首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Pretreatment of the purified jack bean inhibitor with enterokinase activated human pancreatic preparation for 1 hr decreased its inhibitory capacity against crystalline bovine alpha-chymotrypsin by 30% but did not affect its trypsin inhibitory activity. Preincubation of the inhibitor with bovine chymotrypsin for 60 min resulted in partial loss of the inhibitory potency. Complex formation studies by gel chromatography on Sephadex G-100 indicated that the trypsin-inhibitor and chymotrypsin-inhibitor complexes dissociated to release inactivated inhibitor and active proteinases. Gel chromatography of the inhibitor in presence of 1.5 M ammonium sulphate indicated that the inhibitor showed a tendency to aggregate without loss of biological activity. However, in 4.2 M salt medium after 3 hr, antichymotryptic activity was lost completely without any effect on antitryptic activity. Treatment with methylamine, a nucleophile, caused a greater loss of antichymotryptic activity. Trinitrobenzene sulphonate and ethylacetamidate, the amino group modifiers, affected only the antichymotryptic activity. Treatment with ninhydrin, a specific arginine modifier, at pH 9.0 abolished the antitryptic activity whereas only 50% of the antichymotryptic activity was lost. Diethylpyrocarbonate, a histidine reagent, also decreased only the antitryptic activity. Modification of tryptophan and cysteine residues of the inhibitor had no effect on its inhibitory potency. Treatment with mercaptoethanol and sodium borohydride caused nearly 50% loss of antitryptic and antichymotryptic activities. Chloramine-T, a reagent that modifies methionine residues, inactivated the inhibitor.  相似文献   

2.
The trypsin inhibitor (WTI-1) purified from winged bean seeds is a Kunitz type protease inhibitor having a molecular weight of 19,200. WTI-1 inhibits bovine trypsin stoichiometrically, but not bovine alpha-chymotrypsin. The approximate Ki value for the trypsin-inhibitor complex is 2.5 X 10(-9) M. The complete amino acid sequence of WTI-1 was determined by conventional methods. Comparison of the sequence with that of soybean trypsin inhibitor (STI) indicated that the sequence of WTI-1 had 50% homology with that of STI. WTI-1 was separated into 2 homologous inhibitors, WTI-1A and WTI-1B, by isoelectric focusing. The isoelectric points of WTI-1A and WTI-1B were 8.5 and 9.4, respectively, and their sequences were presumed from their amino acid compositions.  相似文献   

3.
1. Serum proteinase precursor was found in plasma protein fractions I and III of Cohn. Inhibitors of serum proteinase, leucoproteinase, trypsin, and papain were found in fractions IV-1 and IV-4, and to a lesser extent in fractions V and I. 2. Pancreatic, soy bean, lima bean, and egg white inhibitors inhibited trypsin stoichiometrically. Pancreatic inhibitor had comparable inhibitory activity against serum proteinase; soy bean inhibitor had somewhat less, lima bean inhibitor even less, and egg white inhibitor very little. None of these inhibitors appreciably inhibited leucoproteinase or papain. 3. Serum and fractions IV - 1 and IV - 4 had marked inhibitory activity against trypsin and leucoproteinase, and somewhat less against serum proteinase and papain. The inhibitory activity of the plasma proteins against trypsin and leucoproteinase was due almost entirely to fractions IV - 1 and IV - 4; against serum proteinase and papain fraction V was slightly more important. The "reconstituted plasma proteins" accounted for 8 to 25 per cent of the proteinase-inhibitory activity of whole serum or plasma. 4. The proteinase-inhibitory activity of serum, plasma protein fractions, and soy bean inhibitor was heat labile, while that of pancreatic, lima bean, and egg white inhibitors was relatively heat stable. 5. Reducing and oxidizing agents, in very high concentration, inhibited serum proteinase, as well as trypsin and leucoproteinase. These proteinases were not influenced by mercurial sulfhydryl inhibitors, indicating that free sulfhydryl groups do not play an important part in their activity.  相似文献   

