共查询到20条相似文献,搜索用时 15 毫秒
1.
The erythrocyte responds to microwave fields by shedding at least 11 low-molecular-weight proteins of less than or equal to 31,000 Da, with components of 28,000-31,000 Da released during the destabilization of divalent calcium-protein bridges [R.P. Liburdy and P.F. Vanek, Radiat. Res. 109, 382-395 (1987)]. Significantly, protein shedding was shown to be restricted to exposure temperatures coinciding with the cell membrane phase/structural transition temperature, Tc, of 17-25 degrees C. We report here a further characterization of protein shedding at Tc using high-performance liquid chromatography and membrane-associated blood group antigen testing. Proteins shed from human erythrocytes in microwave fields (2450 MHz, CW) compared to sham-heating displayed a twofold increase in total protein mass released concomitant with the appearance of unique protein species during reverse-phase, hydrophobic interaction, and anion-exchange HPLC. These HPLC analyses indicate that microwaves result in the shedding of proteins which are relatively nonpolar and hydrophobic and which carry a net positive electrostatic charge compared to those released during sham-heat treatment. Assessment of 23 blood group antigens that represent integral protein markers on the erythrocyte cell surface indicates that microwave fields do not result in the exhaustive loss of these proteins. The class of proteins that is shed in response to microwave fields most likely is the loosely bound "peripheral" or extrinsic proteins associated with the exterior of the cell surface. Such proteins play a major role in the transduction of signals to integral membrane proteins which span the bilayer. That this class of proteins is susceptible to release by microwave fields is discussed in relation to microwave absorption at the cell surface by membrane-associated bound water, field interaction with dipolar side groups, and the disruption of divalent cation bridges known to stabilize peripheral membrane proteins. 相似文献
2.
It was shown that erythrocyte membranes permeability for oxygen decreases at least a few tens of times during oxygenation. 相似文献
3.
Passive ion permeability of the erythrocyte membrane 总被引:7,自引:0,他引:7
H Passow 《Progress in biophysics and molecular biology》1969,19(2):423-467
4.
Microwaves (2450 MHz, 60 mW/g) are shown to result in the release or shedding of at least 11 low-molecular-weight proteins (less than or equal to 31,000 Da) from rabbit erythrocytes maintained in physiological buffer. Protein release was detected by gel electrophoresis of cell-free supernatants using sensitive silver staining. This release is oxygen dependent and occurs in 30 min for exposures conducted within the special temperature region of 17-21 degrees C, which is linked to a structural or conformational transition in the cell membrane. Shedding of 26,000 and 24,000 Da proteins is unique to microwave treatment, with enhanced release of 28,000 and less than or equal to 15,000 Da species during microwave compared to sham exposures. Two-dimensional isoelectric focusing further reveals that proteins of less than or equal to 14,000 Da shed during microwave treatment exhibit a pI of 6.8-7.3 not seen in sham-treated cells. Treatment of erythrocytes with a serine-directed protease inhibitor does not prevent release of proteins. However, when erythrocytes are maintained at 17-21 degrees C by conventional heating in the absence of divalent cations, release of 28,000-31,000 and less than or equal to 14,000 Da components is detected. This indicates that cation-bridge stability may be important for release of these proteins. The above results provide evidence that microwaves alter erythrocyte protein composition at temperatures linked to a transition in the cell membrane and that destabilization of salt bridges may play a role in an interaction mechanism for protein release. 相似文献
5.
Results are reported on the temperature-dependence of intact-cell surface area, isotonic volume, hemolytic volume, and ghost steady-state surface area and volume, using several techniques of resistive pulse spectroscopy. Temperature was found not to alter the intact cell surface area permanently: the area remains constant at 130 +/- 1 micron 2, at temperatures ranging from 0 to 40 degrees C. Temperature does alter the steady-state volume of the cells, with a colder temperature inducing swelling by about 0.29 micron 3/deg. C. Such a temperature-induced volume change is sufficient to explain only approximately half of the fragility differences which result from temperature changes. The remainder was found to result from higher temperatures enabling a substantial transient increase in surface area of intact cells (up to at least 14% of 40 degrees C), with a corresponding increase in the cell's hemolytic volume (up to 21%). The hemolytic volume apparently increases linearly with temperature, since steady-state ghost volumes are found to increase linearly with the temperature at which the ghosts were produced. In the steady state (at high temperature), the membranes of electrically-impermeable resealed ghosts can remain extended by more than 10%, compared with membranes of the corresponding unhemolyzed, intact red cells. 相似文献
6.
