent studies on TLR signaling and also highlights the contribution of NOD and type I IFN receptors during Brucella infection. The better understanding of the role by such innate immune receptors in bacterial infection is critical in host-pathogen interactions.  相似文献   

11.

Background  

Toll-like receptors (TLRs) play an important role in innate immunity by sensing a variety of pathogens and inducing acquired immunity. To test our hypothesis that dysregulation of innate immune responses acts to trigger carcinogenesis, we studied the expression of TLR2 and 4 in sporadic human colorectal cancer tissue.  相似文献   

12.
Innate immune recognition of viral infection   总被引:16,自引:0,他引:16  
Uematsu S  Akira S 《Uirusu》2006,56(1):1-8
Toll-like receptors (TLRs) are key molecules of the innate immune systems, which detect conserved structures found in a broad range of pathogens and triggers innate immune responses. A subset of TLRs recognize viral components and induce antiviral responses by producing type I interferons. Whereas TLR2 and TLR4 recognize viral components at the cell surface, TLR3, TLR7, TLR8 and TLR9 are exclusively expressed in endosomal compartments. After phagocytes internalize viruses or virus-infected apoptotic cells, viral nucleic acids are released in phagolysosomes and are recognized by these TLRs. Recent reports have shown that hosts also have a mechanism to detect replicating viruses in the cytoplasm in a TLR-independent manner. In this review, we focus on the viral recognition by innate immunity and the signaling pathways.  相似文献   

13.
The innate immune system senses pathogens largely through signals initiated by a collection of phylogenetically related proteins known as "Toll-like receptors" (TLRs), of which 10 representatives are encoded in the human genome. Our understanding of the sensing role played by the TLRs began with the positional cloning of a spontaneous mutation (Lps(d)) in the gene encoding the mammalian lipopolysaccharide (LPS) receptor. Other key innate immunity proteins have been disclosed by germline mutagenesis, and are discussed in the present review.  相似文献   

14.
The innate immune system provides the first line of defence against infection. Through a limited number of germline-encoded receptors called pattern recognition receptors (PRRs), innate cells recognize and are activated by highly conserved structures expressed by large group of microorganisms called pathogen-associated molecular patterns (PAMPs). PRRs are involved either in recognition (scavenger receptors, C-type lectins) or in cell activation (Toll-like receptors or TLR, helicases and NOD molecules). TLRs play a pivotal role in cell activation in response to PAMPs. TLR are type I transmembrane proteins characterized by an intracellular Toll/IL 1 receptor homology domain that are expressed by innate immune cells (dendritic cells, macrophages, NK cells), cells of the adaptive immunity (T and B lymphocytes) and non immune cells (epithelial and endothelial cells, fibroblasts). In all the cell types analyzed, TLR agonists, alone or in combination with costimulatory molecules, induce cell activation. The crucial role played by TLR in immune cell activation has been detailed in dendritic cells. A TLR-dependent activation of dendritic cells is required to induce their maturation and migration to regional lymph nodes and to activate na?ve T cells. The ability of different cell types to respond to TLR agonists is related to the pattern of expression of the TLRs and its regulation as well as their intracellular localization. Recent studies suggest that the nature of the endocytic and signaling receptors engaged by PAMPs may determine the nature of the immune response generated against the microbial molecules, highlighting the role of TLRs as molecular interfaces between innate and adaptive immunity. In this review are summarized the main biological properties of the TLR molecules.  相似文献   

15.
Toll样受体(Toll-like receptors,TLR)是一类可以识别病原体并迅速启动天然免疫反应的跨膜蛋白,它们也可以调节机体的获得性免疫及组织的炎症反应,是机体感知、抵御及清除病原体的关键分子。近来发现TLR在多种肝脏疾病的发生、发展及恢复过程中起着重要的调节作用,这方面的研究为许多慢性肝病的治疗提供了新的线索。该文综述了TLR在酒精性肝病、脂肪肝、病毒性肝炎、肝硬化以及肝细胞癌的病理生理学中的作用,展望了将来需重点研究的问题。  相似文献   

