首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteins fold by either two‐state or multistate kinetic mechanism. We observe that amino acids play different roles in different mechanism. Many residues that are easy to form regular secondary structures (α helices, β sheets and turns) can promote the two‐state folding reactions of small proteins. Most of hydrophilic residues can speed up the multistate folding reactions of large proteins. Folding rates of large proteins are equally responsive to the flexibility of partial amino acids. Other properties of amino acids (including volume, polarity, accessible surface, exposure degree, isoelectric point, and phase transfer energy) have contributed little to folding kinetics of the proteins. Cysteine is a special residue, it triggers two‐state folding reaction and but inhibits multistate folding reaction. These findings not only provide a new insight into protein structure prediction, but also could be used to direct the point mutations that can change folding rate. Proteins 2014; 82:2375–2382. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
Chengcheng Hu  Patrice Koehl 《Proteins》2010,78(7):1736-1747
The three‐dimensional structure of a protein is organized around the packing of its secondary structure elements. Although much is known about the packing geometry observed between α‐helices and between β‐sheets, there has been little progress on characterizing helix–sheet interactions. We present an analysis of the conformation of αβ2 motifs in proteins, corresponding to all occurrences of helices in contact with two strands that are hydrogen bonded. The geometry of the αβ2 motif is characterized by the azimuthal angle θ between the helix axis and an average vector representing the two strands, the elevation angle ψ between the helix axis and the plane containing the two strands, and the distance D between the helix and the strands. We observe that the helix tends to align to the two strands, with a preference for an antiparallel orientation if the two strands are parallel; this preference is diminished for other topologies of the β‐sheet. Side‐chain packing at the interface between the helix and the strands is mostly hydrophobic, with a preference for aliphatic amino acids in the strand and aromatic amino acids in the helix. From the knowledge of the geometry and amino acid propensities of αβ2 motifs in proteins, we have derived different statistical potentials that are shown to be efficient in picking native‐like conformations among a set of non‐native conformations in well‐known decoy datasets. The information on the geometry of αβ2 motifs as well as the related statistical potentials have applications in the field of protein structure prediction. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
Adamian L  Nanda V  DeGrado WF  Liang J 《Proteins》2005,59(3):496-509
Characterizing the interactions between amino acid residues and lipid molecules is important for understanding the assembly of transmembrane helices and for studying membrane protein folding. In this study we develop TMLIP (TransMembrane helix-LIPid), an empirically derived propensity of individual residue types to face lipid membrane based on statistical analysis of high-resolution structures of membrane proteins. Lipid accessibilities of amino acid residues within the transmembrane (TM) region of 29 structures of helical membrane proteins are studied with a spherical probe of radius of 1.9 A. Our results show that there are characteristic preferences for residues to face the headgroup region and the hydrocarbon core region of lipid membrane. Amino acid residues Lys, Arg, Trp, Phe, and Leu are often found exposed at the headgroup regions of the membrane, where they have high propensity to face phospholipid headgroups and glycerol backbones. In the hydrocarbon core region, the strongest preference for interacting with lipids is observed for Ile, Leu, Phe and Val. Small and polar amino acid residues are usually buried inside helical bundles and are strongly lipophobic. There is a strong correlation between various hydrophobicity scales and the propensity of a given residue to face the lipids in the hydrocarbon region of the bilayer. Our data suggest a possibly significant contribution of the lipophobic effect to the folding of membrane proteins. This study shows that membrane proteins have exceedingly apolar exteriors rather than highly polar interiors. Prediction of lipid-facing surfaces of boundary helices using TMLIP1 results in a 54% accuracy, which is significantly better than random (25% accuracy). We also compare performance of TMLIP with another lipid propensity scale, kPROT, and with several hydrophobicity scales using hydrophobic moment analysis.  相似文献   

