首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Differences in the function and composition of individual ovarian follicles were noted in Booroola Merino ewes which had previously been segregated on at least one ovulation rate record of greater than 5 (FF ewes, N = 15), 3-4 (F+ ewes, N = 18) or less than 3 (++ ewes, N = 18). Follicles in FF and F+ ewes produced oestradiol and reached maturity at a smaller diameter than in ++ ewes. In FF (N = 3), F+ (N = 3) and ++ (N = 3) ewes, the respective mean +/- s.e.m. diameters for the presumptive preovulatory follicles were 3.4 +/- 0.3, 4.1 +/- 0.2 and 6.8 +/- 0.3 mm and in each of these follicles the respective mean +/- s.e.m. numbers of granulosa cells (X 10(6)) were 1.8 +/- 0.3, 2.2 +/- 0.3 and 6.6 +/- 0.3. During a cloprostenol-induced follicular phase, the oestradiol secretion rates from FF ewes with 4.8 +/- 0.4 'oestrogenic' follicles, F+ ewes with 3.2 +/- 0.2 'oestrogenic' follicles and ++ ewes with 1.5 +/- 0.02 'oestrogenic' follicles were not significantly different from one another. Moreover, the mean total numbers of granulosa cells from the 'oestrogenic' follicles from each genotype were identical, namely 5.4 X 10(6) cells. Irrespective of genotype the mean weight of each corpus luteum was inversely correlated to the ovulation rate (R = 0.91, P less than 0.001). Collectively, these findings support the notion that the maturation of greater than or equal to 5 follicles in FF ewes and 3-4 follicles in F+ ewes may each be necessary to provide a follicular-cell mass capable of producing the same quantity of oestradiol as that from 1-2 preovulatory follicles in ++ ewes.  相似文献   

2.
The ovaries of 3-month-old Booroola lambs which were heterozygous carriers of a major gene (F) influencing the ovulation rate in mature ewes (i.e. F + lambs) were compared to those ofsimilarly-aged Booroola lambs which were non-carriers of the F-gene (i.e. ++ lambs). The ovaries of the F + Booroola lambs were significantly lighter (P less than 0.01) than those of ++ lambs even though the mean +/- s.e.m. number of follicles (greater than or equal to 1 mm diam.) in the F + lambs was greater than that in the ++ lambs (i.e. F + lambs, 30.2 +/- 2.5 follicles; ++ lambs, 18.4 +/- 1.2 follicles; P less than 0.01). In granulosa cells from non-atretic follicles (greater than or equal to 1 mm diam.) from F + and ++ Booroola lambs, FSH (NIAMDD-FSH-S16) doses of 100 and 1000 ng/ml caused significant stepwise increases (P less than 0.05) in cyclic adenosine 3',5'-monophosphate (cAMP) production compared to that achieved at FSH doses of 0 and 1 ng/ml or at any FSH dose in cells from atretic follicles. However, no significant differences in FSH-induced cAMP production were noted with regard to Booroola genotype or follicular diameter. None of the granulosa cell preparations from non-atretic follicles of 1-2.5 mm diameter from F + lambs (N = 13) or from non-atretic follicles of 1-4.5 mm diameter from ++ lambs (N = 16) responded to LH (NIAMDD-LH-S24; 10 or 1000 ng/ml) to produce significantly more cAMP than did the controls. In contrast, the granulosa cell preparations from non-atretic follicles of 3-4.5 mm diameter from F + lambs (N = 4) and from non-atretic follicles of greater than or equal to 5 mm diameter of ++ lambs (N = 4) produced significantly more cAMP (P less than 0.05) in response to LH (1000 and/or 10 ng/ml) relative to that in the controls. The theca interna from follicles of lambs of both genotypes had functional LH receptors as judged by the androstenedione responses to exogenous LH although no genotypic differences were noted. In F + lambs, the follicular fluid concentrations of testosterone but not oestradiol (i.e. in 1-4.5 mm diam. follicles) and granulosa cell aromatase activity (i.e. in 3-3.5 mm diam. follicles) were significantly higher (both P less than 0.05) than in corresponding follicles or cells from ++ lambs. Collectively the results suggest that the Booroola F-gene influences the composition and function of sheep ovaries before puberty.  相似文献   

