首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on the statements in part I according to the evolution of the underwater flight, its biophysical consequences and summarizing our knowledge on swimming performances of Penguins, the active and passive apparatus of movement was studied by dissection of 26 individuals of Pygoscelis papua, P. antarctica, P. adeliae, Eudyptes chrysolophus, and Aptenodytes forsteri. Besides the functional explanation of the Articulatio sternocoracoidea (diverging considerably from the usual type in birds), a new interpretation is given for the structures of the Articulatio humeri. In this context, the role of the Ligamentum acrocoracohumerale as an important element for co-ordination of the motion processes in the shoulder joint is elucidated. The essential curvature of the Caput humeri is found to be satisfactorily approximated by a logarithmic spiral. The understanding of the mechanics of bones and tendons leads to a reinterpretation of the role of several groups of muscles which is described in detail. Besides of the preponderant thrust producing (flapping) muscles working mainly in the isotonic manner, muscles can be distinguished which are managing the transfer of the produced forces to the body operating thereby in the isometric way. Another group of muscles has to control the position of the humerus adjusting in this way, the hydrodynamic angle of attack corresponding to the respective flow conditions.  相似文献   

2.
DASH+Wings is a small hexapedal winged robot that uses flapping wings to increase its locomotion capabilities. To examine the effects of flapping wings, multiple experimental controls for the same locomotor platform are provided by wing removal, by the use of inertially similar lateral spars, and by passive rather than actively flapping wings. We used accelerometers and high-speed cameras to measure the performance of this hybrid robot in both horizontal running and while ascending inclines. To examine consequences of wing flapping for aerial performance, we measured lift and drag forces on the robot at constant airspeeds and body orientations in a wind tunnel; we also determined equilibrium glide performance in free flight. The addition of flapping wings increased the maximum horizontal running speed from 0.68 to 1.29 m s?1, and also increased the maximum incline angle of ascent from 5.6° to 16.9°. Free flight measurements show a decrease of 10.3° in equilibrium glide slope between the flapping and gliding robot. In air, flapping improved the mean lift:drag ratio of the robot compared to gliding at all measured body orientations and airspeeds. Low-amplitude wing flapping thus provides advantages in both cursorial and aerial locomotion. We note that current support for the diverse theories of avian flight origins derive from limited fossil evidence, the adult behavior of extant flying birds, and developmental stages of already volant taxa. By contrast, addition of wings to a cursorial robot allows direct evaluation of the consequences of wing flapping for locomotor performance in both running and flying.  相似文献   

3.
Twenty-three species within the avian family Alcidae are capable of wing-propelled flight in the air and underwater. Alcids have been viewed as Northern Hemisphere parallels to penguins, and have often been studied to see if their underwater flight comes at a cost, compromising their aerial flying ability. We examined the anatomy and histochemistry of select wing muscles (Mm. pectoralis, supracoracoideus, latissimus dorsi caudalis, coracobrachialis caudalis, triceps scapularis, and scapulohumeralis caudalis) from Atlantic puffins (Fratercula arctica) to assess if the muscle fiber types reveal the existence of a compromise associated with "dual-medium" flight. Pectoralis was found to be proportional in size with that of nondiving species, although the supracoracoideus was proportionally larger in puffins. Muscle fiber types were largely aerobic in both muscles, with two distinct fast-twitch types demonstrable: a smaller, aerobic, moderately glycolytic population (FOg), and a larger, moderately aerobic, glycolytic population (FoG). The presence of these two fiber types in the primary flight muscles of puffins suggests that aerial and underwater flight necessitate a largely aerobic fiber complement. We suggest that alcids do not represent an adaptive compromise, but a stable adaptation for wing-propelled locomotion both in the air and underwater.  相似文献   