4.
Seeds of Amaranthus hypochondriacus L. are known to accumulate a trypsin-inhibitor (ATI) member of the potato-I inhibitor family and an α -amylase inhibitor (AAI), possessing a knottin-like fold. They are believed to have a defensive role due to their inhibition of trypsin-like enzymes and α -amylases of insect pests. In this work, both inhibitory activities were found in leaves of young A. hypochondriacus plants. High constitutive levels of foliar inhibitory activity against bovine trypsin and insect α -amylases were detected in in vitro assays. Trypsin inhibitory activity was further increased by exposure to diverse treatments, particularly water stress. Salt stress, insect herbivory and treatment with exogenous methyl jasmonate (MeJA) or abscisic acid (ABA) also induced trypsin inhibitor activity accumulation, although to a lesser degree. In gel and immunoblot analyses showed that foliar trypsin inhibitor activity was constituted by at least three different inhibitors of approximately 29, 8 (including ATI) and 3 kDa, respectively. These inhibitors showed differing patterns of accumulation in response to diverse treatments. On the other hand, significant increases in α -amylase inhibitor activity and AAI levels were detected in leaves of insect-damaged, MeJA- and ABA-treated A. hypochodriacus plantlets, but not in those subjected to water- or salt-stress. A differential induction of trypsin inhibitor activity and α -amylase inhibitor accumulation in response to insect herbivory by two related species of lepidopterous larvae was observed, whereas mechanical wounding failed to induce either inhibitor. The overall results suggest that trypsin and α -amylase inhibitors could protect A. hypochondriacus against multiple types of stress.  相似文献   

5.
Carp muscle trypsin inhibitor showed an inhibitory effect on bovine trypsin, bovine alpha-chymotrypsin and porcine elastase in a non-competitive, competitive and competitive manner, respectively. The inhibitor formed a stable complex with the above proteinases which was not dissociated in the presence of 2-mercaptoethanol and SDS. The true target proteinase for carp muscle trypsin inhibitor, as yet unknown, seems to be an alpha-chymotrypsin- or elastase-like enzyme rather than trypsin, judging from the manner of inhibition.  相似文献   

6.
Reactive sites of adzuki bean proteinase inhibitor II were determined by limited hydrolyses with catalytic amounts of trypsin [EC 3.4.21.4] and chymotrypsin [EC 3.4.21.1] at pH 3.0. Treatment of the trypsin-modified inhibitor with carboxypeptidase B [EC 3.4.12.3] released lysine from the inhibitor and led to complete loss of the activity for trypsin, virtually, without affecting the chymotrypsin-inhibitory activity. Limited hydrolysis with chymotrypsin resulted in a selective cleavage of a single tyrosyi peptide bond in the inhibitor, and treatment of this modified inhibitor with carboxypeptidase A [EC 3.4.12.2] abolished the chymotrypsininhibitory activity, having no effect on the trypsin-inhibitory activity. After reduction and S-carboxymethylation, the trypsin- and the chymotrypsin-modified inhibitors both could be separated into two components by gel-filtration on Sephadex G–50 and DEAE-cellulose chromatography. Amino acid and end group analyses of these components indicated that the reactive sites of inhibitor II are the Lys27-Ser28 bond against trypsin and the Tyr54-Ser55 against chymotrypsin.

Chemical modification of inhibitor II with cyanogen bromide had a fatal effect on the inhibitory activity against trypsin but no effect against chymotrypsin.  相似文献   

7.
Seven proteinase inhibitors were isolated from winged bean seeds by ion-exchange chromatographies. These inhibitors had molecular weights of around 20,000, included four half-cystine residues, and were Kunitz-type inhibitors. Two (WTI-2 and 3) inhibited bovine trypsin strongly and four (WCI-1, 2, 3, and 4) inhibited bovine alpha-chymotrypsin, but in different ways. One mole of WCI-2 or -3 could inhibit 2 mol of alpha-chymotrypsin. The remaining inhibitor (WTCI-1) could bind both bovine trypsin and alpha-chymotrypsin at the molar ratio of 1:1, but not simultaneously. All four chymotrypsin inhibitors cross-reacted with rabbit anti-WCI-3 serum, while the other inhibitors did not.  相似文献   

