首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Immunocytochemistry was used to investigate the distribution of cells reacting with specific antibodies against glutathione S-transferase (GST) mu and pi in rat circumvallate and foliate taste buds; the findings were confirmed by Western blotting. Double immunofluorescence staining for protein gene product (PGP) 9.5 and GST subunits allowed the classification of taste bud cells of both papillae into: (i) cells immunoreactive to either PGP 9.5 or GST subunit antibody; (ii) cells immunoreactive to both antibodies; and (iii) cells that did not react with either of these antibodies. Immunoelectron microscopy revealed that most GST subunit-immunoreactive cells seemed to be either type II or type III cells based on their ultrastructure. Since PGP 9.5 is now widely used as a marker for type III cells in mammalian taste buds, it seems reasonable to believe that most GST subunit-immunoreactive cells are type II cells. Whether cells immunoreactive for both PGP 9.5 and GST subunits constitute a small subpopulation of type III cells or whether they are intermediate forms between type II and III cells is under investigation. No type I cells reacted with antibodies against GST subunits in the present study. GST subunits in taste bud cells may participate in xenobiotic metabolism of certain substances exposed to taste pits, as already shown for olfactory epithelium.  相似文献   

2.
Espins are multifunctional actin-bundling proteins that are highly enriched in the microvilli of certain chemosensory and mechanosensory cells, where they are believed to regulate the integrity and/or dimensions of the parallel-actin-bundle cytoskeletal scaffold. We have determined that, in rats and mice, affinity purified espin antibody intensely labels the lingual and palatal taste buds of the oral cavity and taste buds in the pharyngo-laryngeal region. Intense immunolabeling was observed in the apical, microvillar region of taste buds, while the level of cytoplasmic labeling in taste bud cells was considerably lower. Taste buds contain tightly packed collections of sensory cells (light, or type II plus type III) and supporting cells (dark, or type I), which can be distinguished by microscopic features and cell type-specific markers. On the basis of results obtained using an antigen-retrieval method in conjunction with double immunofluorescence for espin and sensory taste cell-specific markers, we propose that espins are expressed predominantly in the sensory cells of taste buds. In confocal images of rat circumvallate taste buds, we counted 21.5 ± 0.3 espin-positive cells/taste bud, in agreement with a previous report showing 20.7 ± 1.3 light cells/taste bud when counted at the ultrastructural level. The espin antibody labeled spindle-shaped cells with round nuclei and showed 100% colocalization with cell-specific markers recognizing all type II [inositol 1,4,5-trisphosphate receptor type III (IP3R3), α-gustducin, protein-specific gene product 9.5 (PGP9.5)] and a subpopulation of type III (IP3R3, PGP9.5) taste cells. On average, 72%, 50%, and 32% of the espin-positive taste cells were labeled with antibodies to IP3R3, α-gustducin, and PGP9.5, respectively. Upon sectional analysis, the taste buds of rat circumvallate papillae commonly revealed a multi-tiered, espin-positive apical cytoskeletal apparatus. One espin-positive zone, a collection of ~3 μm-long microvilli occupying the taste pore, was separated by an espin-depleted zone from a second espin-positive zone situated lower within the taste pit. This latter zone included espin-positive rod-like structures that occasionally extended basally to a depth of 10–12 μm into the cytoplasm of taste cells. We propose that the espin-positive zone in the taste pit coincides with actin bundles in association with the microvilli of type II taste cells, whereas the espin-positive microvilli in the taste pore are the single microvilli of type III taste cells.  相似文献   

