首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The psd gene of Bacillus subtilis Marburg, encoding phosphatidylserine decarboxylase, has been cloned and sequenced. It encodes a polypeptide of 263 amino acid residues (deduced molecular weight of 29,689) and is located just downstream of pss, the structural gene for phosphatidylserine synthase that catalyzes the preceding reaction in phosphatidylethanolamine synthesis (M. Okada, H. Matsuzaki, I. Shibuya, and K. Matsumoto, J. Bacteriol. 176:7456–7461, 1994). Introduction of a plasmid containing the psd gene into temperature-sensitive Escherichia coli psd-2 mutant cells allowed growth at otherwise restrictive temperature. Phosphatidylserine was not detected in the psd-2 mutant cells harboring the plasmid; it accumulated in the mutant up to 29% of the total phospholipids without the plasmid. An enzyme activity that catalyzes decarboxylation of 14C-labeled phosphatidylserine to form phosphatidylethanolamine was detected in E. coli psd-2 cells harboring a Bacillus psd plasmid. E. coli cells harboring the psd plasmid, the expression of which was under the control of the T710 promoter, produced proteins of 32 and 29 kDa upon induction. A pulse-labeling experiment suggested that the 32-kDa protein is the primary translation product and is processed into the 29-kDa protein. The psd gene, together with pss, was located by Southern hybridization to the 238- to 306-kb SfiI-NotI fragment of the chromosome. A B. subtilis strain harboring an interrupted psd allele, psd1::neo, was constructed. The null psd mutant contained no phosphatidylethanolamine and accumulated phosphatidylserine. It grew well without supplementation of divalent cations which are essential for the E. coli pssA null mutant lacking phosphatidylethanolamine. In both the B. subtilis null pss and psd mutants, glucosyldiacylglycerol content increased two- to fourfold. The results suggest that the lack of phosphatidylethanolamine in the B. subtilis membrane may be compensated for by the increases in the contents of glucosyldiacylglycerols by an unknown mechanism.  相似文献   

2.
Plasmid transformation is an efficient and crucial biotechnological tool that enables the enhancement of many important microbial characters that would be beneficial in a lot of industrial, agricultural and environmental applications. In the present study, five Bacillus species (B. subtilis, B. cereus, B. alvei, B. circulans and B. pumilus) were investigated. They were isolated from agricultural soils of different local arid environments of the Kingdom of Saudi Arabia, identified and characterized for their plasmid content. The main objective of the present study was to enhance the production of alkaline protease in Bacillus circulans (the recipient strain) through plasmid transformation from B. subtilis (the donor strain). All the tested Bacillus strains successfully produced unique multiple (3, 4 and 5) spontaneous antibiotic resistant mutants against chloramphenicol, neomycin, rifampicin, streptomycin, kanamycin and tetracycline and all of which were mutated to Rifr strains. B. pumilus showed the highest resistance against five of the six tested antibiotics while both of B. alvei and B. circulans showed the lowest resistance to only three of the tested antibiotics. Results revealed that B. subtilis was the best among the tested species concerning the production of alkaline protease (90.2 U/ml) while B. pumilus was the lowest in activity (40.3 U/ml). Screening of plasmid content revealed the presence of one or two mega indigenous plasmids in all the tested species. The four transformant strains BC 1 , BC 2 , BC 3 and BC 4 resulting from plasmid transformation exhibited significant increases in the activity of alkaline protease and recorded 2.31- to 3-fold increases compared to the parent B. circulans cells and 2.11- to 2.75-fold increases compared to the donor cells of B. subtilis. They also acquired antibiotic resistance to tetracycline and chloramphenicol that was completely absent in the parent cells of B. circulans. Results revealed that plasmid transformation among the tested Bacillus spp. is a powerful technique that can be efficiently exploited to enhance alkaline protease production in the transformed Bacillus spp. compared to their wild strains and we recommend using the improved transformant strains for commercial and industrial purposes.  相似文献   