4.
Patterns of alternation of hydrophobic and polar residues are a profound aspect of amino acid sequences, but a feature not easily interpreted for soluble proteins. Here we report statistics of hydrophobicity patterns in proteins of known structure in a current protein database as compared with results from earlier, more limited structure sets. Previous studies indicated that long hydrophobic runs, common in membrane proteins, are underrepresented in soluble proteins. Long runs of hydrophobic residues remain significantly underrepresented in soluble proteins, with none longer than 16 residues observed. These long runs most commonly occur as buried alpha helices, with extended hydrophobic strands less common. Avoiding aggregation of partially folded intermediates during intracellular folding remains a viable explanation for the rarity of long hydrophobic runs in soluble proteins. Comparison between database editions reveals robustness of statistics on aqueous proteins despite an approximately twofold increase in nonredundant sequences. The expanded database does now allow us to explain several deviations of hydrophobicity statistics from models of random sequence in terms of requirements of specific secondary structure elements. Comparison to prior membrane-bound protein sequences, however, shows significant qualitative changes, with the average hydrophobicity and frequency of long runs of hydrophobic residues noticeably increasing between the database editions. These results suggest that the aqueous proteins of solved structure may represent an essentially complete sample of the universe of aqueous sequences, while the membrane proteins of known structure are not yet representative of the universe of membrane-associated proteins, even by relatively simple measures of hydrophobic patterns.  相似文献   

5.
Poor protein solubility is a common problem in high-resolution structural studies, formulation of protein pharmaceuticals, and biochemical characterization of proteins. One popular strategy to improve protein solubility is to use site-directed mutagenesis to make hydrophobic to hydrophilic mutations on the protein surface. However, a systematic investigation of the relative contributions of all 20 amino acids to protein solubility has not been done. Here, 20 variants at the completely solvent-exposed position 76 of ribonuclease (RNase) Sa are made to compare the contributions of each amino acid. Stability measurements were also made for these variants, which occur at the i+1 position of a type II beta-turn. Solubility measurements in ammonium sulfate solutions were made at high positive net charge, low net charge, and high negative net charge. Surprisingly, there was a wide range of contributions to protein solubility even among the hydrophilic amino acids. The results suggest that aspartic acid, glutamic acid, and serine contribute significantly more favorably than the other hydrophilic amino acids especially at high net charge. Therefore, to increase protein solubility, asparagine, glutamine, or threonine should be replaced with aspartic acid, glutamic acid or serine.  相似文献   

6.
An analysis of higher-order structures of globular proteins by means of a distance-constraint approach is presented. Conformations are generated for each of 21 test proteins of small and medium sizes by optimizing an objective functionf=w ij(d ijd ij)2, whered ij is a distance between residuesi andj in a calculated conformation, d ij is an assigned distance to the (ij) pair of residues which is determined based on the statistics of known three-dimensional structures of 14 proteins in the earlier study, andw ij is a weighting factor. d ij involves information about hydrophobicity and hydrophilicity of each amino acid residue and about connectivity of a polypeptide chain. In these calculations, only the amino acid sequence is used as input data specific to a calculated protein. With respect to higher-order structures regenerated in the optimized conformations, the following properties are analyzed: (a) N14 of a residue, defined as the number of residues surrounding the residue located within a sphere of radius of 14 Å; (b) root-mean-square differences of the global and local conformations from the corresponding X-ray conformations; (c) distance profiles in the short and medium ranges; and (d) distance maps. The effects of supplementary information about locations of secondary structures and disulfide bonds are also examined to discuss the potential ability of this methodology to predict the three-dimensional structures of globular proteins.  相似文献   

7.
Sistla RK  K V B  Vishveshwara S 《Proteins》2005,59(3):616-626
We present a novel method for the identification of structural domains and domain interface residues in proteins by graph spectral method. This method converts the three-dimensional structure of the protein into a graph by using atomic coordinates from the PDB file. Domain definitions are obtained by constructing either a protein backbone graph or a protein side-chain graph. The graph is constructed based on the interactions between amino acid residues in the three-dimensional structure of the proteins. The spectral parameters of such a graph contain information regarding the domains and subdomains in the protein structure. This is based on the fact that the interactions among amino acids are higher within a domain than across domains. This is evident in the spectra of the protein backbone and the side-chain graphs, thus differentiating the structural domains from one another. Further, residues that occur at the interface of two domains can also be easily identified from the spectra. This method is simple, elegant, and robust. Moreover, a single numeric computation yields both the domain definitions and the interface residues.  相似文献   