8.
The penetration of cercariae through the skin initiates infection of the host with the human trematode parasite Schistosoma mansoni. Many larvae fail to migrate into the living epidermal cell layer. In order to determine if chemical as well as mechanical barriers to cercarial skin penetration exist, inhibitory activity of epidermal cell extracts against the proteinase obtained from cercarial secretions was assayed. An inhibitor was purified 50-fold by gel filtration on Sephadex G 75 and cation exchange chromatography at pH 5.8 and 4.9. The inhibitor has a relative molecular mass (Mr) of approx. 40 000-53 000. Oxidation of the inhibitor with N-chlorosuccinimide eliminated its inhibitory activity and thus indicated a critical methionine residue. The inhibitor was active against a wide spectrum of serine proteinases: porcine pancreatic elastase, human granulocyte elastase, bovine trypsin, and bovine alpha-chymotrypsin. However, no inhibition was detected against papain or clostridial collagenase. The inhibitor did not cross react with antiserum to human or rat serum alpha 1-proteinase inhibitor.  相似文献   

9.
Ehrlich ascites cells contain a cytoplasmic inhibitor of both trypsin and the granule neutral protease and possess a reactive thiol which interacts with an important disulphide bond in trypsin, resulting in the formation of the trypsin-inhibitor complex. When a fixed quantity of trypsin was completely inhibited by addition of the cytoplasmic inhibitor, the trypsin could be re-activated by the addition of either trasylol-trypsin or chymotrypsinogen. Since trasyloltrypsin, chymotrypsinogen (and any derived chymotrypsin) has no ability to solubilise fluorescein-labelled peptides from the substrate, the appearance of trypsin activity was probably due to a non-enzymic exchange reaction, in which these inactive forms displaced trypsin from the trypsin-inhibitor complex. Kinetic data suggest that this displacement was a time-dependent equilibrium reaction controlled by the relative concentration of the reacting species.  相似文献   

10.
A protein from Drosophila melanogaster which inhibits bovine alpha-chymotrypsin activity was purified using an extensive extraction procedure. SP-Sephadex column chromatography and affinity column chromatography. The inhibitor has an estimated molecular weight of approx. 12 000 and is extremely pH and heat stable. It did not exhibit any inhibitory activity against trypsin from numerous sources nor mosquito larval chymotrypsin but did inhibit adult mosquito chymotrypsin. Chymotrypsin-like activity has not been found in Drosophila and therefore the function of the inhibitor is unknown. Preliminary work indicates that it effectively inhibits cathepsin D activity from a nematode parasite and rabbit liver.  相似文献   

11.
Bile and pancreatic juice vary in their trypsin inhibitor content. Activation of bile-pancreatic juice mixtures (1:1) occurred when the combined trypsin inhibitory capacity was low. No activation was seen with bile having a high trypsin inhibitor content. Pancreatic juice activated faster where more trypsin inhibitor complex was present. With calcium (25 mM), pancreatic secretions activated in a similar order as with the trypsin-inhibitor-free bile. We propose that activation occurs more readily where large amounts of the trypsin-inhibitor complex are present in pancreatic juice as a result of carcinoma or other etiologies.  相似文献   

12.
1. Bovine (Bos taurus) trypsin and trypsin activity in rat (Rattus norvegicus) pancreatic extract were inhibited by soybean trypsin inhibitor and by bovine basic pancreatic and colostrum inhibitors. 2. Bovine alpha-chymotrypsin was inhibited by soybean and bovine basic pancreatic inhibitors but only weakly by colostrum inhibitor. 3. Chymotrypsin activity in rat pancreatic extract was due to at least three different components against all of which the inhibitors were largely ineffective. 4. It is concluded that bovine colostrum inhibitor has a more limited inhibition spectrum than the phylogenetically related basic pancreatic inhibitor which, in turn, is less active against rat than against bovine enzymes.  相似文献   

13.
Soybean Bowman-Birk inhibitor, a double-headed inhibitor of trypsin and alpha-chymotrypsin, was treated with cyanogen bromide and then pepsin to yield two inhibitory active fragments. Structural investigation showed that one of the fragments was derived from the trypsin inhibitory domain and the other from the chymotrypsin inhibitory domain of the inhibitor. In contrast to the unusual stability of the native inhibitor, the separated domains were less stable and could be inactivated with excess proteinases. These results suggest that the legume double-headed inhibitors acquired their unusual stability by duplicating an ancestral single-headed structure.  相似文献   