4.
The African penguin (Spheniscus demersus) is an endangered seabird that resides on the temperate southern coast of Africa. Like all penguins it is flightless, instead using its specialized wings for underwater locomotion termed ‘aquatic flight’. While musculature and locomotion of the large Antarctic penguins have been well studied, smaller penguins show different biochemical and behavioural adaptations to their habitats. We used histochemical and immunohistochemical methods to characterize fibre type composition of the African penguin primary flight muscles, the pectoralis and supracoracoideus. We hypothesized the pectoralis would contain predominantly fast oxidative–glycolytic (FOG) fibres, with mainly aerobic subtypes. As the supracoracoideus and pectoralis both power thrust, we further hypothesized these muscles would have a similar fibre type complement. Our results supported these hypotheses, also showing an unexpected slow fibre population in the deep parts of pectoralis and supracoracoideus. The latissimus dorsi was also examined as it may contribute to thrust generation during aquatic flight, and in other avian species typically contains definitive fibre types. Unique among birds studied to date, the African penguin anterior latissimus dorsi was found to consist mainly of fast fibres. This study shows the African penguin has specialized flight musculature distinct from other birds, including large Antarctic penguins.  相似文献   

5.
Electromyographic (EMG) activity was studied in American Kestrels (Falco sparverius) gliding in a windtunnel tilted to 8 degrees below the horizontal. Muscle activity was observed in Mm. biceps brachii, triceps humeralis, supracoracoideus, and pectoralis, and was absent in M. deltoideus major and M. thoracobrachialis (region of M. pectoralis). These active muscles are believed to function in holding the wing protracted and extended during gliding flight. Quantification of the EMG signals showed a lower level of activity during gliding than during flapping flight, supporting the idea that gliding is a metabolically less expensive form of locomotion than flapping flight. Comparison with the pectoralis musculature of specialized gliding and soaring birds suggests that the deep layer of the pectoralis is indeed used during gliding flight and that the slow tonic fibers found in soaring birds such as vultures represents a specialization for endurant gliding. It is hypothesized that these slow fibers should be present in the wing muscles that these birds use for wing protraction and extension, in addition to the deep layer of the pectoralis. © 1993 Wiley-Liss, Inc.  相似文献   

6.
Intermittent flight through flap‐gliding (alternating flapping phases and gliding phases with spread wings) or bounding (flapping and ballistic phases with wings folded against the body) are strategies to optimize aerial efficiency which are commonly used among small birds today. The broad morphological disparity of Mesozoic birds suggests that a range of aerial strategies could have evolved early in avian evolution. Based on biomechanics and aerodynamic theory, this study reconstructs the flight modes of two small enantiornithines from the Lower Cretaceous fossil site of Las Hoyas (Spain): Concornis lacustris and Eoalulavis hoyasi. Our results show that the short length of their wings in relation to their body masses were suitable for flying through strict flapping and intermittent bounds, but not through facultative glides. Aerodynamic models indicate that the power margins of these birds were sufficient to sustain bounding flight. Our results thus suggest that C. lacustris and E. hoyasi would have increased aerial efficiency through bounding flight, just as many small passerines and woodpeckers do today. Intermittent bounding appears to have evolved early in the evolutionary history of birds, at least 126 million years ago.  相似文献   

7.
The origin of flight in birds and theropod dinosaurs is a many-sided and debatable problem. We develop a new approach to the resolution of this problem, combining terrestrial and arboreal hypotheses of the origin of flight. The bipedalism was a key adaptation for the development of flight in both birds and theropods. The bipedalism dismissed the forelimbs from the supporting function and promoted transformation into wings. For the development of true flapping avian flight, a key role was played by the initial universal anisodactylous foot of birds. This foot pattern provided a firm support on both land and trees. Theropod dinosaurs, archaeopteryxes, and some other early feathered creatures had a pamprodactylous foot and, hence, they developed only gliding descent. Early birds descended by flattering parachuting with the use of incipient wings; this gave rise to true flight. Among terrestrial vertebrates, only bats, pterosaurians, and birds developed true flapping flight, although they followed different morphofunctional pathways when solving this task. However, it remains uncertain what initiated the adaptation of the three groups for the air locomotion. Nevertheless, the past decade has provided unexpectedly abundant paleontological data, which facilitate the resolution of this question with reference to birds.  相似文献   