8.
The role of hydrophobic amino acids in the formation of hydrophobic cores as one of the major driving forces in protein folding has been extensively studied. However, the implication of neutral solvent-exposed amino acids is less clear and available information is scarce. We have used a combinatorial approach to study the structural relevance of three solvent-exposed residues (Tyr(327), Thr(329), and Gln(331)) located in thebeta-sheet of the tetramerization domain of the tumor suppressor p53 (p53TD). A conformationally defined peptide library was designed where these three positions were randomized. The library was screened for tetramer stability. A set of p53TD mutants containing putative stabilizing or destabilizing residue combinations was synthesized for a thermodynamic characterization. Unfolding experiments showed a wide range of stabilities, with T(m) values between 27 and 83 degrees C. Wild type p53TD and some highly destabilized and stabilized mutants were further characterized. Thermodynamic and biophysical data indicated that these proteins were folded tetramers, with the same overall structure, in equilibrium with unfolded monomers. An NMR study confirmed that the main structural features of p53TD are conserved in all the mutants analyzed. The thermodynamic stability of the different p53TD mutants showed a strong correlation with parameters that favor formation and stabilization of the beta-sheet. We propose that stabilization through hydrophobic interactions of key secondary structure elements might be the underlying mechanism for the strong influence of solvent-exposed residues in the stability of p53TD.  相似文献   

9.
H Nakashima  K Nishikawa  T Ooi 《Proteins》1990,8(2):173-178
A compact mitochondrial gene contains all essential information about the synthesis of mitochondrial proteins which play their roles in a small compartment of the mitochondrium. Almost no noncoding regions have been found through the gene, but a necessary set of tRNAs for the 20 amino acids is provided for biosynthesis, some of them coding different amino acids from those in a usual cell. Since the gene is so compact that the produced proteins would have some characteristic aspects for the mitochondrium, amino acid compositions of mitochondrial proteins (mt-proteins) were examined in the 20-dimensional composition space. The results show that compositions of proteins translated from the mitochondrial genes have a distinct character having more hydrophobic content than others, which is illustrated by a clustered distribution in the multidimensional composition space. The cluster is located at the tail edge of the global distribution pattern of a Gaussian shape for other various kinds of proteins in the space. The mt-proteins are rich in hydrophobic amino acids as is a membrane protein, but are different from other membrane proteins in a lesser content of Val. A good correlation found between the base and amino acid compositions for the mitochondria was examined in comparison to those of organisms such as thermophilic bacterium having an extreme G-C-rich base composition.  相似文献   

10.
The growth temperature adaptation of six model proteins has been studied in 42 microorganisms belonging to eubacterial and archaeal kingdoms, covering optimum growth temperatures from 7 to 103 degrees C. The selected proteins include three elongation factors involved in translation, the enzymes glyceraldehyde-3-phosphate dehydrogenase and superoxide dismutase, the cell division protein FtsZ. The common strategy of protein adaptation from cold to hot environments implies the occurrence of small changes in the amino acid composition, without altering the overall structure of the macromolecule. These continuous adjustments were investigated through parameters related to the amino acid composition of each protein. The average value per residue of mass, volume and accessible surface area allowed an evaluation of the usage of bulky residues, whereas the average hydrophobicity reflected that of hydrophobic residues. The specific proportion of bulky and hydrophobic residues in each protein almost linearly increased with the temperature of the host microorganism. This finding agrees with the structural and functional properties exhibited by proteins in differently adapted sources, thus explaining the great compactness or the high flexibility exhibited by (hyper)thermophilic or psychrophilic proteins, respectively. Indeed, heat-adapted proteins incline toward the usage of heavier-size and more hydrophobic residues with respect to mesophiles, whereas the cold-adapted macromolecules show the opposite behavior with a certain preference for smaller-size and less hydrophobic residues. An investigation on the different increase of bulky residues along with the growth temperature observed in the six model proteins suggests the relevance of the possible different role and/or structure organization played by protein domains. The significance of the linear correlations between growth temperature and parameters related to the amino acid composition improved when the analysis was collectively carried out on all model proteins.  相似文献   

11.
Rykunov D  Fiser A 《Proteins》2007,67(3):559-568
Statistical distance dependent pair potentials are frequently used in a variety of folding, threading, and modeling studies of proteins. The applicability of these types of potentials is tightly connected to the reliability of statistical observations. We explored the possible origin and extent of false positive signals in statistical potentials by analyzing their distance dependence in a variety of randomized protein-like models. While on average potentials derived from such models are expected to equal zero at any distance, we demonstrate that systematic and significant distortions exist. These distortions originate from the limited statistical counts in local environments of proteins and from the limited size of protein structures at large distances. We suggest that these systematic errors in statistical potentials are connected to the dependence of amino acid composition on protein size and to variation in protein sizes. Additionally, atom-based potentials are dominated by a false positive signal that is due to correlation among distances measured from atoms of one residue to atoms of another residue. The significance of residue-based pairwise potentials at various spatial pair separations was assessed in this study and it was found that as few as approximately 50% of potential values were statistically significant at distances below 4 A, and only at most approximately 80% of them were significant at larger pair separations. A new definition for reference state, free of the observed systematic errors, is suggested. It has been demonstrated to generate statistical potentials that compare favorably to other publicly available ones.  相似文献   