Aging of the erythrocyte. IV. Spin-label studies of membrane lipids, proteins and permeability 总被引:1,自引:0,他引:1
G Bartosz 《Biochimica et biophysica acta》1981,644(1):69-73
Spin-label studies demonstrated age-related alterations of the erythrocyte membrane concerning both lipid and protein components. Decrease in fluidity of membrane lipids correlated with decreased membrane permeability to a hydrophobic spin label TEMPO, permeability to a more hydrophilic TEMPOL being less affected. The rigidification of membrane lipids was much more pronounced in whole membranes than in liposomes composed of membrane lipids, suggesting changes in lipid-protein interactions as an important factor in the decrease of lipid fluidity in aged red cells. ESR spectra of membrane-bound maleimide spin label evidenced alterations in the state of membrane proteins during cell aging in vivo. 相似文献
7.
The effect of cholesteryl palmitate on erythrocyte membrane permeability for K+ and hemoglobin was studied. Cholesterol ether was incorporated into the erythrocyte membrane by liposomes containing cholesteryl palmitate and lecithin or by dispersion of cholesteryl palmitate. It was shown that cholesteryl palmitate considerably increases permeability of the erythrocyte membrane for K+ and hemoglobin. The leakage of K+ and hemoglobin from red blood cells is not accompanied by cell destruction. 相似文献
8.
Grezegorz Bartosz 《生物化学与生物物理学报:生物膜》1981,644(1):69-73
Spin-label studies demonstrated age-related alterations of the erythrocyte membrane concerning both lipid and protein components. Decrease in fluidity of membrane lipids correlated with decreased membrane permeability to a hydrophobic spin label TEMPO, permeability to a more hydrophilic TEMPOL being less affected. The rigidification of membrane lipids was much more pronounced in whole membranes than in liposomes composed of membrane lipids, suggesting changes in lipid-protein interactions as an important factor in the decrease of lipid fluidity in aged red cells. ESR spectra of membrane-bound maleimide spin label evidenced alterations in the state of membrane proteins during cell aging in vivo. 相似文献
9.
Red blood cell (RBC) encapsulated hemoglobin in the blood scavenges nitric oxide (NO) much more slowly than cell-free hemoglobin would. Part of this reduced NO scavenging has been attributed to an intrinsic membrane barrier to diffusion of NO through the RBC membrane. Published values for the permeability of RBCs to NO vary over several orders of magnitude. Recently, the rate that RBCs scavenge NO has been shown to depend on the hematocrit (percentage volume of RBCs) and oxygen tension. The difference in rate constants was hypothesized to be due to oxygen modulation of the RBC membrane permeability, but also could have been due to the difference in bimolecular rate constants for the reaction of NO and oxygenated vs deoxygenated hemoglobin. Here, we model NO scavenging by RBCs under previously published experimental conditions. A finite-element based computer program model is constrained by published values for the reaction rates of NO with oxygenated and deoxygenated hemoglobin as well as RBC NO scavenging rates. We find that the permeability of RBCs to NO under oxygenated conditions is between 4400 and 5100 microm s(-1) while the permeability under deoxygenated conditions is greater than 64,000 microm s(-1). The permeability changes by a factor of 10 or more upon oxygenation of anoxic RBCs. These results may have important implications with respect to NO import or export in physiology. 相似文献
10.
Changes in pH significantly affect the morphology and physical properties of red cell membranes. We have explored the molecular basis for these phenomena by characterizing the pattern of protein disulfide cross-linkages formed spontaneously in ghost exposed to acid pH or elevated temperature (37 degrees C). Protein aggregation was analyzed by two-dimensional polyacrylamide gel electrophoresis in sodium dodecyl sulfate. incubation of ghosts at pH 4.0 to 5.5 (0-4 degrees C) yielded (i) complexes of spectrin and band 3, (ii) complexes of actin and band 3, (iii) band 3 complexes, i.e. dimer and trimer, and (iv) heterogeneous aggregates involving spectrin, band 3, band 4.2, and actin in varying proportions. Aggregation was maximal near the isoelectric points of the major membrane proteins, and appeared to reflect (i) the aggregation of intramembrane particles including band 3 and (ii) more intimate contact between spectrin-actin meshwork and band 3. 相似文献
11.
In order to investigate the influence of membrane lipids on transport via the protein domain of the erythrocyte membrane, a number of facilitated diffusion processes was studied by tracer flux techniques in whole cells after cleavage of up to 65% of the phosphatidylcholine or the sphingomyelin by phospholipase A2 from Naja naja or bee venom, or by sphingomyelinase, respectively.The mediated fluxes of l-arabinose, which is transported by the glucose carrier, and of l-lactate, which uses a specific monocarboxylate carrier, were markedly inhibited by cleavage of either phosphatidylcholine or sphingomyelin. These phospholipid dependencies are in line with earlier data on cholesterol dependencies (Deuticke, B. (1977) Rev. Physiol. Biochem. Pharmacol. 78, 1–97). They can only in part be explained by changes of membrane fluidity. More specific interactions of the degradation products with the carrier proteins seem also to play a role.Sulfate and oxalate transfer, which proceed via the inorganic anion-exchange system, are essentially unaffected by cleavage of phosphatidylcholine and less sensitive to sphingomyelin cleavage than the two other processes. This also agrees with earlier data on cholesterol independency of sulfate transfer. The inorganic anion-exchange protein thus seems to be less dependent on the surrounding lipids in its conformation and its mode of action than the two other carriers. 相似文献
12.
