首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We used whole-mount immunocytochemistry to characterize the distribution of serotonin in the stomatogastric nervous systems of seven species of crayfish representing three genera from the family Cambaridae (Orconectes, Cambarus, and Procambarus) and one from the family Astacidae (Pacifastacus). In all species, we observed serotonin-like immunoreactivity in four gastropyloric receptor (GPR) neurons located in the lateral ventricular nerves, with one pair of neurons in each nerve. As in other crustaceans, the GPR axons project to the stomatogastric ganglion and to the bilateral commissural ganglia. In three crayfishes, we observed the GPR axons crossing the commissural ganglia, and extending toward the thoracic nervous system. This feature was most clearly and consistently seen in Pacifastacus leniusculus. The number of stained somata in the commissural ganglia varied among crayfish species from two (in Procambarus clarkii) to five (in Pacifastacus leniusculus). The largest soma (the L cell) displayed both serotonin- and tyrosine hydroxylase-like immunoreactivity in all species, suggesting that serotonin and dopamine are cotransmitters in this cell. The inferior esophageal nerve and a branch of this nerve (the inner labral nerve) contained several axons with serotonin-like immunoreactivity. These axons were clearly present in only one species (Procambarus clarkii). Serotonin acts as a neuromodulator of rhythms produced by circuits in the crab and lobster stomatogastric ganglion, and is likely to play a similar role in crayfish. Differences are apparent in the distribution of serotonin among crayfish species and between crayfish and other crustaceans, and could result in differences in the physiological action of this modulator.  相似文献   

2.
The appearance and distribution of dense-core vesicles in the stomatogastric ganglion of the spiny lobster, Panulirus interruptus, were examined using transmission electron microscopy. Following five fixation techniques, three types of dense-core vesicles were identified on the basis of size and morphology. Type-I vesicles are found in a distinct neuronal fiber system that appears to be involved in chemical transmission within the ganglion. Type-II vesicles occur in nerve processes in the ganglion, in major nerve trunks and in the perineural sheath of the nerves and ganglion. Type-III vesicles are present in all neuronal somata of the ganglion. The distinct morphology and location of the three types of vesicles suggest that their functional roles differ. Furthermore, the histochemical, biochemical and physiological data available for the stomatogastric ganglion indicate that Type-I vesicles may store dopamine.  相似文献   

3.
Summary We used a polyclonal antiserum against histamine to map histaminelike immunoreactivity (HLI) in whole mounts of the segmental ganglia and stomatogastric ganglion of crayfish and lobster. Carbodiimide fixation permitted both HRP-conjugated and FITC-conjugated secondary antibodies to be used effectively to visualize HLI in these whole mounts. Two interneurons that send axons through the inferior ventricular nerve (ivn) and the stomatogastric nerve to the stomatogastric ganglion had strong HLI, both in crayfish and in lobster. These ivn interneurons were known from other evidence to be histaminergic. The neuropil of the stomatogastric ganglion in both crayfish and lobster contained brightly labeled terminals of axons that entered the ganglion from the stomatogastric nerve. No neuronal cell bodies in this ganglion had HLI. Each segmental ganglion contained at least one pair of neurons with HLI. Some neurons in the subesophageal ganglion and in each thoracic ganglion labeled very brightly. Axons of projection interneurons with strong HLI occurred in the dorsal lateral tracts of each segmental ganglion, and sent branches to the lateral neuropils and tract neuropils of each ganglion. All the labeled neurons were interneurons; no HLI was observed in peripheral nerves.  相似文献   

4.
The cardiac ganglion from Homarus americanus was investigated for the purpose of providing biochemical and histochemical information as to the identity of the neurotransmitter(s) utilized by this system. Three techniques were employed in this study: (1) the glyoxylic acid histofluorescence staining technique (GA), which showed fluorescence characteristic of catecholamines localized in the five motor neurons; (2) high-voltage electrophoresis (HVE) in one dimension followed by ascending chromatography in the second dimension, which indicated incorporation of label from tritiated tyrosine into norepinephrine (NE) and small amounts of dopamine (DA); (3) high-pressure liquid chromatography with electrochemical detection (HPLC/EC), which indicated the presence of endogenous norepinephrine.  相似文献   