3.
Genome engineering without leaving foreign DNA behind requires an efficient counter-selectable marker system. Here, we developed a genome engineering method in Bacillus subtilis using a synthetic gene circuit as a counter-selectable marker system. The system contained two repressible promoters (B. subtilis xylA (Pxyl) and spac (Pspac)) and two repressor genes (lacI and xylR). Pxyl-lacI was integrated into the B. subtilis genome with a target gene containing a desired mutation. The xylR and Pspac–chloramphenicol resistant genes (cat) were located on a helper plasmid. In the presence of xylose, repression of XylR by xylose induced LacI expression, the LacIs repressed the Pspac promoter and the cells become chloramphenicol sensitive. Thus, to survive in the presence of chloramphenicol, the cell must delete Pxyl-lacI by recombination between the wild-type and mutated target genes. The recombination leads to mutation of the target gene. The remaining helper plasmid was removed easily under the chloramphenicol absent condition. In this study, we showed base insertion, deletion and point mutation of the B. subtilis genome without leaving any foreign DNA behind. Additionally, we successfully deleted a 2-kb gene (amyE) and a 38-kb operon (ppsABCDE). This method will be useful to construct designer Bacillus strains for various industrial applications.  相似文献   

4.
We attempted to optimize the production of zeaxanthin in Escherichia coli by reordering five biosynthetic genes in the natural carotenoid cluster of Pantoea ananatis. Newly designed operons for zeaxanthin production were constructed by the ordered gene assembly in Bacillus subtilis (OGAB) method, which can assemble multiple genes in one step using an intrinsic B. subtilis plasmid transformation system. The highest level of production of zeaxanthin in E. coli (820 μg/g [dry weight]) was observed in the transformant with a plasmid in which the gene order corresponds to the order of the zeaxanthin metabolic pathway (crtE-crtB-crtI-crtY-crtZ), among a series of plasmids with circularly permuted gene orders. Although two of five operons using intrinsic zeaxanthin promoters failed to assemble in B. subtilis, the full set of operons was obtained by repressing operon expression during OGAB assembly with a pR promoter-cI repressor system. This result suggests that repressing the expression of foreign genes in B. subtilis is important for their assembly by the OGAB method. For all tested operons, the abundance of mRNA decreased monotonically with the increasing distance of the gene from the promoter in E. coli, and this may influence the yield of zeaxanthin. Our results suggest that rearrangement of biosynthetic genes in the order of the metabolic pathway by the OGAB method could be a useful approach for metabolic engineering.  相似文献   

5.
The neo (neomycin phosphotransferase) gene is widely used as a selection marker in the production of genetically engineered animals and plants. Recent attention has been focused on safety concerns regarding neo transgene expression. In this study, neo transgenic and non-transgenic piglets were randomly assigned into Group A and Group B to evaluate effects of neo transgene by studying changes in gut microbiota using high-throughput sequencing. Group A pigs were fed a standard diet supplemented with antibiotic neomycin; Group B pigs were fed a standard diet. We examined horizontal transfer of exogenous neo gene using multiplex PCR; and investigated if the presence of secreted NPT II (neo expression product) in the intestine could lead to some protection against neomycin in transgenic pigs by monitoring different patterns of changes in gut microbiota in Group A animals. The unintended effects of neo transgene on gut microbiota were studied in Group B animals. Horizontal gene transfer was not detected in gut microbiota of any transgenic pigs. In Group A, a significant difference was observed between transgenic pigs and non-transgenic pigs in pattern of changes in Proteobacteria populations in fecal samples during and post neomycin feeding. In Group B, there were significant differences in the relative abundance of phyla Firmicutes, Bacteroidetes and Proteobacteria, and genera Lactobacillus and Escherichia-Shigella-Hafnia between transgenic pigs and non-transgenic pigs. We speculate that the secretion of NPT II from transgenic tissues/cells into gut microbiota results in the inhibition of neomycin activity and the different patterns of changes in bacterial populations. Furthermore, the neo gene also leads to unintended effects on gut microbiota in transgenic pigs that were fed with basic diet (not supplemented with neomycin). Thus, our data in this study caution that wide use of the neo transgene in genetically engineered animals should be carefully considered and fully assessed.  相似文献   