8.
Gravity-defying Behaviors: Identifying Models for Protoaves   总被引:4,自引:2,他引:2  
Most current phylogenetic hypotheses based upon cladistic methodologyassert that birds are the direct descendants of derived maniraptorantheropod dinosaurs, and that the origin of avian flight necessarilydeveloped within a terrestrial context (i.e., from the "groundup"). Most theoretical aerodynamic and energetic models or chronologicallyappropriate fossil data do not support these hypotheses forthe evolution of powered flight. The more traditional modelfor the origin of flight derives birds from among small arborealearly Mesozoic archosaurs ("thecodonts"). According to thismodel, protoavian ancestors developed flight in the trees viaa series of intermediate stages, such as leaping, parachuting,gliding, and flapping. This model benefits from the assemblageof living and extinct arboreal vertebrates that engage in analogousnon-powered aerial activities using elevation as a source ofgravitational energy. Recent reports of "feathered theropods"notwithstanding, the evolution of birds from any known groupof maniraptoran theropods remains equivocal.  相似文献   

9.
Avian wing elements have been shown to experience both dorsoventral bending and torsional loads during flapping flight. However, not all birds use continuous flapping as a primary flight strategy. The pelecaniforms exhibit extraordinary diversity in flight mode, utilizing flapping, flap‐gliding, and soaring. Here we (1) characterize the cross‐sectional geometry of the three main wing bone (humerus, ulna, carpometacarpus), (2) use elements of beam theory to estimate resistance to loading, and (3) examine patterns of variation in hypothesized loading resistance relative to flight and diving mode in 16 species of pelecaniform birds. Patterns emerge that are common to all species, as well as some characteristics that are flight‐ and diving‐mode specific. In all birds examined, the distal most wing segment (carpometacarpus) is the most elliptical (relatively high Imax/Imin) at mid‐shaft, suggesting a shape optimized to resist bending loads in a dorsoventral direction. As primary flight feathers attach at an oblique angle relative to the long axis of the carpometacarpus, they are likely responsible for inducing bending of this element during flight. Moreover, among flight modes examined the flapping group (cormorants) exhibits more elliptical humeri and carpometacarpi than other flight modes, perhaps pertaining to the higher frequency of bending loads in these elements. The soaring birds (pelicans and gannets) exhibit wing elements with near‐circular cross‐sections and higher polar moments of area than in the flap and flap‐gliding birds, suggesting shapes optimized to offer increased resistance to torsional loads. This analysis of cross‐sectional geometry has enhanced our interpretation of how the wing elements are being loaded and ultimately how they are being used during normal activities. J. Morphol., 2011. © 2011 Wiley‐Liss,Inc.  相似文献   

10.
Ontogenetic and behavioral studies using birds currently do not document the early evolution of flight because birds (including juveniles) used in such studies employ forelimb oscillation frequencies over 10 Hz, forelimb stroke-angles in excess of 130°, and possess uniquely avian flight musculatures. Living birds are an advanced morphological stage in the development of flapping flight. To gain insight into the early stages of flight evolution (i.e., prebird), in the absence of a living analogue, a new approach using Strouhal number     was used. Strouhal number is a nondimensional number that describes the relationship between wing-stroke amplitude ( A ), wing-beat frequency ( f ), and flight speed ( U ). Calculations indicated that even moderate wing movements are enough to generate rudimentary thrust and that a propulsive flapping flight-stroke could have evolved via gradual incremental changes in wing movement and wing morphology. More fundamental to the origin of the avian flapping flight-stroke is the question of how a symmetrical forelimb posture—required for gliding and flapping flight—evolved from an alternating forelimb motion, evident in all extant bipeds when running except birds.  相似文献   