3.
In sheep, the presence of the Booroola F gene has several important consequences for ovarian function. This study investigated the consequences of the presence of the F gene for the insulin-like growth factor (IGF) system in the ewe ovary. Studies were undertaken in ovaries from F+ and ++ Mérinos d'Arles ewes to determine 1) the levels of type I IGF receptors and IGF binding proteins (IGFBPs) in follicular cells by quantitative autoradiography of [(125)]-IGF-I binding sites on ovarian sections; 2) the pattern of intrafollicular IGFBPs, by Western-ligand blotting on follicular fluids; and 3) the effects of IGF-I and FSH on proliferation and differentiation of granulosa cells in vitro, assessed by progesterone secretion and cytochrome P450 side-chain cleavage (P450(scc)) expression. The amounts of type I IGF receptors were similar in F+ and ++ follicular cells; however, at the same follicular size, F+ healthy follicles contained lower concentrations of IGFBPs smaller than 40 kDa (particularly IGFBP-2) than ++ healthy follicles. In vitro, in basal conditions as well as in IGF-I- or FSH-stimulated conditions (or both), granulosa cells from F+ follicles had a lower proliferative activity, secreted higher amounts of progesterone, and expressed higher levels of P450(scc) than granulosa cells from ++ follicles of the same size. When F+ and ++ preovulatory follicles were compared at the end of the follicular phase, IGFBPs <40 kDa concentrations were slightly higher, and responsiveness of granulosa cells to FSH in vitro was lower in F+ than in ++ follicles, suggesting that terminal maturation of F+ follicles, although precocious, was less complete than it was in ++ follicles. The early decrease in intrafollicular IGFBPs <40 kDa concentrations observed in F+ antral follicles, which likely leads to an early increase in IGF bioavailability, may at least partly account for the increased ovulation rate that characterizes F-carrier ewes.  相似文献   

4.
Gonadotrophins, fecundity genes and ovarian follicular function   总被引:3,自引:0,他引:3  
The Booroola Merino is a sheep breed having a major gene(s) (F) influencing its ovulation-rate. Homozygous (FF), heterozygous (F+) and non-carriers (++) of the gene have ovulation-rates of greater than or equal to 5, 3 or 4 and 1 or 2 respectively with the durations of each oestrous cycle and oestrous behaviour being similar in all genotypes. Although the principal site(s) of gene expression are obscure, FF genotypes have mean plasma concentrations of FSH and LH which are higher than in the F+ ewes, which in turn are higher than in the ++ animals. Thus, the FF and F+ animals provide a unique system in which to examine ovarian function under continual exposure to elevated gonadotrophin concentrations. At the ovarian level, F gene-specific differences in follicular development and function were noted. In small follicles (0.1-1.0 mm dia.), the basal levels of cAMP and the in vitro synthesis of cAMP, progesterone, androstenedione and oestradiol-17 beta in response to LH and FSH were significantly influenced by genotype (FF greater than F+ greater than ++; P less than 0.05). In larger follicles (1-4.5 mm dia.) the granulosa cells from FF and F+ ewes were more responsive to FSH and/or LH than in ++ ewes with respect to cAMP synthesis and they also had higher levels of aromatase activity. In vivo, the ovarian secretion-rates of oestradiol from greater than or equal to 5 ("oestrogenic") follicles in FF ewes, 3-4 such follicles in F+ ewes, and 1-2 such follicles in ++ animals during the follicular phase were similar. In FF and F+ ewes, the preovulatory follicles ovulated at a smaller diameter (i.e. 3-5 mm) than in ++ ewes (greater than 5 mm diam.) and also produced smaller corpora lutea. Thus, after continual exposure to elevated levels of gonadotrophins, follicles may synthesize steroid and mature at smaller diameters compared to those exposed to normal levels of FSH and LH.  相似文献   