5.
1. The biosynthesis of [3H]catecholamines from [3H]L-tyrosine in the intact chromaffin tissue of cod posterior cardinal veins was studied in vitro and in vivo at 10 degrees C. 2. The tritiated products dopamine, noradrenaline and adrenaline were separated from the [3H]tyrosine by paper chromatography of tissue extracts and the radioactivity of 1 cm strips of the chromatogram was determined by liquid scintillation spectrophotometry. DOPA could never be demonstrated in the tissue extracts from any of the experiments performed. 3. The content of [3H]noradrenaline in pieces of the cardinal veins incubated in vitro was found to increase rapidly. The tissue content of dopamine and adrenaline remained at lower levels which were reached during the first few hours of the incubation. A similar pattern could be demonstrated in the chromaffin tissue in vivo after infusion of [3H]tyrosine, but the total content of the [3H]catecholamines was lower than in the in vitro experiments. 4. The results are consistent with the view that the methylation of noradrenaline is the rate-limiting step in the biosynthesis of adrenaline in cod chromaffin tissue.  相似文献   

6.
Summary The distribution of substance P-like immunoreactivity in the stomatogastric nervous systems of three decapod crustacean species, Cancer borealis, Homarus americanus, and Panulirus interruptus, was studied. The stomatogastric ganglion showed dense staining in the neuropil, but none in the somata. A single neuron stained in the esophageal ganglion. Lucifer yellow backfills and intracellular injections followed by incubation with the substance P antibody showed that the axons of this neuron project into the inferior esophageal nerves towards the paired commissural ganglia. The commissural ganglia showed a pronounced projection from a large bundle of fibers in the anterior medial portion of the circumesophageal connective. Additionally, less dense neuropil and stained somata were seen in the commissural ganglia. Staining was completely blocked by preabsorption with authentic substance P, physalaemin, eledoisin, and substance K. These data suggest that in the nervous system of crustacean species a molecule with C-terminal homology to substance P and other tachykinins is released as a neuroregulator in the stomatogastric ganglion.  相似文献   

7.
Summary The stomatogastric nervous system of a mantis shrimp,Squilla oratoria, is described. The motor nerves of the stomatogastric ganglion (STG) and their innervation of muscles of the posterior cardiac plate (pcp) and pyloric systems are detailed.The STG contains more than 25 neurons. It sends out one pair of major output nerves. The pcp-pyloric cycle recorded from the motor axons in this nerve consists of rhythmic bursts of several units which fire with a characteristic phase relationship to each other. The rhythm is intrinsic to the STG itself, but it is modifiable.Recordings from the peripheral nerves reveal that identifiable cardiac plate, pyloric dilator and pyloric neurons control sequential contractions of the pcp and pyloric muscles to constrict or dilate a number of their attached ossicles.Several modulatory input fibres in the stomatogastric nerve, activated via stimulation of the superior or inferior oesophageal nerve (son, ion), prime or trigger the cyclic motor outputs. The son inputs induce distinct effects on the cardiac and pcp-pyloric pattern generators, while the ion inputs, via the oesophageal ganglion, excite only the pcp-pyloric generator.On the basis of anatomical and physiological observations, the possible functions of motor neurons involved in the pcp-pyloric cycle are described with reference to opening of the pcp and pyloric channels.This stomatogastric nervous system inSquilla is compared to that in decapods which has been well analyzed.Abbreviations CG commissural ganglion - ion inferior oesophageal nerve - lvn lateral ventricular nerve - OG oesophageal ganglion - pep posterior cardiac plate - son superior oesophageal nerve - STG stomatogastric ganglion - stn stomatogastric nerve - ivn inferior ventricular nerve  相似文献   

8.
Summary The neuronal pathways connecting the stomatogastric nervous system with the retrocerebral complex of the cockroach, Periplaneta americana, were investigated by means of axonal cobalt chloride iontophoresis. Somata in the hypocerebral ganglion and in the nervus recurrens sending their axons to different parts of the stomatogastric nervous system were traced. Some axons in the oesophageal nerve arise from large perikarya in the anterior part of the pars intercerebralis and pass via the NCCI to the corpora cardiaca and the oesophageal nerve. They form a profuse dendritic tree in the protocerebrum. Fibers of the NCC I and NCC II as well as the NCA I and NCA II enter the stomatogastric nervous system via the hypocerebral ganglion.  相似文献   