6.
In vitro genetic labeling of Bacillus subtilis cryptic plasmid pHV400.   总被引:34,自引:0,他引:34  
B Niaudet  S D Ehrlich 《Plasmid》1979,2(1):48-58
A DNA segment which encodes resistance to tetracycline, and cannot replicate autonomously, was excised by HindIII endonuclease from plasmid pT127 and joined to the cryptic Bacillus subtilis plasmid pHV400. The analysis of resulting chimerae has allowed us to identify a 1.8 × 106 segment of pHV400 which carried the replication functions of the cryptic plasmid. Another DNA segment, designated pHV32, which can replicate in Escherichia coli but not in B. subtilis has also been used for genetic labeling of the replication region of pHV400. pHV32 is convenient for use in isolating cryptic replicons active in B. subtilis because (1) it can be prepared in large quantities, free from any interferring B. subtilis replicons, from an appropriate E. coli strain; (2) it carries unique sites for various restriction endonucleases; (3) the chloramphenicol resistance gene which it specifies can transform B. subtilis at a high efficiency (106–107 transformants/μg of DNA).  相似文献   

7.
A cellulase gene from Thermomonospora fusca coding for endocellulase E5 was introduced into Streptomyces lividans by using shuttle plasmids that can replicate in either S. lividans or Escherichia coli. Plasmid DNA isolated from E. coli was used to transform S. lividans, selecting for thiostrepton resistance. The transformants expressed and excreted the endocellulase, but the ability to produce the endocellulase was unstable. This instability was shown to result from deletion of the endocellulase gene from the plasmid. Plasmid DNA prepared from a culture in which plasmid modification had occurred was used to transform E. coli, selecting for Amp+ cells, and all of the transformants were cellulase positive, showing that pBR322 and T. fusca DNA were deleted together. When a plasmid was constructed containing only T. fusca DNA in plasmid pIJ702, the transformants were more stable, and the level of endocellulase activity produced in the culture supernatant after growth on 0.2% glucose was close to the level produced by T. fusca cultures grown on 0.2% cellulose. About 50% of the total protein in the culture supernatant of the S. lividans transformant was endocellulase E5. The enzyme produced by the S. lividans transformant was identical to pure T. fusca E5 in its electrophoretic mobility and was completely inhibited by antiserum to E5. Shuttle plasmids containing the E5 gene that could replicate in Bacillus subtilis and E. coli were also constructed and used to transform B. subtilis. Again there was extensive deletion of the plasmid DNA during transformation and growth in B. subtilis. There was no evidence of E5 activity, even in those B. subtilis transformants that retained the E5 gene.  相似文献   

8.
Summary We have devised a method whereby any mutagenized cloned DNA from Bacillus subtilis can be reinserted at the original site on the B. subtilis chromosome. The procedure depends on the accuracy and high frequency of homologous recombination between the B. subtilis chromosome and the DNA taken up by the cell. The method makes use of two drug resistance selection markers (the chloramphenicol resistance gene and the neomycin resistance gene) and a marker gene which functions as a catalyst. The utility of the method has been demonstrated using leuB and pro of B. subtilis as target gene and catalyst, respectively, and mutations such as leuB: : cat, leuB , and pro: : neo constructed in vitro on the cloned DNA fragments. Transformation in sequential steps as (leuB + pro+)(leuB: : cat pro +) (leuB pro: : neo)(leuB pro +) resulted in a leuB single mutant without affecting other regions of the B. subtilis chromosome (gene-directed mutagenesis). We also demonstrate that other single mutations such as metD and pro , as well as the double mutation leuB pro can be introduced by the same procedure. In principle, true isogenies with multiple mutations can be constructed by the method described in this paper. Furthermore, the procedure should be generally applicable to any organisms in which homologous recombination is proficient.  相似文献   