3.
The distribution and development of growth-associated protein 43 (GAP-43)-like immunoreactivity (-LI) in the rat circumvallate papilla (CVP) were compared to those of protein gene product 9.5 (PGP 9.5)-LI. In the adult, thick GAP-43-like immunoreactive (-IR) structures gathered densely in the subgemmal region. Some of these further penetrated the apical epithelium and trench wall epithelium. At least two types of GAP-43-IR structures were recognized; taste bud-related and non-gustatory GAP-43-IR neural elements. Immunoelectron microscopy revealed that GAP-43-LI was localized predominantly in the Schwann cells, and a few axons displayed GAP-43-LI in the lamina propria. In the trench epithelium, GAP-43-LI was detected in the cytoplasmic side of the axonal membrane. Some intragemmal GAP-43-IR axons made synaptic-like contacts with taste bud cells. At least four developmental stages were defined on the basis of the changes in distribution of GAP-43-LI. In stage I [embryonic day (E) 16–17] GAP-43-IR structures accumulated at the lamina propria just beneath the newly-formed circumvallate papilla. In stage II (E18–19) GAP-43-IR nerve fibers began to penetrate the apical epithelium. In stage III [E20-postnatal day (P) 0] GAP-43-IR nerve fibers first appeared in the trench wall epithelium. Penetration of GAP-IR nerve fibers occurred in the inner trench wall epithelium first, and then in the outer trench wall epithelium. In stage IV (P1-) the distribution of GAP-43-LI was similar to that observed in the adult; but the density of GAP-43-LI was much higher than in adults. PGP 9.5-LI showed a similar distribution pattern to that of GAP-43-LI, except for round-shaped cells in the apical epithelium at the late embryonic stages, and in taste bud cells and intralingual ganglionic cells which lacked GAP-43-LI. The similarities in distribution patterns of GAP-43-LI and PGP 9.5-LI during the development and mature circumvallate papilla suggest that GAP-43 may be a key neuronal molecule for induction and maintenance of the taste buds.  相似文献   

4.
In mammals, taste buds develop in different regions of the oral cavity. Small epithelial protrusions form fungiform papillae on the ectoderm-derived dorsum of the tongue and contain one or few taste buds, while taste buds in the soft palate develop without distinct papilla structures. In contrast, the endoderm-derived circumvallate and foliate papillae located at the back of the tongue contain a large number of taste buds. These taste buds cluster in deep epithelial trenches, which are generated by intercalating a period of epithelial growth between initial placode formation and conversion of epithelial cells into sensory cells. How epithelial trench formation is genetically regulated during development is largely unknown. Here we show that Pax9 acts upstream of Pax1 and Sox9 in the expanding taste progenitor field of the mouse circumvallate papilla. While a reduced number of taste buds develop in a growth-retarded circumvallate papilla of Pax1 mutant mice, its development arrests completely in Pax9-deficient mice. In addition, the Pax9 mutant circumvallate papilla trenches lack expression of K8 and Prox1 in the taste bud progenitor cells, and gradually differentiate into an epidermal-like epithelium. We also demonstrate that taste placodes of the soft palate develop through a Pax9-dependent induction. Unexpectedly, Pax9 is dispensable for patterning, morphogenesis and maintenance of taste buds that develop in ectoderm-derived fungiform papillae. Collectively, our data reveal an endoderm-specific developmental program for the formation of taste buds and their associated papilla structures. In this pathway, Pax9 is essential to generate a pool of taste bud progenitors and to maintain their competence towards prosensory cell fate induction.  相似文献   

5.
6.
Apoptotic cells in the taste buds and epithelia of mouse circumvallate papillae after colchicine treatment were examined by the methods of in situ DNA nick-end labeling, immunocytochemistry, and electron microscopy. After colchicine treatment, numerous positive cells appeared in the taste buds by DNA nick-end labeling, and some epithelial cells in the basal and suprabasal layers in and around the circumvallate papillae also revealed positive staining. Condensed and fragmented nuclei with a high density were occasionally found in the taste bud cells and in the basal and suprabasal layer epithelial cells by electron-microscopic observation. An immunocytochemical reaction for tubulin revealed weak staining in taste bud cells, because of the depolymerization of microtubules, and a decrease of the microtubules in the taste bud cells was observed by electron microscopy. These results indicate that colchicine treatment of mice induces the apoptosis of taste bud and epithelial cells in the circumvallate papillae and dorsal epithelial cells around the circumvallate papillae.  相似文献   