9.
Scanning electron microscopy and immunohistochemical staining for FMRFamide-like peptides revealed that the stomatogastric nervous system of Galleria mellonella (Lepidoptera : Pyralidae) includes 5 ganglia: the frontal ganglion with 4, the hypocerebral ganglion with 2, the ingluvial ganglion with 2–4, and each of the paired proventricular ganglia with 6–8 immunoreactive perikarya. Immunoreactivity was also found in axons to and within the corpora cardiaca, in the nerves connecting stomatogastric ganglia, as well as in 8 gastric nerves that extend along longitudinal midgut muscles. Adhesion of corpora cardiaca to the hypocerebral ganglion and partial merging and shortening of gastric nerves were the only conspicuous changes of the stomatogastric system that occurred during metamorphosis.  相似文献   

10.
Summary The frontal ganglion of the cockroach Periplaneta americana was studied histologically and its neuronal pathways were mapped by use of axonal cobalt iontophoresis. Neurons and fiber tracts of the frontal ganglion are directly linked with different regions of the central nervous system (tritocerebrum, protocerebrum, subesophageal ganglion) and with the more caudal parts of the stomatogastric nervous system (hypocerebral ganglion, nervus oesophagei).Supported by the Ministerium für Wissenschaft und Technik der DDR  相似文献   

11.
Activity patterns of the constituent neurons of the posterior cardiac plate-pyloric system in the stomatogastric ganglion of the mantis shrimp Squilla oratoria were studied by recording spontaneous burst discharges intracellularly from neuronal somata. These neurons were identified electrophysiologically, and synaptic connections among them were qualitatively analysed. The posterior cardiac plate constrictor, pyloric constrictor, pyloric dilator and ventricular dilator motoneurons, and the pyloric interneuron were involved in the posterior cardiac plate-pyloric system. All the cell types could produce slow burst-forming potentials which led to repetitive spike discharges. These neurons generated sequentially patterned outputs. Most commonly, the posterior cardiac plate neuron activity was followed by the activity of pyloric constrictor neurons, and then by the activity of pyloric dilator/pyloric interneuron, and ventricular dilator neurons. The motoneurons and interneuron in the posterior cardiac plate-pyloric system were connected to each other either by electrical or by inhibitory chemical synapses, and thus constructed the neural circuit characterized by a wiring diagram which was structurally similar to the pyloric circuit of decapods. The circuitry in the stomatogastric ganglion was strongly conserved during evolution between stomatopods and decapods, despite significant changes in the peripheral structure of the foregut. There were more electrical synapses in stomatopods, and more reciprocal inhibitory synapses in decapods.Abbreviations EJP excitatory junctional potential - IPSP inhibitory postsynaptic potential - CoG commissural ganglion - CPG central pattern generator - ion inferior oesophageal nerve - OG oesophageal ganglion - pcp posterior cardiac plate - son superior oesophageal nerve - STG stomatogastric ganglion - stn stomatogastric nerve - PY pyloric constrictor - PD pyloric dilator - VD ventricular dilator - AB pyloric interneuron - lvn lateral ventricular nerves - tcpm transverse cardiac plate muscle  相似文献   

12.
Summary The anterior burster neuron of the lobster (Panulirus interruptus) stomatogastric ganglion is a conditional burster that functions as the primary pacemaker for the pyloric motor network. When modulatory inputs to this cell are blocked, it loses its bursting properties and becomes quiescent. Applications of the monoamines, dopamine, octopamine or serotonin restore rhythmic bursting in this cell (Flamm and Harris-Warrick 1986). At 15 °C, serotonin- and octopamine-induced oscillations depend critically upon sodium entry (blocked by low sodium saline or tetrodotoxin); dopamine-induced oscillations depend upon calcium entry (blocked by reduced extracellular calcium; Harris-Warrick and Flamm 1987). We show here that the ionic dependence of amine-induced oscillations in the anterior burster cell differs at 15 and 21 °C. At 21 °C, all amines have the potential to induce rhythmic oscillations in saline containing tetrodotoxin. At the elevated temperature and in tetrodotoxin, both calcium and sodium currents are essential for the maintenance of dopamine-induced oscillaions; serotonin-induced oscillations do not depend upon either calcium or sodium alone; octopamine-induced oscillations do not depend upon calcium and show a variable dependence upon sodium. Thus, multiple ionic mechanisms, which vary with both the modulator and the ambient temperature, can be recruited to support rhythmic activity in a conditional burster neuron.Abbreviations AB anterior burster - PD pyloric dilator - PY pyloric constrictor - DA dopamine - 5HT serotonin - Oct octopamine - STG stomatogastric ganglion - TTX tetrodotoxin - GSP graded synaptic potential  相似文献   