9.
Zhang X  Xue R  Cao G  Hu X  Wang X  Pan Z  Xie M  Yu X  Gong C 《Gene》2012,491(2):272-277
This study investigated the effects of gain of ecdysteroid UDP-glucosyltransferase (EGT) gene function mutation on the development of the silkworm, Bombyx mori. A novel piggyBac-derived plasmid containing the egt gene from B. mori nucleopolyhedrovirus (BmNPV) driven by a heat-shock protein (hsp) 23.7 promoter, with a neomycin-resistance gene (neo) controlled by the BmNPV ie-1 promoter and a green fluorescent protein gene (gfp) under the control of the B. mori actin 3 (A3) promoter was constructed. The vector was transferred into silkworm eggs by sperm-mediated gene transfer. Transgenic silkworms were produced after screening for neo and gfp genes and gene transfer was verified by polymerase chain reaction, dot-blot hybridization and western blotting. The hatching rate of G1 generation silkworm eggs was about 60% lower than that of normal silkworm eggs. The duration of the G1 generation larval period was extended, and the G2 generation pupal stage lasted four days longer than that in non-transgenic silkworms. The ecdysone blood level in G2 silkworms in the third instar molting stage was reduced by up to 90%. These results show that EGT suppressed transgenic silkworm molting, and that egt expression in egt-transgenic silkworms resulted in arrest of metamorphosis from pupae to moths.  相似文献   

10.
11.
The novel method described in this paper combines the use of blaI, which encodes a repressor involved in Bacillus licheniformis BlaP β-lactamase regulation, an antibiotic resistance gene, and a B. subtilis strain (BS1541) that is conditionally auxotrophic for lysine. We constructed a BlaI cassette containing blaI and the spectinomycin resistance genes and two short direct repeat DNA sequences, one at each extremity of the cassette. The BS1541 strain was obtained by replacing the B. subtilis PlysA promoter with that of the PblaP β-lactamase promoter. In the resulting strain, the cloning of the blaI repressor gene confers lysine auxotrophy to BS1541. After integration of the BlaI cassette into the chromosome of a conditionally lys-auxotrophic (BS1541) strain by homologous recombination and positive selection for spectinomycin resistance, the eviction of the BlaI cassette was achieved by single crossover between the two short direct repeat sequences. This strategy was successfully used to inactivate a single gene and to introduce a gene of interest in the Bacillus chromosome. In both cases the resulting strains are free of selection marker. This allows the use of the BlaI cassette to repeatedly further modify the Bacillus chromosome.  相似文献   

12.
 A general system is described that facilitates gene replacements such that the recombinant strains are not labelled with antibiotic resistance genes. The method is based on the conditional replication of derivatives of the lactococcal plasmid pWV01, which lacks the repA gene encoding the replication initiation protein. Replacement vectors can be constructed in and isolated from gram-positive and gram-negative helper strains that provide RepA in trans. Cointegrate formation of the integration vectors with the chromosome of the target strain is selected by antibiotic resistance. Resolution of the cointegrate structure is identified in the second step of the procedure by the loss of the lacZ reporter gene present in the delivery vector. The second recombination event results either in gene replacement or in restoration of the original copy of the gene. As no antibiotic resistance marker is present in the genome of the mutant the system can be used to introduce multiple mutations in one strain. A feasibility study was performed using Lactococcus lactis and Bacillus subtilis as model organisms. The results indicate that the method should be applicable to any non-essential gene in numerous bacterial species. Received: 2 April 1996 / Accepted: 15 July 1996  相似文献   

13.
R.M. Simmons 《FEBS letters》1983,164(1):201-204
On incubation of B. subtilis RM125(arg15 leuA8 rM? mM?) with DNA from alkalophilic Bacillus, the transformants (Arg+Leu? or Leu?Arg+) appeared at pH 10. The transformants were able to grow even at pH 7. Alkalophilic Bacillus was resistant to bacteriophages π105D1C2·1012 grown on B. subtilis 1012(r-mM+) and π105D1C2·ISMR4 grown on B. subtilis ISMR4rM+rR+mM+mR+), but the recipient B. subtilis and the transformant(Arg+Leu?) were susceptible to both the of the bacteriophages. The results indicate that the transformant is a B. subtilis derivative and that alkalophilicity of alkalophilic Bacillus was transferred to B. subtilis.  相似文献   