16.
Toll 样受体是一类相对保守的模式识别受体,可以识别损伤相关分子模式和病原相关分子模式,从而启动天然免疫应答,在天然免 疫过程中发挥非常重要的作用。其介导的信号通路失调会引发各种炎症反应、癌症和自身免疫病等疾病。综述近年与 Toll 样受体有关的免 疫调节剂的研究进展,并概括与之相关的疾病,为靶向 Toll 样受体的免疫调节剂的研发提供一定参考。  相似文献   

17.
Interaction of engineered nanomaterials (ENMs) with the immune system mainly occurs with cells and molecules of innate immunity, which are present in interface tissues of living organisms. Immuno-nanotoxicological studies aim at understanding if and when such interaction is inconsequential or may cause irreparable damage. Since innate immunity is the first line of immune reactivity towards exogenous agents and is highly conserved throughout evolution, this review focuses on the major effector cells of innate immunity, the phagocytes, and their major sensing receptors, Toll-like receptors (TLRs), for assessing the modes of successful versus pathological interaction between ENMs and host defences. By comparing the phagocyte- and TLR-dependent responses to ENMs in plants, molluscs, annelids, crustaceans, echinoderms and mammals, we aim to highlight common recognition and elimination mechanisms and the general sufficiency of innate immunity for maintaining tissue integrity and homeostasis.  相似文献   

18.
Toll-like receptors (TLRs) serve as the major innate immune sensors for detection of specific molecular patterns on various pathogens. TLRs activate signaling events mainly by utilizing ubiquitin-dependent mechanisms. Recent research advances have provided evidence that TLR signaling is linked to induction of autophagy. Autophagy is currently known to affect both of the immune defense and suppression of inflammatory responses. In TLR-associated immune responses, autophagic lysis of intracellular microbes (called xenophagy) contributes to the former mechanism, while the latter seems to be mediated by the control of the mitochondrial integrity or selective autophagic clearance of aggregated signaling proteins (called aggrephagy). Several autophagy-related ubiquitin-binding proteins, such as SQSTM1/p62 and NDP52, mediate xenophagy and aggrephagy. In this review, we summarize the expanded knowledge regarding TLR signaling and autophagy signaling. After that, we will focus on autophagy-associated signaling downstream of TLRs and the effect of autophagy on TLR signaling, thus highlighting the signaling crosstalk between the TLR-associated innate immune responses and the regulation of innate immunity by xenophagy and aggrephagy.  相似文献   

19.
Toll-like receptors are key participants in innate immune responses   总被引:5,自引:0,他引:5  
During an infection, one of the principal challenges for the host is to detect the pathogen and activate a rapid defensive response. The Toll-like family of receptors (TLRs), among other pattern recognition receptors (PRR), performs this detection process in vertebrate and invertebrate organisms. These type I transmembrane receptors identify microbial conserved structures or pathogen-associated molecular patterns (PAMPs). Recognition of microbial components by TLRs initiates signaling transduction pathways that induce gene expression. These gene products regulate innate immune responses and further develop an antigen-specific acquired immunity. TLR signaling pathways are regulated by intracellular adaptor molecules, such as MyD88, TIRAP/Mal, between others that provide specificity of individual TLR- mediated signaling pathways. TLR-mediated activation of innate immunity is involved not only in host defense against pathogens but also in immune disorders. The involvement of TLR-mediated pathways in auto-immune and inflammatory diseases is described in this review article.  相似文献   

20.
Toll-like receptors and innate antifungal responses   总被引:20,自引:0,他引:20  
The mammalian Toll-like receptors (TLRs) are homologues of Drosophila Toll and constitute a novel protein family involved in the mediation of innate immunity and the activation of adaptive immunity. Analysis of infection with human pathogenic fungi Candida albicans and Aspergillus fumigatus implicated TLR2 and TLR4 in elicitation of immune responses. Cryptococcus neoformans is recognized by a process that uses TLR4. C. albicans induces immunostimulation through causative agents, such as mannan or its structural derivatives (e.g. phospholipomannan), which are recognized by the immune system as pathogen-associated molecular patterns and are located in the cell wall of fungi. Secreted aspartic proteinases represent a key virulence factor that contributes to the ability of C. albicans to cause mucosal and disseminated infections, and might be a further potential stimulator of TLRs. Simultaneous activation of other pattern recognition receptors collaborating with TLRs illustrates the cooperation of various chains within ligand-specific receptor complexes for the recognition of fungal pathogens and their cell wall components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号