12.
The extent of helical structure of 19 intact proteins and of 15 proteins with no disulfide bridges in the absence and presence of 10 mM sodium dodecyl sulfate (SDS) was determined using the curve-fitting method of circular dichroic spectra. The change in helicity caused by the addition of SDS was examined as a function of each amino acid fraction. An increase in the helicity upon the addition of SDS occurred in most of the proteins with no disulfide bridges (C proteins) and containing more than 0.06 Lys fraction. In most of the intact proteins (B proteins), most of which contained disulfide bridges, helicity in SDS decreased with an increase in Lys fraction. The helicity of the C proteins in SDS also tended to increase with an increase in the Leu and Phe fractions, while it decreased with an increase in the Gly fraction. For the helicity of the B proteins in SDS, there was a tendency to increase with increased Asn fraction and decrease with increased His fraction. On the other hand, amino acids were divided into eight groups according to their side-chain properties and the conformational preference for each of the amino acid groups of C proteins was calculated using a simple assumption.  相似文献   

13.
The objective was to investigate the effect of variation in forage source and feed particle size of a diet, including interactions, on the amount and the composition of microbial crude protein (CP) in a semi-continuous culture system (Rusitec). Different microbial CP fractions were compared. Five diets with mean forage proportion of 0.88 and different maize silage to grass silage ratios (100 : 0, 79 : 21, 52 : 48, 24 : 76 and 0 : 100) were used. Diets were ground through sieves with a pore size of either 1 or 4 mm, matching the particle size of fine (F) and coarse (C), respectively. Diets were characterised by increasing concentrations of CP and fibre fractions, and decreasing concentrations of starch with ascending inclusion rates of grass silage. Microbial mass was isolated from feed residues after incubation from the liquid phase of the fermenter and from the liquid effluent. The amount of synthesised microbial CP was determined on the basis of 15N balance. It increased quite linearly by the stepwise replacement of maize silage by grass silage, and was higher in C treatments compared to F treatments. Efficiency of microbial CP synthesis (EMPS) was improved from 29 to 43 mg microbial N/g degraded organic matter (OM) by increasing the proportion of grass silage in the diet, but was unaffected by particle size. The N content as well as the profiles of amino acids of the three microbial fractions was affected by diet composition and particle size. The ratio of solid- to liquid-associated microbes was affected by diet composition and feed particle size. The amount and EMPS seemed to be improved by degradation of OM from grass silage and an increasing availability of N. Moreover, the results of this study indicated a shift in the composition of the microbial community caused by variation in forage composition and feed particle size.  相似文献   

14.
Bush J  Makhatadze GI 《Proteins》2011,79(7):2027-2032
It is well known that nonpolar residues are largely buried in the interior of proteins, whereas polar and ionizable residues tend to be more localized on the protein surface where they are solvent exposed. Such a distribution of residues between surface and interior is well understood from a thermodynamic point: nonpolar side chains are excluded from the contact with the solvent water, whereas polar and ionizable groups have favorable interactions with the water and thus are preferred at the protein surface. However, there is an increasing amount of information suggesting that polar and ionizable residues do occur in the protein core, including at positions that have no known functional importance. This is inconsistent with the observations that dehydration of polar and in particular ionizable groups is very energetically unfavorable. To resolve this, we performed a detailed analysis of the distribution of fractional burial of polar and ionizable residues using a large set of ?2600 nonhomologous protein structures. We show that when ionizable residues are fully buried, the vast majority of them form hydrogen bonds and/or salt bridges with other polar/ionizable groups. This observation resolves an apparent contradiction: the energetic penalty of dehydration of polar/ionizable groups is paid off by favorable energy of hydrogen bonding and/or salt bridge formation in the protein interior. Our conclusion agrees well with the previous findings based on the continuum models for electrostatic interactions in proteins. Proteins 2011; © 2011 Wiley‐Liss, Inc.  相似文献   