14.
In a continuing study from Dec 2006 to Apr 2008, we characterized nine multi-drug resistant Pseudomonas aeruginosa strains isolated from four patients in a ward at the Hiroshima University Hospital, Japan. Pulsed-field gel electrophoresis of SpeI-digested genomic DNAs from the isolates suggested the clonal expansion of a single strain; however, only one strain, NK0009, was found to produce metallo-β-lactamase. PCR and subsequent sequencing analysis indicated NK0009 possessed a novel class 1 integron, designated as In124, that carries an array of four gene cassettes: a novel aminoglycoside (AG) resistance gene, aac(6′)-Iag, bla IMP-1, a truncated form of bla IMP-1, and a truncated form of aac(6′)-Iag. The aac(6′)-Iag encoded a 167-amino-acid protein that shows 40% identity with AAC(6′)-Iz. Recombinant AAC(6′)-Iag protein showed aminoglycoside 6′-N-acetyltransferase activity using thin-layer chromatography (TLC) and MS spectrometric analysis. Escherichia coli carrying aac(6′)-Iag showed resistance to amikacin, arbekacin, dibekacin, isepamicin, kanamycin, sisomicin, and tobramycin; but not to gentamicin. A conjugation experiment and subsequent Southern hybridization with the gene probes for bla IMP-1 and aac(6′)-Ig strongly suggested In124 is on a conjugal plasmid. Transconjugants acquired resistance to gentamicin and were resistant to virtually all AGs, suggesting that the In124 conjugal plasmid also possesses a gene conferring resistance to gentamicin.  相似文献   

15.
URA5 genes encode orotidine-5′-monophosphate pyrophosphorylase (OMPpase), an enzyme involved in pyrimidine biosynthesis. We cloned the Histoplasma capsulatum URA5 gene (URA5Hc) by using a probe generated by PCR with inosine-rich primers based on relatively conserved sequences in OMPpases from other organisms. Transformation with this gene restored uracil prototrophy and OMPpase activity to UV-mutagenized ura5 strains of H. capsulatum. We attempted to target the genomic URA5 locus in this haploid organism to demonstrate homologous allelic replacement with transforming DNA, which has not been previously done in H. capsulatum and has been challenging in some other pathogenic fungi. Several strategies commonly used in Saccharomyces cerevisiae and other eukaryotes were unsuccessful, due to the frequent occurrence of ectopic integration, linear plasmid formation, and spontaneous resistance to 5-fluoroorotic acid, which is a selective agent for URA5 gene inactivation. Recent development of an efficient electrotransformation system and of a second selectable marker (hph, conferring hygromycin B resistance) for this fungus enabled us to achieve allelic replacement by using transformation with an insertionally inactivated Δura5Hc::hph plasmid, followed by dual selection with hygromycin B and 5-fluoroorotic acid, or by screening hygromycin B-resistant transformants for uracil auxotrophy. The relative frequency of homologous gene targeting was approximately one allelic replacement event per thousand transformants. This work demonstrates the feasibility but also the potential challenge of gene disruption in this organism. To our knowledge, it represents the first example of experimentally directed allelic replacement in H. capsulatum, or in any dimorphic systemic fungal pathogen of humans.  相似文献   

16.
The Clostridium perfringens enterotoxin gene is on a transposon-like element, Tn5565, integrated in the chromosome in human food poisoning strains. The flanking IS elements, IS1470 A and B, are related to IS30. The IS element found in the transposon, IS1469, is related to IS200 and has been found upstream of cpe in all Type A strains. PCR and sequencing studies from cell extracts and plasmid isolations of C. perfringens indicate that Tn5565 can form a circular form with the tandem repeat (IS1470)2, similar to the transposition intermediates described for a number of IS elements.  相似文献   

17.
A Bacillus subtilis endo-β-1,4-glucanase gene contained in a recombinant plasmid pBS1 was transferred into a new shuttle vector plasmid pCK98 by ligating linearized DNAs of pBS1 and pUB110. B. subtilis RM125 and B. megaterium transformed with pCK98 produced the glucanase substantially and excreted into the medium. Most of the enzyme was produced during the exponential growth period and the production was not repressed by glucose or cellobiose. The plasmid was stable in B. megaterium but not in B. subtilis.  相似文献   