11.
The evolution of vertebrate flight   总被引:1,自引:0,他引:1  
Flight–defined as the ability to produce useful aerodynamic forces by flapping the wings–is one of the most striking adaptations in vertebrates. Its origin has been surrounded by considerable controversy, due in part to terminological inconsistencies, in part to phylogenetic uncertainty over the sister groups and relationships of birds, bats and pterosaurs, and in part to disagreement over the interpretation of the available fossil evidence and over the relative importance of morphological, mechanical and ecological specializations. Study of the correlation between functional morphology and mechanics in contemporary birds and bats, and in particular of the aerodynamics of flapping wings, clarifies the mechanical changes needed in the course of the evolution of flight. This strongly favours a gliding origin of tetrapod flight, and on mechanical and ecological grounds the alternative cursorial and fluttering hypotheses (neither of which is at present well-defined) may be discounted. The argument is particularly strong in bats, but weaker in birds owing to apparent inconsistencies with the fossil evidence. However, study of the fossils of the Jurassic theropod dinosaur Archaeopteryx , the sister-group of the stem-group proto-birds, supports this view. Its morphology indicates adaptation for flapping flight at the moderately high speeds which would be associated with gliding, but not for the slow speeds which would be required for incipient flight in a running cursor, where the wingbeat is aerodynamically and kinematically considerably more complex. Slow flight in birds and bats is a more derived condition, and vertebrate flapping flight apparently evolved through a gliding stage.  相似文献   

12.
Unsteady aerodynamic characteristics of a seagull wing in level flight are investigated using a boundary element method.Anew no-penetration boundary condition is imposed on the surface of the wing by considering its deformation.The geometry andkinematics of the seagull wing are reproduced using the functions and data in the previously published literature.The proposedmethod is validated by comparing the computed results with the published data in the literature.The unsteady aerodynamicscharacteristics of the seagull wing are investigated by changing flapping frequency and advance ratio.It is found that the peakvalues of aerodynamic coefficients increase with the flapping frequency.The thrust and drag generations are complicatedfunctions of frequency and wing stroke motions.The lift is inversely proportional to the advance ratio.The effects of severalflapping modes on the lift and induced drag(or thrust)generation are also investigated.Among three single modes(flapping,folding and lead & lag),flapping generates the largest lift and can produce thrust alone.For three combined modes,both flapping/foldingand flapping/lead & lag can produce lift and thrust larger than the flapping-alone mode can.Folding is shown toincrease thrust when combined with flapping,whereas lead & lag has an effect of increasing the lift when also combined withflapping.When three modes are combined together,the bird can obtain the largest lift among the investigated modes.Eventhough the proposed method is limited to the inviscid flow assumption,it is believed that this method can be used to the designof flapping micro aerial vehicle.  相似文献   

13.
Diverse taxa of animals exhibit remarkable aerial capacities, including jumping, mid-air righting, parachuting, gliding, landing, controlled maneuvers, and flapping flight. The origin of flapping wings in hexapods and in 3 separate lineages of vertebrates (pterosaurs, bats, and birds) greatly facilitated subsequent diversification of lineages, but both the paleobiological context and the possible selective pressures for the evolution of wings remain contentious. Larvae of various arboreal hemimetabolous insects, as well as many adult canopy ants, demonstrate the capacity for directed aerial descent in the absence of wings. Aerial control in the ancestrally wingless archaeognathans suggests that flight behavior preceded the origins of wings in hexapods. In evolutionary terms, the use of winglets and partial wings to effect aerial righting and maneuvers could select for enhanced appendicular motions, and ultimately lead to powered flight. Flight behaviors that involve neither flapping nor wings are likely to be much more widespread than is currently recognized. Further characterization of the sensory and biomechanical mechanisms used by these aerially capable taxa can potentially assist in reconstruction of ancestral winged morphologies and facilitate our understanding of the origins of flight.  相似文献   

14.
Insect- and bird-size drones—micro air vehicles (MAV) that can perform autonomous flight in natural and man-made environments are now an active and well-integrated research area. MAVs normally operate at a low speed in a Reynolds number regime of 104–105 or lower, in which most flying animals of insects, birds and bats fly, and encounter unconventional challenges in generating sufficient aerodynamic forces to stay airborne and in controlling flight autonomy to achieve complex manoeuvres. Flying insects that power and control flight by flapping wings are capable of sophisticated aerodynamic force production and precise, agile manoeuvring, through an integrated system consisting of wings to generate aerodynamic force, muscles to move the wings and a control system to modulate power output from the muscles. In this article, we give a selective review on the state of the art of biomechanics in bioinspired flight systems in terms of flapping and flexible wing aerodynamics, flight dynamics and stability, passive and active mechanisms in stabilization and control, as well as flapping flight in unsteady environments. We further highlight recent advances in biomimetics of flapping-wing MAVs with a specific focus on insect-inspired wing design and fabrication, as well as sensing systems.This article is part of the themed issue ‘Moving in a moving medium: new perspectives on flight’.  相似文献   