14.
An inhibitor I-1, capable of acting on both alpha-amylase and trypsin, was purified to homogeneity from ragi (finger-millet) grains. The factor was found to be stable to heat treatment at 100 degrees C for 1 h in the presence of NaCl and also was stable over the wide pH range 1-10. Pepsin and Pronase treatment of inhibitor I-1 resulted in gradual loss of both the inhibitory activities. Formation of trypsin-inhibitor I-1 complex, amylase-inhibitor I-1 complex and trypsin-inhibitor I-1-amylase trimer complex was demonstrated by chromatography on a Bio-Gel P-200 column. This indicated that the inhibitor is 'double-headed' in nature. The inhibitor was retained on a trypsin-Sepharose 4B column at pH 7.0. Elution at acidic pH resulted in almost complete recovery of amylase-inhibitory and trypsin-inhibitory activities. alpha-Amylase was retained on a trypsin-Sepharose column to which inhibitor I-1 was bound, but not on trypsin-Sepharose alone. Modification of amino groups of the inhibitor with 2,4,6-trinitrobenzenesulphonic acid resulted in complete loss of amylase-inhibitory activity but only 40% loss in antitryptic activity. Modification of arginine residues by cyclohexane-1,2-dione led to 85% loss of antitryptic activity after 5 h, but no effect on amylase-inhibitory activity. The results show that a single bifunctional protein factor is responsible for both amylase-inhibitory and trypsin-inhibitory activities with two different reactive sites.  相似文献   

15.
The trypsin inhibitors from winged bean seed were isolated by affinity chromatography on trypsin-Sepharose 4B and the components fractionated by chromatography on SP-Sephadex C-25 and Sephadex G-100. The major components, inhibitors 2 and 3 were found to be homogeneous proteins with molecular weights of about 20,000. The inhibitors stoichiometrically inhibited bovine trypsin in the molar ratio of 1 : 1 whereas the inhibition of bovine alpha-chymotrypsin was weak and non-stoichiometric. Amino acid analysis indicated that both the inhibitors contain four cysteine residues and are rich in aspartic acid, glutamic acid, glycine, valine and leucine; however, inhibitor 3 lacks histidine and methionine while inhibitor 2 contains one histidine and three methionines. A minor trypsin inhibitor fraction was also isolated which contained at least three proteins with a molecular weight of about 10,000 and a high content of half-cystine.  相似文献   

16.
Summary Experiments were conducted to determine the capacity of various enzyme preparations to dissociate single cells from guinea pig lung tissue. The number of cells separated from tissue progressively increased as the concentration of crude trypsin was increased from 25 to 250 mg per 100 ml. This action could be inhibited by soy bean trypsin inhibitor. Elastase, but not ethylenediaminetetraacetate (disodium salt), crystalline trypsin, nor chymotrypsin, dissociated cells from lung tissues. Crude trypsin (Trypsin 1∶300) was found to contain 3.0 Sachar units of elastase per mg. Elastase was also inhibited by soy bean trypsin inhibitor. Only some collagenase preparations dissociated cells from lung tissue. Impure bacterial proteases dissociated lung cells. Our data suggest that the term “trypsinization” to denote dissociation of cells from tissue with crude preparations of trypsin is misleading and should be discontinued. Partially supported bv Armour-Baldwin Laboratories and the National Institute of Health, Grant, AM 12919.  相似文献   

17.
Egg whites of three species of tortoise and turtle have been compared by gel chromatography for inhibitory activity against proteases. The egg white of Geomda trijuga trijuga Schariggar contains trypsin/subtilisin inhibitor while the egg white of Caretta caretta Linn. contains both trypsin and chymotrypsin inhibitors. No protease inhibitory activity has been detected in the egg white of Trionyx gangeticus Cuvier. An acidic trypsin/subtilisin inhibitor has been purified to homogeneity from the egg white of tortoise (G. trijuga trijuga). It is a single polypeptide chain of 100 amino acid residues, having a molecular weight of 11 700. It contains six disulphide bonds and is devoid of methionine and carbohydrate moiety. Its isoelectric point is at pH 5.95 and is stable at 100°C for 4 h at neutral pH. The inhibitor inhibits both trypsin and subtilisin by forming enzyme-inhibitor complexes at a molar ratio close to unity. Their dissociation contants are 7.2·10?9 M for bovine trypsin adn 5.5·10?7 M for subtilisin. Chemical modification of amino groups with trinitrobenzene sulfonate has reduced its inhibitory activities against both trypsin and subtilisin, but the loss of its trypsin inhibitory activity is faster than of its subtilisin inhibitory activity. It has independent binding sites for inhibition of trypsin and subtilisin.  相似文献   