13.
Fu Q  Tang LS  Marder E  Li L 《Journal of neurochemistry》2007,101(4):1099-1107
The neural networks in the crustacean stomatogastric ganglion are modulated by neuroactive substances released locally into the neuropil of the stomatogastric ganglion and by circulating hormones released by neuroendocrine structures including the pericardial organs. Using nanoscale liquid chromatography coupled to electrospray ionization quadrupole-time-of-flight mass spectrometry, we have identified and sequenced a novel B type allatostatin (CbAST-B1), VPNDWAHFRGSWamide, present in the pericardial organs of the crabs, Cancer borealis, and Cancer productus. We describe the physiological actions of CbAST-B1 on the pyloric rhythm of the stomatogastric ganglion of the crab, Cancer borealis. CbAST-B1 reduces the pyloric network frequency in a dose-dependent manner. The effect of bath-applied CbAST-B1 depends on the preceding physiological state of the preparation. Surprisingly, despite marked amino-acid sequence dissimilarity between the novel CbAST-B1 and the A type allatostatin family of peptides (AST-A), the physiological effects of CbAST-B1 are similar to those of AST-A.  相似文献   

14.
Nervous system tissue fromPanulirus interruptus has an enzyme activity that behaves like calcium/calmodulin-dependent protein kinase II (CaM KII). This activity phosphorylates known targets of CaM KII, such as synapsin I and autocamtide 3. It is inhibited by a CaM KII-specific autoinhibitory domain peptide. In addition, this lobster brain activity displays calcium-independent activity after autophosphorylation, another characteristic of CaM KII. A cDNA from the lobster nervous system was amplified using polymerase chain reaction. The fragment was cloned and found to be structurally similar to CaM KII. Serum from rabbits immunized with a fusion protein containing part of this sequence immunoprecipitated a CaM KII enzyme activity and a family of phosphoproteins of the appropriate size for CaM KII subunits. Lobster CaM KII activity is found in the brain and stomatogastric nervous system including the commissural ganglia, commissures, stomatogastric ganglion and stomatogastric nerve. Immunoblot analysis of these same regions also identifies bands at an apparent molecular weight characteristic of CaM KII.  相似文献   

15.
Bitsch, J. and Bitsch, C. 2010. The tritocerebrum and the clypeolabrum in mandibulate arthropods: segmental interpretations. —Acta Zoologica (Stockholm) 91 : 249–266 Different interpretations of the segmental composition of the head in mandibulate arthropods are critically reviewed, with particular focus on three closely associated structures: the tritocerebrum, the stomatogastric nervous system and the clypeolabrum. The main conclusions arising from the different discussions are the following. (1) Each tritocerebral ganglion has a dual composition, clearly discernable in some crustacean and hexapod species, including a dorsal portion connected with the second antennae and a ventral portion connected with the stomatogastric nervous system via the frontal ganglion. (2) The suboesophageal commissure linking the tritocerebral lobes of the two sides, can be wholly ascribed to the tritocerebral segment. (3) The stomatogastric nervous system is a morphologically autonomous system that is not fundamentally affected by head metamerization. (4) The clypeolabrum, the epistome–labrum and the hypostome are regarded as homologous formations. The clypeolabrum represents a fundamental structure of the head probably present in the arthropod ground plan. Its close spatial and developmental association with the stomodeum and its derivative, the stomatogastric nervous system, suggests that it is an anterior outgrowth of the forehead arising from a preoral territory (presegmental acron or protocerebral–ocular region?) and secondarily connected with the tritocerebrum, rather than derived from a pair of reduced appendages.  相似文献   

16.
Maynard EA 《Tissue & cell》1971,3(1):137-160
The stomatogastric ganglion and two of the associated afferent and efferent nerve trunks (stomatogastric and dorsal ventricular nerves) from Homarus americanus have been examined with light and electron microscopy after glutaraldehyde-osmium tetroxide fixation. The dorsally located neuron somata, rich in ribosomes and glycogen, are encased in multi-layered glial and fibrous sheaths. The synaptic neuropil regions occur scattered throughout the central and ventral part of the ganglion, interspersed amonglarger nerve fibres of extrinsic and intrinsic origin from which the neuropil is derived. Neural processes containing masses of small clear vesicles plus larger dense-core vesicles make apparent synaptic contacts at points of increased membrane density with smaller, non-vesicle-containing or sometimes other vesicle-containing nerve fibres.  相似文献   