5.
Morphological and functional features of large ovarian follicles from three breeds of sheep, with different ovulation rates (Finnish Landrace N = 12, Finnish Landrace X Scottish Blackface N = 16, Merino X Scottish Blackface N = 16) were compared by integrating three techniques; ink labelling, in-vitro oestradiol production and morphological classification. The follicles were removed at two stages of the follicular phase, 1 (PG + 1) or 2 (PG + 2) days after PGF-2 alpha treatment and compared after monitoring their rates of growth with the use of ink labelling. After ovariectomy all follicles greater than or equal to 1 mm in diameter were dissected, and the 8 largest were incubated individually for 2 h to assess their ability to secrete oestradiol and testosterone. After incubation the follicles were processed for histological examination and checked for atresia. An analysis of the follicle population was based on in-vitro oestradiol secretion rates in all three breeds; an oestrogen-active population producing 500-8100 pg oestradiol/ml/h and an oestrogen-inactive population producing 0-499 pg oestradiol/ml/h. A comparison of the 3 approaches demonstrated agreement on 94.3 +/- 1.2% of occasions. Ink-labelling demonstrated that all follicles identified as oestrogen-active were increasing in size. Within oestrogen-active follicles significant correlations were detected between oestradiol production and testosterone production (r = 0.42), oestradiol production and granulosa cell number (r = 0.45) and between oestradiol production and mitotic index (r = -0.38). A regression model fitting breed, stage of atresia, granulosa cell number, in-vitro testosterone production and mitotic index demonstrated that granulosa cell number is a characteristic which contributes significantly to the variation of in-vitro oestradiol production in oestrogen-active and oestrogen-inactive follicles. There was no significant difference between breeds in the mean number of ink-labelled follicles growing from Day PG - 1 to Day PG + 1. There was a significant difference between the breeds in the number of ink-labelled follicles growing between Days PG + 1 and PG + 2 (Days 1 and 2 of the follicular phase), the number being similar to the ovulation rate for the breed. The majority of the oestrogen-active follicles had been recruited by Day PG - 1, although in the Finnish Landrace genotypes more than 30% were recruited on or after Day PG + 1 compared to less than 10% in Merino x Scottish Blackface ewes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
The expression patterns of steroidogenic enzymes in ovarian antral follicles at various stages of growth in a follicular wave have not been reported for sheep. Ovaries were collected from ewes (n=4-5 per group) when the largest follicle(s) of the first wave of the cycle, as determined by ultrasonography, reached (i) 3 mm, (ii) 4 mm, (iii) > or =5 mm in diameter or when there was a single (iv) preovulatory follicle in the last wave of the cycle, 12h after estrus detection. The expression pattern of steroidogenic enzymes was quantified using immunohistochemistry and grey-scale densitometry. The expression of CYP19 in the granulosa and 3beta-HSD and CYP17 in the theca increased (P<0.01) progressively from 3 to > or =5 mm follicles in the first wave of the cycle and was lower (P<0.01) in the preovulatory follicle compared to > or =5 mm follicles. However, the expression of 3beta-HSD in the granulosa increased (P<0.05) from 3 to > or =5 mm follicles and was maintained (P<0.05) at a high level in the preovulatory follicles. The amount of CYP19 in the granulosa of the growing follicles correlated positively (r=0.5; P<0.03) with the concurrent serum estradiol concentrations. We concluded that the expression pattern of steroidogenic enzymes in theca and granulosa of follicles growing in each wave in the ewe, paralleled with serum estradiol concentrations, with the exception that concentrations of 3beta-HSD in granulosa increased continuously from follicles 3mm in diameter to the preovulatory follicle.  相似文献   

7.
Several lines of evidence suggest that follicular granulosa cells give rise to the large luteal cells of the corpus luteum in the sheep. To further investigate this suggestion, numbers of granulosa cells in preovulatory follicles were estimated by morphometric methods for comparison with a previous estimate of numbers of large luteal cells (9.6 +/- 0.9 x 10(6)). Preovulatory follicles from five Corriedale ewes were obtained after synchronization of the oestrous cycle with the prostaglandin analogue cloprostenol. Morphometry was undertaken using light microscopy of plastic-embedded tissue sectioned at 1 micron. Mitotic index in the membrana granulosa was 0.05 +/- s.e.m. 0.05%. Mean follicular diameter was 6.25 +/- 0.25 mm and there were 7.68 +/- 0.53 x 10(6) granulosa cells per follicle. These results demonstrate a similarity between the number of granulosa cells per follicle and the number of large luteal cells per corpus luteum and thus support the hypothesis that large luteal cells are derived from granulosa cells.  相似文献   