Cell volume and plasma membrane osmotic water permeability in epithelial cell layers measured by interferometry. 总被引:1,自引:0,他引:1
下载免费PDF全文

The development of strategies to measure plasma membrane osmotic water permeability (Pf) in epithelial cells has been motivated by the identification of a family of molecular water channels. A general approach utilizing interferometry to measure cell shape and volume was developed and applied to measure Pf in cell layers. The method is based on the cell volume dependence of optical path length (OPL) for a light beam passing through the cell. The small changes in OPL were measured by interferometry. A mathematical model was developed to relate the interference signal to cell volume changes for cells of arbitrary shape and size. To validate the model, a Mach-Zehnder interference microscope was used to image OPL in an Madin Darby Canine Kidney (MDCK) cell layer and to reconstruct the three-dimensional cell shape (OPL resolution < lambda/25). As predicted by the model, a doubling of cell volume resulted in a change in OPL that was proportional to the difference in refractive indices between water and the extracellular medium. The time course of relative cell volume in response to an osmotic gradient was computed from serial interference images. To measure cell volume without microscopy and image analysis, a Mach-Zehnder interferometer was constructed in which one of two interfering laser beams passed through a flow chamber containing the cell layer. The interference signal in response to an osmotic gradient was analyzed to quantify the time course of relative cell volume. The calculated MDCK cell plasma membrane Pf of 6.1 x 10(-4) cm/s at 24 degrees C agreed with that obtained by interference microscopy and by a total internal reflection fluorescence method. Interferometry was also applied to measure the apical plasma membrane water permeability of intact toad urinary bladder; Pf increased fivefold after forskolin stimulation to 0.04 cm/s at 23 degrees C. These results establish and validate the application of interferometry to quantify cell volume and osmotic water permeability in cell layers. 相似文献
13.
Transport of Tl+ and Rb+ in human and rat erythrocytes was investigated in the presence of ouabain. The chloride-dependent cotransport of Tl+, Rb+ and Na+ was precluded by replacement of Cl- by NO3-. The inward and outward rate constants for the residual fluxes of the cations were determined by measuring the transport of 204Tl and 86Rb in double label experiments. The rate of passive transport of Tl+ exceeded that of Rb+ by one-two orders of magnitude in human as well as rat erythrocytes. The membrane barrier which contributes to the maintenance of ion gradients was shown not to be a barrier for Tl+ which easily penetrates the membrane by an unknown mechanism. In rat erythrocytes the barrier for Rb+ was 10-15 times weaker than that in human red blood cells, while the corresponding ratio of rat/human Tl+ permeabilities was about 1.8-2.0. It follows that Tl+ permeability is only slightly affected by factors modifying the permeability to alkali cations. The increase of temperature from 20 degrees to 37 degrees C resulted in a three-fourfold stimulation of the passive transport of Tl+ both in human and rat erythrocytes. The movement of Tl+ and Rb+ through the erythrocyte membrane differed substantially from their diffusion along the excitable membrane channels characterized both by poor Tl+/K+ selectivity and weak temperature dependence. 相似文献
14.
Extensional flow of erythrocyte membrane from cell body to elastic tether. II. Experiment. 总被引:4,自引:5,他引:4
下载免费PDF全文

This is the second of two papers on an analytical and experimental study of the flow of erythrocyte membrane. In the experiments discussed here, preswollen human erythrocytes are sphered by aspirating a portion of the cell membrane into a small micropipette; and long, thin, membrane filaments or tethers are steadily withdrawn from the cell at a point diametrically opposite to the point of aspiration. The aspirated portion of the membrane furnishes a reservoir of material that replaces the membrane as it flows as a liquid from the nearly spherical cell body to the cylindrical tether. The application of the principle of conservation of mass permits the tether radius Rt to be measured with the light microscope as the tether is formed and extended at a constant rate. The tether behaves as an elastic solid such that the tether radius decreases as the force or axial tension acting on the tether is increased. For the range of values for Rt is these experiments (100 A less than or equal to Rt less than or equal to 200 A), the slope of the tether-force, tether-radius line is -1.32 dyn/cm. The surface viscosity of the membrane as it flows from cell body to tether is 3 x 10(-3) dyn.s/cm. This viscosity is essentially constant for characteristic rates of deformation between 10 and 200 s-1. 相似文献
15.