17.
The anatomy of neurons of the stomatogastric nervous system of Ascheta domesticus was studied using heavy metal iontophoresis through cut nerve ends followed by silver intensification. Nineteen categories of neuron are described and compared with neurons known from the stomatogastric nervous system of other insects. Possible functions for the neurons are suggested. Motor neuron candidates are suggested for all parts of the gut served by the stomatogastric nervous system, and axons of sensory neurons of the anterior pharynx are located. There are four neuron types that cannot readily be assigned motor, sensory, or interneuron functions: large dorsal cells of the frontal ganglion; the two neurons of the nervus connectivus, and two categories of neurons in the median neurosecretory cell group of the pars intercerebralis, the axons of which are contained in the stomatogastric nerves.  相似文献   

18.
Binding of tritiated ligands of muscarinic and dopamine receptors was analysed in rats 1, 7, 14, 28, 60 days and 24-30 months old. The following ganglia were studied: the nodose ganglion, the lumbar ganglia of sympathetic chain, the main pelvic ganglion in male rats and the paracervical ganglion in female rats. The same level was found for binding of each of ligands for all investigated ganglia. Parameters of postnatal dynamics of development M-cholino- and dopamine reception systems prove to be quite similar, but not identical. Both of the systems reach matured level during first 2 postnatal weeks. In comparison with quinuclidinylbenzilate binding failure of dopamine binding in aged rats is to be more pronounced.  相似文献   

19.
Abstract: We have investigated three aspects of the relationship between calcium and tyrosine hydroxylase activity in rat striatum. In the first series of experiments, we examined the hypothesis that the rise in dopamine synthesis during increased impulse flow results from a calcium-induced activation of tyrosine hydroxylase. Calcium (12.5–200 μ M ) had no effect when added to crude enzyme or enzyme partially purified by gel filtration. Moreover, incubation of synaptosomes with excess calcium (up to 3.5 m M ) had little or no effect on dopamine synthesis. Incubation with the depolarizing alkaloid veratridine (75 μ M ) did increase dopamine synthesis, but did not alter the activity of tyrosine hydroxylase subsequently prepared from the synaptosomes, despite the presumed rise in intracellular calcium. In the second series we examined the hypothesis that increased dopamine synthesis after axotomy results from activation of tyrosine hydroxylase owing to a decrease in intracellular calcium. Addition of the calcium chelator EGTA (100 μ M ) to crude or partially purified enzyme was without effect, whereas incubation of synaptosomes with EGTA (500 μM ) decreased cell-free enzyme activity. In the third experimental series we examined the relationship between calcium and activation of tyrosine hydroxylase by dibutyryl cyclic AMP. EGTA failed to alter the increase in the activity of tyrosine hydroxylase prepared from synaptosomes incubated with dibutyryl cyclic AMP. However, it blocked the increase in synaptosomal dopamine synthesis and dopamine content normally produced by the cyclic AMP analogue. Thus, tyrosine hydroxylase does not appear to be activated by either increases or decreases in calcium availability. However, calcium may be important for the maintenance of basal tyrosine hydroxylase activity, and may play an indirect role in the expression of tyrosine hydroxylase activation produced by other means.  相似文献   

20.
The acinar salivary glands of cockroaches receive a dual innervation from the subesophageal ganglion and the stomatogastric nervous system. Acinar cells are surrounded by a plexus of dopaminergic and serotonergic varicose fibers. In addition, serotonergic terminals lie deep in the extracellular spaces between acinar cells. Excitation-secretion coupling in cockroach salivary glands is stimulated by both dopamine and serotonin. These monoamines cause increases in the intracellular concentrations of cAMP and Ca(2+). Stimulation of the glands by serotonin results in the production of a protein-rich saliva, whereas stimulation by dopamine results in saliva that is protein-free. Thus, two elementary secretory processes, namely electrolyte/water secretion and protein secretion, are triggered by different aminergic transmitters. Because of its simplicity and experimental accessibility, cockroach salivary glands have been used extensively as a model system to study the cellular actions of biogenic amines and to examine the pharmacological properties of biogenic amine receptors. In this review, we summarize current knowledge concerning the aminergic control of cockroach salivary glands and discuss our efforts to characterize Periplaneta biogenic amine receptors molecularly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号