7.
Taste buds are specialized epithelial cell clusters in the oral squamous cell epithelium. Although taste buds have been reported to renew rapidly, the mechanism of cell cycle control in these specialized structures remains unresolved. To clarify the cell cycle status and role of cyclin-dependent kinase inhibitors (CDKI) for cell cycle control in the taste buds, we analyzed cell proliferation activity using bromodeoxyuridine (BrdU) and Ki-67 immunostainings and the expression of the Cip/Kip family of CDKI (p21Cip1, p27Kip1, and p57Kip2) in the circumvallate papillae of mouse and hamster. BrdU-positive cells were detected in the basal layer of the oral epithelium. In the taste buds, Ki-67-positive cells were seen in the basal area, with only a very few positive cells in the taste buds. Both p21Cip1 and p27Kip1 positive cells were seen in the suprabasal layer of the non-gustatory oral epithelium. In the taste buds, stronger p27Kip1 staining was detected than in the non-gustatory epithelium. Western blotting analysis revealed that p27Kip1 was abundant in the mucosal tissues from circumvallate papillae. Thus, our study suggests that the taste bud cells except for basal cells are post-mitotic cells and that the cell cycle arrest associated with taste bud cell differentiation could be regulated predominantly by p27Kip1.  相似文献   

8.
9.
A method to prepare suspensions of taste bud cells is described. Bovine circumvallate papillae, which contain most of the taste buds in this animal, are incubated in collagenase-containing medium and the epidermal sidewall tissue is then dissected from the inner gelatinous dermis. The sidewall tissue, which contains the taste buds, is gently homogenized by manual operation of an all-glass homogenizer with a loose-fitting pestle. The suspended material is separated on a discontinous Ficoll gradient (2%, 8%, 10%, 12% w/w). The material banding at the 8-2% interface is greatly enriched in spindle-shaped cells that are morphologically similar to taste bud cells as they appear in situ. These cells are not seen when the procedure is done with tissues devoid of taste buds, namely the upper surface of the circumvallate papilla or epithelium from the intermolar eminence. Fluorescence analysis indicates that the hydrophobic probe, 8-anilino-1-naphthalenesulfonate (ANS), binds to relatively nonpolar sites in the suspension. It is postulated that the probe is adsorbing onto the surface membrane of the cell. These preparations may be useful in studying specificity and transduction in taste sensation.  相似文献   

10.
A method to prepare suspensions of taste bud cells is described. Bovine circumvallate papillae, which contain most of the taste buds in this animal, are incubated in collagenase-containing medium and the epidermal sidewall tissue is then dissected from the inner gelatinous dermis. The sidewall tissue, which contains the taste buds, is gently homogenized by manual operation of an all-glass homogenizer with a loose-fitting pestle. The suspended material is separated on a discontinuous Ficoll gradient (2%, 8%, 10%, 12% w/w). The material banding at the 8–2% interface is greatly enriched in spindle-shaped cells that are morphologically similar to taste bud cells as they appear in situ. These cells are not seen when the procedure is done with tissues devoid of taste buds, namely the upper surface of the circumvallate papilla or epithelium from the intermolar eminence. Fluorescence analysis indicates that the hydrophobic probe, 8-anilino-1-naphthalenesulfonate (ANS), binds to relatively nonpolar sites in the suspension. It is postulated that the probe is adsorbing onto the surface membrane of the cell. These preparations may be useful in studying specificity and transduction in taste sensation.  相似文献   

11.
12.
13.
Summary It is believed that differentiation and maintenance of taste buds in vertebrates is dependent on the trophic function of their sensory nerve supply. In the present work colchicine was injected into the circumvallate papilla of the rat. This produced a reversible blockade of neuroplasmic transport and disappearance of taste buds. Colchicine inhibited the further differentiation of bud cells, but apparently did not change the life cycle of the cells present already at the time of injection. It is speculated that the neurotrophic factors in this particular cell system are effective to induce cell differentiation only.This work was supported by CAIT Grant No 1776  相似文献   