A model is presented for the steric interaction between a plasma membrane protein and the membrane cytoskeleton in the human erythrocyte. The cytoskeleton is treated as a network of polymer chains attached to a flat bilayer, and the membrane protein is a hemisphere of effective radius R(e) with center on the bilayer edge. The simulation is used to investigate the barrier-free path L for linear guided motion of a protein in the bilayer plane. It is shown that the barrier-free paths of small proteins can be used to extract the effective in-plane diameter of cytoskeletal components. For example, the in-plane diameter of an ankyrin attachment site is found to be approximately 12 nm in the simulation, or twice the computational spectrin diameter. The barrier-free paths of large proteins (R(e) > 23 nm) vanish when the proteins are corralled by the cytoskeleton. For intermediate size proteins, L decreases approximately as L is directly proportional to S-1.4 where S is proportional to the sum of the protein and cytoskeleton chain radii. 相似文献
16.
17.
18.
Adenovirus-dependent increase in cell membrane permeability 总被引:12,自引:0,他引:12
When KB cells were labeled with either 51Cr (1 microCi/ml) or [35S]methionine (5 microCi/ml) and treated with 10 micrograms/ml of adenovirus type 2 (Ad2) at pH 6.0 for 60 min at 37 degrees C, about 25% of the cell-associated 51Cr and 5% of the [35S]methionine were released into the medium. The 51Cr was mainly associated with molecules of 1500 Da or less. When KB cells were labeled with either [3H] choline, alpha-[3H]aminobutyric acid, or [3H]deoxy-2-fluoro-D-glucose and exposed to Ad2, these molecules were released in amounts much higher than 51Cr. The Ad2-dependent release of choline was found to be dependent on Ad2 concentration, with maximum release (nearly 60%) at 10 micrograms/ml of Ad2, on the length of the incubation with Ad2, with maximum release at about 90 min, and on the medium pH with maximum activity at pH 6.0 to 6.5. Greater than 95% of the choline released was water-soluble and identified as choline phosphate. Less than 5% of the choline released was associated with lipids, and none was released as a phospholipid vesicle or micelle. The ability of Ad2 to release choline was abolished by incubating Ad2 for 10 min at 45 degrees C, whereas the binding of Ad2 to the cells was not affected. Fetal calf serum also blocked Ad2-dependent choline release. 相似文献
19.
Camel erythrocyte membranes are distinguished by some unique properties of stability and composition. Notable is their abundance in proteins (protein: lipid ratio of 3 : 1). Membrane proteins of camel erythrocytes were compared with those of human erythrocytes, which have been intensively investigated. Proteins were extracted with various aqueous media (EDTA, alkaline or high ionic strength) and with ionic and non-ionic detergents and were analyzed by gel electrophoresis. In membranes of camel erythrocytes, the peripheral proteins constitute, proportionally, a much smaller fraction of total proteins than in the human erythrocyte, while their distribution is identical per unit of surface area. The camel erythrocyte membrane is particularly rich in integral proteins and in intramembranous particles. The proteins in this membrane are more closely organized than in the human system, as revealed by crosslinking and freeze-etching studies. It is proposed that protein-protein interaction of integral proteins, presumably constituting an “integral skeleton”, is a dominant structural feature stabilizing the camel erythrocyte membrane. 相似文献
20.
In a previous study, we characterized Cd–Hg interactions for uptake in human intestinal Caco-2 cells. We pursued our investigations
on metal uptake from metal mixtures, focusing on the effects of Hg on cellular homeostasis. A 4-fold higher equilibrium accumulation
value of 0.3 μmol/L 203Hg was measured in the presence of 100 μmol/L unlabeled Hg in the serum-free exposure medium without modification in the initial
uptake rate. This phenomenon was eliminated at 4∘C. Mercury induced an increase in tritiated water and [3H]mannitol uptakes for exposure times greater than 20 min. Incubations for 20 min and 30 min with 100 μmol/L Hg and 2 mmol/L
N-ethylmaleimide (NEM) resulted in a 34% and 50% reductions in cellular thiol staining, respectively, with additive effects.
Lactate dehydrogenase leakage and live/dead assays confirmed the maintenance of cell membrane integrity in Hg- or NEM-treated
cells. We conclude that Hg may alter membrane permeability and increase cell volume without any loss in cell viability. This
phenomenon is sensitive to temperature and could involve Hg interaction with membrane thiols, possibly related to solute transport.
During metal uptake from metal mixtures, Hg may thus promote the uptake of other toxic metals by increasing cell volume and
consequently cell capacity.
Deceased 25 March 2004 相似文献