15.
Hydrolysis of proteins and peptides with mercaptoethane sulfonic acid is liable to produce overestimation of the proline content owing to the production of ninhydrin-positive material (probably cysteine) which coelutes with proline on many ion-exchange analytical systems. A similar error occurs with HCl hydrolysis (especially in the presence of mercaptoethanol or thioglycollic acid) if care is not taken to oxidize cysteine during reconstitution of the hydrolysate before amino acid analysis.  相似文献   

16.
The earliest proteins had to rely on amino acids available on early Earth before the biosynthetic pathways for more complex amino acids evolved. In extant proteins, a significant fraction of the ‘late’ amino acids (such as Arg, Lys, His, Cys, Trp and Tyr) belong to essential catalytic and structure-stabilizing residues. How (or if) early proteins could sustain an early biosphere has been a major puzzle. Here, we analysed two combinatorial protein libraries representing proxies of the available sequence space at two different evolutionary stages. The first is composed of the entire alphabet of 20 amino acids while the second one consists of only 10 residues (ASDGLIPTEV) representing a consensus view of plausibly available amino acids through prebiotic chemistry. We show that compact conformations resistant to proteolysis are surprisingly similarly abundant in both libraries. In addition, the early alphabet proteins are inherently more soluble and refoldable, independent of the general Hsp70 chaperone activity. By contrast, chaperones significantly increase the otherwise poor solubility of the modern alphabet proteins suggesting their coevolution with the amino acid repertoire. Our work indicates that while both early and modern amino acids are predisposed to supporting protein structure, they do so with different biophysical properties and via different mechanisms.  相似文献   

17.
Arodź T  Płonka PM 《Proteins》2012,80(7):1780-1790
Inspection of structure changes in proteins borne by altering their sequences brings understanding of physics, functioning and evolution of existing proteins, and helps engineer modified ones. On single amino acid substitutions, the most frequent mutation type, shifts in backbone conformation are typically small, raising doubts if and how such minor modifications could drive evolutionary divergence. Here, we report that the distribution of magnitudes of structure change on such substitutions is heavy-tailed--whereas protein structures are robust to most substitutions, changes much larger than average occur with raised odds compared to what would be expected for exponential distribution with the same mean. This nonexponential behavior allows for reconciling the apparent contradiction between the observed conservation of protein structures and the substantial evolutionary plasticity implied in their diversity. The presence of the heavy tail in the distribution promotes structure divergence, facilitating exploration of new functionality, and conformations within folds, as well as exploration of structure space for new folds.  相似文献   

18.
19.
《MABS-AUSTIN》2013,5(5):838-852
Knowledge of the 3-dimensional structure of the antigen-binding region of antibodies enables numerous useful applications regarding the design and development of antibody-based drugs. We present a knowledge-based antibody structure prediction methodology that incorporates concepts that have arisen from an applied antibody engineering environment. The protocol exploits the rich and continuously growing supply of experimentally derived antibody structures available to predict CDR loop conformations and the packing of heavy and light chain quickly and without user intervention. The homology models are refined by a novel antibody-specific approach to adapt and rearrange sidechains based on their chemical environment. The method achieves very competitive all-atom root mean square deviation values in the order of 1.5 Å on different evaluation datasets consisting of both known and previously unpublished antibody crystal structures.  相似文献   

20.
Eunsung Park  Julian Lee 《Proteins》2015,83(6):1054-1067
Many proteins undergo large‐scale motions where relatively rigid domains move against each other. The identification of rigid domains, as well as the hinge residues important for their relative movements, is important for various applications including flexible docking simulations. In this work, we develop a method for protein rigid domain identification based on an exhaustive enumeration of maximal rigid domains, the rigid domains not fully contained within other domains. The computation is performed by mapping the problem to that of finding maximal cliques in a graph. A minimal set of rigid domains are then selected, which cover most of the protein with minimal overlap. In contrast to the results of existing methods that partition a protein into non‐overlapping domains using approximate algorithms, the rigid domains obtained from exact enumeration naturally contain overlapping regions, which correspond to the hinges of the inter‐domain bending motion. The performance of the algorithm is demonstrated on several proteins. Proteins 2015; 83:1054–1067. © 2015 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号