14.
 Morphological changes in developing human gustatory papillae during the 6th to the 23rd postovulatory week have been studied. The general innervation pattern of taste papillae and taste bud primordia was revealed immunohistochemically using antibodies against protein gene product 9.5 (PGP9.5), neurofilament H (NFH), neurofilament L (NFL), neurone-specific enolase (NSE), and tubulin. The autonomic and somatosensory nerve supply has been investigated using antibodies against substance P (SP), calcitonin gene-related peptide (CGRP), tyrosine hydroxylase (TH), neuropeptide Y (NPY), the neuronal form of nitric oxide synthase (n-NOS), and, enzyme histochemically, NADPH-diaphorase. Nerve fibers approach the basal membrane of the lingual epithelium around the 7th postovulatory week and invade the epithelium of papilla-like structures at the 8th week, but some also penetrate the basal membrane of the non-papillary epithelium. They are in close contact with slender epithelial cells that are considered to be the taste bud’s progenitor cells. Early human taste buds situated at the anterior part of the tongue do not necessarily require a dermal (later fungiform) papilla. The NADPH-diaphorase reaction revealed positive results in dermal nerve fibers, but the immunohistochemical reaction against n-NOS was negative. Immunohistochemical detection of neuropeptides and vasoactive substances rendered negative results for developmental stages of 7–18 postovulatory weeks. By the 18th week, only SP was detected in dermal papillae, but not in the vicinity of taste buds’ primordia. Thus, autonomic and somatosensory nerves seem not to play a key role in formation and maintenance of early human taste buds. Accepted: 31 July 1997  相似文献   

15.
Continuous taste bud cell renewal is essential to maintain taste function in adults; however, the molecular mechanisms that regulate taste cell turnover are unknown. Using inducible Cre-lox technology, we show that activation of β-catenin signaling in multipotent lingual epithelial progenitors outside of taste buds diverts daughter cells from a general epithelial to a taste bud fate. Moreover, while taste buds comprise 3 morphological types, β-catenin activation drives overproduction of primarily glial-like Type I taste cells in both anterior fungiform (FF) and posterior circumvallate (CV) taste buds, with a small increase in Type II receptor cells for sweet, bitter and umami, but does not alter Type III sour detector cells. Beta-catenin activation in post-mitotic taste bud precursors likewise regulates cell differentiation; forced activation of β-catenin in these Shh+ cells promotes Type I cell fate in both FF and CV taste buds, but likely does so non-cell autonomously. Our data are consistent with a model where β-catenin signaling levels within lingual epithelial progenitors dictate cell fate prior to or during entry of new cells into taste buds; high signaling induces Type I cells, intermediate levels drive Type II cell differentiation, while low levels may drive differentiation of Type III cells.  相似文献   

16.
The adult fungiform taste papilla is a complex of specialized cell types residing in the stratified squamous tongue epithelium. This unique sensory organ includes taste buds, papilla epithelium and lateral walls that extend into underlying connective tissue to surround a core of lamina propria cells. Fungiform papillae must contain long-lived, sustaining or stem cells and short-lived, maintaining or transit amplifying cells that support the papilla and specialized taste buds. Shh signaling has established roles in supporting fungiform induction, development and patterning. However, for a full understanding of how Shh transduced signals act in tongue, papilla and taste bud formation and maintenance, it is necessary to know where and when the Shh ligand and pathway components are positioned. We used immunostaining, in situ hybridization and mouse reporter strains for Shh, Ptch1, Gli1 and Gli2-expression and proliferation markers to identify cells that participate in hedgehog signaling. Whereas there is a progressive restriction in location of Shh ligand-expressing cells, from placode and apical papilla cells to taste bud cells only, a surrounding population of Ptch1 and Gli1 responding cells is maintained in signaling centers throughout papilla and taste bud development and differentiation. The Shh signaling targets are in regions of active cell proliferation. Using genetic-inducible lineage tracing for Gli1-expression, we found that Shh-responding cells contribute not only to maintenance of filiform and fungiform papillae, but also to taste buds. A requirement for normal Shh signaling in fungiform papilla, taste bud and filiform papilla maintenance was shown by Gli2 constitutive activation. We identified proliferation niches where Shh signaling is active and suggest that epithelial and mesenchymal compartments harbor potential stem and/or progenitor cell zones. In all, we report a set of hedgehog signaling centers that regulate development and maintenance of taste organs, the fungiform papilla and taste bud, and surrounding lingual cells. Shh signaling has roles in forming and maintaining fungiform papillae and taste buds, most likely via stage-specific autocrine and/or paracrine mechanisms, and by engaging epithelial/mesenchymal interactions.  相似文献   