8.
Transrectal ultrasonography of ovaries was performed each day in non-prolific Western white-faced (n = 12) and prolific Finn ewes (n = 7), during one oestrous cycle in the middle portion of the breeding season (October-December), to record the number and size of all follicles > or = 3 mm in diameter. Blood samples collected once a day were analysed by radioimmunoassay for concentrations of LH, FSH and oestradiol. A cycle-detection computer program was used to identify transient increases in concentrations of FSH and oestradiol in individual ewes. Follicular and hormonal data were then analysed for associations between different stages of the lifespan of the largest follicles of follicular waves, and detected fluctuations in serum concentrations of FSH and oestradiol. A follicular wave was defined as a follicle or a group of follicles that began to grow from 3 to > or = 5 mm in diameter within a 48 h period. An average of four follicular waves per ewe emerged during the interovulatory interval in both breeds of sheep studied. The last follicular wave of the oestrous cycle contained ovulatory follicles in all ewes, and the penultimate wave contained ovulatory follicles in 10% of white-faced ewes but in 57% of Finn ewes. Transient increases in serum concentrations of FSH were detected in all animals and concentrations reached peak values on days that approximated to follicle wave emergence. Follicular wave emergence was associated with the onset of transient increases in serum concentrations of oestradiol, and the end of the growth phase of the largest follicles (> or = 5 mm in diameter) was associated with peak serum concentrations of oestradiol. Serum FSH concentrations were higher in Finn than in Western white-faced ewes during the follicular phase of the cycle (P < 0.05). There were no significant differences in serum concentrations of LH between Western white-faced and Finn ewes (P > 0.05). Mean serum concentrations of oestradiol were higher in Finn compared with Western white-faced ewes (P < 0.01). It was concluded that follicular waves (follicles growing from 3 to > or = 5 mm in diameter) occurred in both prolific and non-prolific genotypes of ewes and were closely associated with increased secretion of FSH and oestradiol. The increased ovulation rate in prolific Finn ewes appeared to be due primarily to an extended period of ovulatory follicle recruitment.  相似文献   

9.
The mechanism by which one or more dominant ovarian follicles continue development while other subordinate follicles regress is not known. The mitogen activated protein kinases (MAPKs) are a group of kinases that are activated by hormonal factors and form a cascade of processes that regulate cell growth, division and differentiation. The aim of the present experiment was to characterise the presence of the MAPKs, Erk 1/Erk 2 and Akt in healthy dominant follicles and regressing subordinate follicles. Following in vivo monitoring of ovarian follicle development, three ewes were ovariectomised and the follicular fluid and follicle wall (theca and granulosa cells) saved from the dominant and largest subordinate follicle. The dissected diameter and follicular fluid oestradiol concentration of the dominant follicle was larger (P<0.01) than the largest subordinate follicle (6.5+/-0.0mm and 41.3+/-4.9ng/ml versus 4.7+/-0.3mm and 0.6+/-0.4ng/ml). Western blot analyses showed that there was more Akt (202.7+/-6.4 versus 59.6+/-32.7 units; P<0.05) and Erk 1/Erk 2 (104.5+/-10.6 versus 0.3+/-0.2 units; P<0.01) present in follicle wall samples from the dominant compared to the largest subordinate follicles. Phosphorylated forms of Akt and Erk 1/Erk 2 were detected in samples from dominant but not subordinate follicles. We suggest that signal transduction pathways involving Akt and Erk 1/Erk 2 may play an important role in determining the outcome of ovarian follicle growth and development in sheep.  相似文献   

10.
At 37 degrees C 125I-labelled human (h) FSH (NIAMDD-hFSH-I-3) bound rapidly to granulosa cells from Booroola and Romney ewes with 50% maximum binding achieved after 3 min and equilibrium being reached within 45 min, irrespective of whether the cells were obtained from the FF, F+ or ++ Booroola genotypes or from Romney ewes. Binding of 125I-labelled FSH followed second order kinetics and there was no effect of follicle diameter (1-2.5 mm vs greater than or equal to 3 mm). Irrespective of breed, genotype or follicle size, the mean (+/- s.e.m.) calculated association rate constant, (ka) was 7.3 (+/- 0.8) x 10(5) litres mol-1 sec-1 (n = 12). Dissociation of receptor bound 125I-labelled hFSH was less than 5% after 30 min and low but variable (i.e. between 0 and 30%) after 2-6 h irrespective of breed, genotype or follicle size. No gene-specific differences were noted in binding specificity between F+ and ++ genotypes: studies were not performed with cells from FF ewes because of insufficient cells. The binding of 125I-labelled hFSH could be displaced with sheep FSH (NIH-FSH-S16; 10% cross-reaction) and FSH-P (2.5% cross-reaction) but other sheep pituitary hormones and hCG showed little or no cross-reaction (less than or equal to 0.1%). The calculated binding capacities (Bmax) and equilibrium dissociation constants (Kd) for 125I-labelled hFSH binding to granulosa cells did not differ between the Booroola genotypes or between Booroola or Romney follicles of different diameter (i.e. 1-2.5 mm; or greater than or equal to 3 mm). The overall mean +/- s.e.m. (n = 24) Bmax and Kd values were 16.7 +/- 0.8 fm/mg protein (i.e. approximately 800 available receptor binding sites/cell) and 1.1 +/- 0.1 nM respectively. Collectively, these findings suggest that the earlier maturation of follicles in FF or F+ ewes compared to ++ ewes is unlikely to be due to gene-specific differences in the FSH binding characteristics of the granulosa cells.  相似文献   