18.
The present criteria and rules controlling the approval of the use of probiotics are limited to antibiotic resistance patterns and the presence of antibiotic resistance genes in bacteria. There is little information available in the literature regarding the risk of the usage of probiotics in the presence of antibiotic pressure. In this study we investigated the development and transfer of antibiotic resistance in Bacillus subtilis selected in vitro by chlortetracycline in a stepwise manner. Bacillus subtilis was exposed to increasing concentrations of chlortetracyclineto induce in vitro resistance to chlortetracycline, and the minimal inhibitory concentrations were determinedfor the mutants. Resistant B. subtilis were conjugated with Escherichia coli NK5449 and Enterococcus faecalis JH2-2 using the filter mating. Three B. subtilis tetracycline resistant mutants (namely, BS-1, BS-2, and BS-3) were derived in vitro. A tetracycline resistant gene, tet (K), was found in the plasmids of BS-1 and BS-2. Three conjugates (BS-1N, BS-2N, and BS-3N) were obtained when the resistant B. subtilis was conjugated with E. coli NK5449. The conjugation frequencies for the BS-1N, BS-2N, and BS-3N conjugates were 4.57×10?7, 1.4×10?7, and 1.3×10?8, respectively. The tet(K) gene was found only in the plasmids of BS-1N. These results indicate that long-term use of probiotics under antibiotic selection pressure could cause antibiotic resistance, and the resistance gene could be transferred to other bacteria. The risk arising from the use of probiotics under antibiotic pressure should be considered in the criteria and rules for the safety assessment of probiotics.  相似文献   

19.
This report describes the construction and characterization of a mariner-based transposon system designed to be used in Bacillus subtilis, but potentially applicable to other gram-positive bacteria. Two pUC19-derived plasmids were created that contain the mariner-Himar1 transposase gene, modified for expression in B. subtilis, under the control of either σA- or σB-dependent promoters. Both plasmids also contain a transposable element (TnYLB-1) consisting of a Kanr cassette bracketed by the Himar1-recognized inverse terminal repeats, as well as the temperature-sensitive replicon and Ermr gene of pE194ts. TnYLB-1 transposes into the B. subtilis chromosome with high frequency (10−2) from either plasmid. Southern hybridization analyses of 15 transposants and sequence analyses of the insertion sites of 10 of these are consistent with random transposition, requiring only a “TA” dinucleotide as the essential target in the recipient DNA. Two hundred transposants screened for sporulation proficiency and auxotrophy yielded five Spo clones, three with insertions in known sporulation genes (kinA, spoVT, and yqfD) and two in genes (ybaN and yubB) with unknown functions. Two auxotrophic mutants were identified among the 200 transposants, one with an insertion in lysA and another in a gene (yjzB) whose function is unknown.  相似文献   

20.
We have generated a transformation marker for Paramecium using a Paramecium expression vector (pPXV) and the open reading frame (ORF) of the bacterial antibiotic resistance gene aminoglycoside 3'-phosphotransferase-II (APH-3'-II or neor) from the transposon Tn5. The expression vector contained a small multiple cloning site between the 5' and 3' non-coding regions of the calmodulin gene, and Tetrahymena telomere sequences for the stability of the plasmid in Paramecium. After the neor ORF was inserted, the plasmid was referred to as pPXV-NEO. Delivery of approximately 10–20 picoliters of linearized PXV-NEO at > 2000 copies/pl into the macronucleus effected 100% transformation. Southern and Northern blot hybridization showed the presence of neor-specific DNA and RNA, respectively, in all of the transformed clones but not in the untransformed clones. The degree of resistance to G-418, and the concentrations of neor-specific DNA and neor-specific RNA in the clones were proportional to the concentration of the vector injected. We have demonstrated that when the linearized plasmid was injected into the macronucleus, the prokaryotic sequence conferred an antibiotic resistance to Paramecium despite codon-usage differences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号