18.
A screening assay for inhibitory activity against trypsin in skin mucus from 29 species of fishes reveals a wide distribution of trypsin inhibitors in skin mucus and relatively high antitryptic activity in pufferfish of the family Tetraodontidae. Two trypsin inhibitors termed TPTI 1 and 2 were purified to homogeneity from the skin mucus of Takifugu pardalis by salting out, lectin affinity, anion exchange FPLC and gel filtration HPLC. Both inhibitors are acidic glycoproteins, with an apparent molecular mass of 57 kDa in SDS-PAGE, pI below 4 and 1.9% reducing sugar for TPTI 1 and with an apparent molecular mass of 47 kDa in SDS-PAGE, pI 5.2 and 0.8% reducing sugar for TPTI 2. The inhibitors effectively repress the catalytic activity of trypsin and alpha-chymotrypsin, and therefore can be classified as serine protease inhibitors. The inhibitory constants against trypsin were 4.9x10(-8) M for TPTI 1 and 3.9x10(-8) M for TPTI 2. Both inhibitors react with trypsin at a molar ratio of 1:1, although TPTI 1 reversibly inactivates the proteolytic activity of trypsin non-competitively and TPTI 2, competitively. The trypsin inhibitors in the skin mucus of T. pardalis may function as defense substances to neutralize serine proteases released by invasive pathogens.  相似文献   

19.
Hepatocyte growth factor activator inhibitor type 1 (HAI-1) is a Kunitz-type serine protease inhibitor identified as a strong inhibitor of hepatocyte growth factor (HGF) activator and matriptase. HAI-1 is first produced in a membrane-integrated form with two Kunitz domains in its extracellular region, and subsequent ectodomain shedding releases two major secreted forms, one with a single Kunitz domain and one with two Kunitz domains. To determine the roles of the Kunitz domains in the inhibitory activity of HAI-1 against serine proteases, we constructed various HAI-1 mutant proteins and examined their inhibitory activity against HGF activator and trypsin. The N-terminal Kunitz domain (Kunitz I) had potent inhibitory activity against both HGF activator and trypsin, whereas the C-terminal Kunitz domain (Kunitz II) had only very weak inhibitory activity against HGF activator, although its potency against trypsin was equivalent to that of Kunitz I. These results indicate that Kunitz I is the functional domain of HAI-1 for inhibiting the HGF-converting activity of HGF activator. Furthermore, the presence of two Kunitz domains affected the inhibitory activity of HAI-1 against HGF activator, and it showed a similar, but not additive, level of inhibitory activity against trypsin when compared with that of the individual Kunitz domains. These results suggest that serine protease binding sites of Kunitz I and Kunitz II are located close to each other and that proteolytic processing to generate HAI-1 with only one Kunitz domain regulates the activity of HAI-1.  相似文献   

20.
Chymotrypsin inhibitors from hemolymph of the silkworm, Bombyx mori.   总被引:5,自引:0,他引:5  
Three new protease inhibitors were isolated and purified about 200-fold from hemolymph of silkworm larvae, Bombyx mori, using ion-exchange and affinity chromatography. Two of the three inhibitors were basic proteins (SCI-I had pI 9.4 and SCI-II had pI 9.6) and one was acidic (SCI-III had pI 4.0). The molecular weight of each inhibitor was determined to be 7,000 by the sedimentation equilibrium method. The amino acid composition of the inhibitors were similar except for the contents of Asp, Glu, Ile, Leu, and Lys. Val, His, and Trp were not present in the inhibitors and Met appeared only in SCI-III. The CD spectra of the inhibitors were all similar and indicated a low content of alpha-helical structure (10% at most). Each inhibitor could inhibit the protease and esterase activities of bovine alpha-chymotrypsin at a one-to-one molar ratio, and the dissociation constants were 3.1 X 10(-9)M for SCI-I and II and 1.3 X 10(-8)M for SCI-III. Only SCI-II showed a weak inhibitory activity against bovine trypsin. Subtilisin BPN' and papain were not inhibited by these inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号