11.
Granulosa cells from follicles of different sizes from Booroola x Merino ewes which were homozygous (FF), heterozygous (F+) or non-carriers(++) of a fecundity gene were obtained 0-48 h after cloprostenol injection on Day 10 of the oestrous cycle. The highest mean amounts of cAMP produced by the cells did not differ between the genotypes. However, in the ++ ewes it was attained by cells from follicles greater than or equal to 5 mm in diameter, whereas in F+ and FF ewes it was attained by cells from follicles 3-4.5 mm in diameter. Cells from 1-2.5-mm diameter follicles of FF ewes were more sensitive to FSH and LH than were corresponding cells from F+ or ++ ewes. Granulosa cells from greater than or equal to 5 mm diameter follicles of ++ ewes 12-24 h after injection of cloprostenol had a lower mean response to FSH and LH than did cells obtained 0-6 or 36-48 h after cloprostenol. No such effect of time was evident for cells from any size of follicles obtained from F+ or FF ewes. In 1-2.5-mm diameter follicles, the mean aromatase activity of granulosa cells from ++ and F+ ewes was similar, but significantly lower than that of cells from FF ewes. In 3-4.5 mm diameter follicles, the mean aromatase activity of cells from F+ and FF ewes was similar, and significantly higher than that of cells from ++ ewes. For all 3 genotypes, there was a significant positive relationship between FSH or LH stimulation of granulosa cell cAMP production and cellular aromatase activity.  相似文献   

12.
The cAMP outputs by granulosa cells from 3-4.5 mm diameter (medium) follicles of Booroola FF ewes were similar to those by cells from greater than or equal to 5 mm diameter (large) follicles of ++ ewes with respect to time or dose of FSH, cholera toxin or forskolin. Likewise, the cAMP outputs by cells from 1-2.5 mm diameter (small) FF follicles were similar to those by cells from small and medium ++ follicles with respect to time or dose of FSH, cholera toxin or forskolin. At FSH, cholera toxin or forskolin doses of 1 microgram/ml, 0.5 microgram/ml and 10(-4) M respectively, the granulosa cell cAMP outputs of medium FF or large ++ follicles were approximately 2-fold (P less than 0.05) higher than in the respective small FF and medium ++ follicles. The effects of cholera toxin plus forskolin or FSH plus forskolin were additive irrespective of genotype or follicle size, with significant differences (P less than 0.05) observed between follicle sizes but not genotype. No differences were noted between cholera toxin plus forskolin or FSH plus forskolin on granulosa cell cAMP output. For the FSH and forskolin treatments, increased mean cAMP outputs were evident after 10 min, whereas after cholera toxin treatment they were not evident until after 20 min incubation. For all treatments the rate of cAMP production tended to slow down after 40-60 min. Pre-incubation of granulosa cells with pertussis toxin subsequently resulted in a significantly greater (P less than 0.05) FSH-induced output of cAMP relative to the untreated controls irrespective of follicle size. However, no gene-specific differences were noted when the cAMP outputs of cells from medium or small FF follicles were compared with cells from large or small-medium ++ follicles respectively. These results indicate that the activity (or composition) of the regulatory and catalytic components of adenylate cyclase in the FF granulosa cells change in a manner similar to those observed in ++ cells with the only difference being that the increases in cyclase in FF ewes occurs as follicles enlarge from 1-2.5 to 3-4.5 mm in diameter, whereas in ++ ewes they occur as follicles enlarge from 3-4.5 to greater than or equal to 5 mm in diameter. No evidence was found to link the F gene to the granulosa cell cAMP response independently of follicle size. It is suggested that the association between the F gene and the size-specific difference in follicle maturation may be unrelated to the FSH receptor/cAMP generating system.  相似文献   