17.
Immunoreactivity to neuron-specific enolase (NSE), a specific neuronal marker, and calcitonin gene-related peptide (CGRP) was localized in lingual taste papillae in the pigs. Sequential staining for NSE and CGRP by an elution technique allowed the identification of neuronal subpopulations. NSE-staining revealed a large neuronal network within the subepithelial layer of all taste papillae. NSE-positive fibers then penetrated the epithelium as isolated fibers, primarily in the foliate and circumvallate papillae, or as brush-shaped units formed by a multitude of fibers, especially in the fungiform papillae and in the apical epithelium of the circumvallate papilla. Taste buds of any type of taste papillae were found to express a dense subgemmal/intragemmal NSE-positive neuronal network. CGRP-positive nerve fibers were numerous in the subepithelial layer of all three types of taste papillae. In the foliate and circumvallate papillae, these fibers penetrated the epithelium to form extragemmal and intragemmal fibers, while in the fungiforms, they concentrated almost exclusively in the taste buds as intragemmal nerve fibers. Intragemmal NSE- and CGRP-positive fiber populations were not readily distinguishable by typical neural swellings as previously observed in the rat. The NSE-positive neuronal extragemmal brushes never expressed any CGRP-like immunoreactivity. Even more surprising, fungiform taste buds, whether richly innervated by or devoid of NSE-positive intragemmal fibers, always harboured numerous intragemmal CGRP-positive fibers. Consequently, NSE is not a general neuronal marker in porcine taste papillae. Our observations also suggest that subgemmal/intragemmal NSE-positive fibers are actively involved in synaptogenesis within taste buds. NSE-positive taste bud cells were found in all three types of taste papillae. CGRP-positive taste bud cells were never observed.  相似文献   

18.
Mash1, a mammalian homologue of the Drosophila achaete-scute proneural gene complex, plays an essential role in differentiation of subsets of peripheral neurons. In this study, using RT-PCR and in situ RT-PCR, we investigated if Mash1 gene expression occurs in rat taste buds. Further, we examined dynamics of Mash1 expression in the process of degeneration and regeneration in denervated rat taste buds. In rat tongue epithelium, Mash1 gene expression is confined to circumvallate, foliate, and fungiform papilla epithelia that include taste buds. In taste buds, Mash1-expressing cells are round cells in the basal compartment. In contrast, the mature taste bud cells do not express the Mash1 gene. Denervation and regeneration experiments show that the expression of Mash1 requires gustatory innervation. We conclude that Mash1 is expressed in cells of the taste bud lineage, and that the expression of Mash1 in rat taste buds is dependent upon gustatory innervation.  相似文献   

19.
The transient receptor potential channel, PKD2L1, is reported to be a candidate receptor for sour taste based on molecular biological and functional studies. Here, we investigated the expression pattern of PKD2L1-immunoreactivity (IR) in taste buds of the mouse. PKD2L1-IR is present in a few elongate cells in each taste bud as reported previously. The PKD2L1-expressing cells are different from those expressing PLCbeta2, a marker of Type II cells. Likewise PKD2L1-immunoreactive taste cells do not express ecto-ATPase which marks Type I cells. The PKD2L1-positive cells are immunoreactive for neural cell adhesion molecule, serotonin, PGP-9.5 (ubiquitin carboxy-terminal transferase), and chromogranin A, all of which are present in Type III taste cells. At the ultrastructural level, PKD2L1-immunoreactive cells form synapses onto afferent nerve fibers, another feature of Type III taste cells. These results are consistent with the idea that different taste cells in each taste bud perform distinct functions. We suggest that Type III cells are necessary for transduction and/or transmission of information about "sour", but have little or no role in transmission of taste information of other taste qualities.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号