13.
Ovaries were recovered from groups of naturally cyclic pigs (N = 5) on each of Days 16, 18, 20 and 21 of the oestrous cycle. Follicular diameter, follicular fluid volume and concentrations of oestradiol, testosterone and progesterone, and granulosa cell number were determined in all follicles greater than or equal to 2 mm in diameter (n = 511). In alternate follicles either granulosa cell aromatase activity and theca testosterone content or 125I-labelled hCG binding to granulosa and theca were determined. The mean total number of follicles recovered per animal decreased as the follicular phase progressed and a strong positive relationship (P less than 0.001) existed between follicular diameter and volume on all days. The number of granulosa cells recovered per follicle was variable, and not related to oestrogenic activity of the follicles. Mean follicular fluid oestradiol, testosterone and 125I-labelled hCG binding all increased until Day 20 and decreased on Day 21, whereas mean theca testosterone content, 125I-labelled hCG binding to theca tissue and aromatase were all maximal on Day 21. On Days 20 and 21 a subset of 14-16 large follicles was readily distinguishable from the remaining smaller, less oestrogenically active population in each animal. Yet, consistently within these subsets there was a difference in follicular diameter of approximately 2.0 mm and also a considerable range of biochemical development even among follicles of equal size. These results indicate asynchrony at the time of recruitment and selection among follicles destined to ovulate and suggest that heterogeneity continues into the immediate preovulatory period.  相似文献   

14.
Daily transrectal ultrasonographies were conducted to study development of all follicles with antral diameters > or = 2mm during the follicular phase of oestrous cycle in Mouflon, a strictly monovular wild-sheep. A total of 14 follicular phases was studied after oestrus synchronization with two cloprostenol doses, 9 days apart, in five cyclic Mouflon ewes. In 13 cycles (92.8%), the ovulatory follicle arose from those antral follicles present in both ovaries when luteolysis was induced, being the largest one with a mean size of 4.4+/- 0.3mm at that moment in 10 cycles (76.9%). The remaining cycles had a larger follicle, but it was decreasing in size. Appearance of new follicles > or =2mm in size remained unaffected during the follicular phase (3.7+/- 0.2), but there was found a linear decrease in the number of those growing to > or =3mm (2.5+/- 0.4 to 1.1+/- 0.2, P < 0.05) and > or = 4mm (0.6+/- 0.2 to 0.1+/- 0.1, P < 0.005), detection of new follicles growing to > or = 5mm was negligible. Then, number of medium (4-5mm) growing follicles present in both ovaries decreased from 1.5+/- 0.3 at 0 h to 0.3+/- 0.1 at 72 h (P<0.005). In conclusion, the single ovulatory follicle is the largest growing follicle present in both ovaries at the moment of luteolysis. This follicle is selected to grow and ovulate while development of other follicles is inhibited.  相似文献   

15.
The specific requirement for FSH in the final stages of preovulatory follicle development was assessed in seasonally anoestrous ewes given 2-h injections of GnRH (250 ng/injection), with (N = 10) or without (N = 10) concurrent treatment with bovine follicular fluid (bFF: 2 ml given i.v. at 8-h intervals). Treatment with bFF significantly (P less than 0.01) suppressed plasma FSH concentrations, but, at least for the first 30 h of treatment, did not influence the magnitude of GnRH-induced LH episodes (mean max. conc. 3.00 +/- 0.39 and 3.63 +/- 0.51 ng/ml for bFF-treated and control ewes, respectively). Of 10 animals treated with GnRH for 72 h, 5/5 control ewes showed oestrus and ovulated whereas 0/5 bFF-treated ewes showed oestrus or ovulated in response to GnRH treatment. There was, however, a transient (13.2 +/- 1.0 h) increase in plasma LH concentrations in the ewes given bFF (mean max. conc. 4.64 +/- 1.57 ng/ml), which was coincident with the preovulatory LH surge recorded in animals given GnRH alone. In 10 GnRH-treated ewes slaughtered after 32 h of treatment, the mean diameter of the largest antral follicle was significantly (P less than 0.001) greater in control ewes (5.92 +/- 0.17 mm) than in animals that were also given bFF (3.94 +/- 0.14 mm). In addition, the incidence of atresia in the 3 largest antral follicles present at this time was greater in bFF-treated ewes. These results show that, when plasma FSH concentrations are suppressed by administration of bFF, although the magnitude of GnRH-induced LH episodes is unchanged, preovulatory follicular development is impaired and ovulation does not occur.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
To study the influence of the F gene on follicular dynamics and dominance, 2-year-old Booroola x Finnish Landrace (BFL, N = 17) and Booroola x Suffolk (BS, N = 18) ewes were compared with contemporary purebred Finn (FL, N = 18) and Suffolk (S, N = 18) ewes. In Exp. 1, oestrous cycles of ewes were synchronized during the breeding season with progestagen-impregnated sponges. At sponge removal (Day 0), 14 days after insertion, ewes of each of the 4 genetic groups were assigned to Group 1 in which all follicles visible on both ovaries were destroyed by electrocauterization except for the largest (F1) which was marked, Group 2 in which all visible follicles on both ovaries were destroyed, or Group 3 in which the 3 largest follicles of both ovaries were identified as F1, F2 and F3 and marked. At 48 h after treatment (Day 2), follicular growth was evaluated. At Day 0, the mean number of small follicles (1-3 mm) was higher (P less than 0.05) for BS, S and BFL (35.8, 35.1 and 32.9) than FL (24.9) ewes. Large follicles (greater than or equal to 4 mm) were more numerous (P less than 0.05) in FL (3.5) than in BS (2.1) ewes, BFL and S ewes being intermediate. Diameter of the F1 follicle was larger (P less than 0.05) for S (7.6 mm) than FL, BS and BFL (5.8, 5.1 and 5.1 mm) ewes. In Group 1, all F1 follicles marked at Day 0 ovulated at oestrus after sponge removal for BFL, BS and S ewes while in FL ewes, 2 of 6 F1 follicles regressed. In ewes ovulating, only the F1 follicle ovulated except for one S ewe which shed one more ovum. In Group 2, there were no follicles greater than or equal to 4 mm at Day 2 and no ewes ovulated after treatment. In Group 3, the proportion of marked follicles that ovulated was higher for S ewes than in those of the prolific genotypes. The number of follicles not marked at Day 0 but ovulating (compared to the total number of ovulations) was higher in BFL, BS and FL (8/11, 9/13 and 9/13) than S (3/10) ewes. In Exp. 2, prolific (BFL + BS) and non-prolific (S) ewes were compared following destruction of follicles greater than or equal to 3 mm with the F1 left intact (Treatment 1) or destroyed (Treatment 2), 12 days after sponge insertion.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Short-term nutritional supplementation stimulates folliculogenesis in ewes probably by insulin-mediated actions of glucose in the follicle. The aim of this study was to determine the effect of glucose on follicle number and granulosa levels of Aromatase P450 and phosphorylated Akt and AMPK. Twelve Ile-de-France ewes were allocated to two groups; one (n=7) infused with saline and the other (n=5) with glucose (10mM/h) for 72h in the luteal phase. At the end of infusion, ovaries were collected and all follicles >1mm in diameter were dissected to recover granulosa cells. Aromatase P450 and phosphorylated Akt and AMPK were analysed by Western blotting of granulosa cell lysates. Blood plasmas collected before and during the infusions were analysed for progesterone, oestradiol, LH, FSH, glucose, insulin and IGF-I. The infusion of glucose significantly increased follicle number but, significantly reduced Aromatase P450 and phosphorylated Akt and AMPK in granulosa cells. The circulating concentration of glucose rose significantly 3h after the start of the glucose infusion and remained elevated until 27h then fell; the circulating concentration of insulin rose significantly by 3h and remained elevated. The circulating concentration of oestradiol fell significantly by 32h and remained low; the circulating concentrations of LH and FSH were unaffected. These data show that short-term infusion of glucose stimulated follicular growth but decreased Aromatase P450 in granulosa cells. The reduced levels of phosphorylated Akt and AMPK suggest that the phosphatidylinositol 3-kinase pathway has been inhibited by high concentrations of glucose. These data also suggest that there may be functional cross-talk between FSH and insulin signalling in granulosa cells.  相似文献   

18.
Oestrus, expected to be followed by a short luteal phase, was induced in post-partum cows by weaning their calves at 35 days after parturition. Ovaries containing the first preovulatory follicles (Type F) formed after parturition were collected 3 h after the onset of oestrus. For comparison, preovulatory follicles (Type C) were collected 3 h after the onset of oestrus in normally cycling cows. The number of granulosa cells was determined and the concentrations of receptors for follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in granulosa cells and for LH in theca cells were measured. Concentrations of oestradiol-17 beta, testosterone, androstenedione and progesterone in follicular fluid were also measured. Type F follicles contained about twice the number of granulosa cells (based on DNA) as did Type C follicles (45.8 +/- 11.3 and 24.5 +/- 3.9 micrograms DNA/follicle, respectively; P less than 0.05) but these cells had fewer receptors for LH (0.13 +/- 0.02 vs 0.29 +/- 0.03 fmol/micrograms DNA; P less than 0.01) and FSH (0.61 +/- 0.08 vs 1.3 +/- 0.29 fmol/micrograms DNA; P less than 0.08) than did those from Type C follicles. Additionally, there were fewer receptors for LH in theca tissue from Type F than from Type C follicles (28.3 +/- 5.2 vs 51.3 +/- 6.1 fmol/follicle; P less than 0.01). Concentrations of oestradiol-17 beta (475.8 +/- 85.6 vs 112.9 +/- 40.0 ng/ml; P less than 0.01) and androstenedione (214.1 +/- 48.7 vs 24.7 +/- 7.7 ng/ml; P less than 0.01) in follicular fluid were higher in Type C than in Type F follicles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
To investigate the factors contributing to the different ovulation rates observed in two strains of sheep (Booroola 5.2, Merino 1.2), in-vivo monitoring of follicular kinetics followed by histological examination of both ovaries was performed during the late luteal and follicular phases. Ewes of both strains were either ovariectomized at Day 13, or had the 3 largest follicles of each ovary ink-labelled at Day 13 and were ovariectomized at Day 15, or had the 3 largest follicles of each ovary ink-labelled at Days 13 and 15 and were ovariectomized 16 h after the beginning of oestrus (N = 6 per time per strain). In another experiment, the age effects on the follicular populations of these two strains were also studied. There were 2-4 times more primordial follicles and 1.5-2 times more preantral follicles in the ovaries of Booroola than in control Merino ewes, although the number of antral follicles was the same. The percentage of normal follicles in this population was higher in Merino than Booroola ovaries. In Booroola ewes, there was no correlation between the number of antral follicles per ovary and the ovulation rate at the previous cycle (r = 0.22). This suggests that follicle numbers do not play a key role in the high ovulation rate of the Booroola strain. The number of follicles initiating growth from the primordial pool, the number of growing follicles disappearing at the preantral stage, the pattern of antrum development, granulosa cell multiplication and appearance of atresia differed between strains. The reasons for the high ovulation rate of the Booroola strain became clear when preovulatory enlargement was followed by ink labelling. An extended period of time during which recruitment of ovulatory follicles takes place, together with a low incidence of selection and the ability of the follicles to wait for ovulation are the features involved in this high ovulation rate.  相似文献   

20.
Prolific breeds of sheep (Romanov, Finn and Booroola Romanov crosses heterozygous for the Booroola gene (F+) were compared with breeds of lower prolificacy (Ile-de-France, Finn X Scottish Blackface, Merino X Blackface and Booroola X Romanov not carrying a copy of Booroola gene (++] by in-vivo monitoring of follicular kinetics by ink labelling during the late luteal phase and follicular phase of the oestrous cycle followed by histological examination of the ovaries or follicle dissection. At each of 3 successive laparotomies, the 3 largest follicles of each ovary were measured and ink labelled. At the final laparotomy, around the beginning of oestrus, all ewes were ovariectomized. High ovulation rate was not associated with the total number of antral follicles in any of the breeds. However, there were more follicles greater than 2 mm in diameter in Romanov and Booroola X Romanov crosses (F+) compared to their respective controls. Such a feature was not observed in Finnish Landrace compared to Finn X Blackface and Merino X Blackface ewes. A more numerous population of recruitable follicles, together with a similar incidence of selection through atresia, were the features associated with the high ovulation rate of Romanov compared to Ile-de-France ewes. The high ovulatory potential of the Finn ewes resulted from a markedly reduced incidence of selection through atresia. Booroola X Romanov ewes carrying a copy of the Booroola gene (F+) appeared to possess features of both parental breeds, including high numbers of recruitable follicles, smaller follicular size when recruitment occurs and an extended time for recruitment. Booroola X Romanov (++) ewes, not carrying the gene, appeared to have lost part of the 'Romanov characteristics' of a more numerous population of recruitable follicles. The variability in the kinetics of preovulatory enlargement, seen in these breeds of sheep, demonstrates that there are a number of pathways through which high ovulation rate can be achieved and hence through which ovulation rate might be manipulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号