15.
Morphology, Velocity, and Intermittent Flight in Birds   总被引:3,自引:1,他引:2  
Body size, pectoralis composition, aspect ratio of the wing,and forward speed affect the use of intermittent flight in birds.During intermittent non-flapping phases, birds extend theirwings and glide or flex their wings and bound. The pectoralismuscle is active during glides but not during bounds; activityin other primary flight muscles is variable. Mechanical power,altitude, and velocity vary among wingbeats in flapping phases;associated with this variation are changes in neuromuscularrecruitment, wingbeat frequency, amplitude, and gait. Speciesof intermediate body mass (35–158 g) tend to flap-glideat slower speeds and flap-bound at faster speeds, regardlessof the aspect ratio of their wings. Such behavior may reducemechanical power output relative to continuous flapping. Smallerspecies (<20 g) with wings of low aspect ratio may flap-boundat all speeds, yet existing models do not predict an aerodynamicadvantage for the flight style at slow speeds. The behaviorof these species appears to be due to wing shape rather thanpectoralis physiology. As body size increases among species,percent time spent flapping increases, and birds much largerthan 300 g do not flap-bound. This pattern may be explainedby adverse scaling of mass-specific power or lift per unit poweroutput available from flight muscles. The size limit for theability to bound intermittently may be offset somewhat by thescaling of pectoralis composition. The percentage of time spentflapping during intermittent flight also varies according toflight speed.  相似文献   

16.
Wing flapping is one of the most widespread propulsion methods found in nature; however, the current understanding of the aerodynamics in bird wakes is incomplete. The role of the unsteady motion in the flow and its contribution to the aerodynamics is still an open question. In the current study, the wake of a freely flying European starling has been investigated using long-duration high-speed Particle Image Velocimetry (PIV) in the near wake. Kinematic analysis of the wings and body of the bird has been performed using additional high-speed cameras that recorded the bird movement simultaneously with the PIV measurements. The wake evolution of four complete wingbeats has been characterized through reconstruction of the time-resolved data, and the aerodynamics in the wake have been analyzed in terms of the streamwise forces acting on the bird. The profile drag from classical aerodynamics was found to be positive during most of the wingbeat cycle, yet kinematic images show that the bird does not decelerate. It is shown that unsteady aerodynamics are necessary to satisfy the drag/thrust balance by approximating the unsteady drag term. These findings may shed light on the flight efficiency of birds by providing a partial answer to how they minimize drag during flapping flight.  相似文献   

17.
Hui CA 《Journal of morphology》2002,251(3):284-293
This study examined furcula (wishbone) shape relative to flight requirements. The furculae from 53 museum specimens in eight orders were measured: 1) three-dimensional shape (SR) as indicated by the ratio of the direct distance between the synostosis interclavicularis and the ligamentous attachment of one of its clavicles to the actual length of the clavicle between those same two points, and 2) curvature within the primary plane (LR) as indicated by the ratio of the length of the clavicle to the sum of the orthogonal distances between the same points using a projected image. Canonical discriminant analysis of these ratios placed the individuals into a) one of four general flight categories and b) one of eight taxonomic orders. The four flight categories were defined as: i) soaring with no flapping, ii) flapping with no soaring, iii) subaqueous (i.e., all wingbeats taking place under water), and iv) partial subaqueous (i.e., wingbeats used for both aerial and submerged flapping). The error rate for placement of the specimens in flight categories was only 26.4%, about half of the error rate for placement in taxonomic orders (51.3%). Subaqueous fliers (penguins, great auks) have furculae that are the most V-shaped. Partial subaqueous fliers (alcids, storm petrels) have furculae that are more U-shaped than the subaqueous fliers but more V-shaped than the aerial flapping fliers. The partial subaqueous fliers have furculae that are also the most anteriorly curved, possibly increasing protraction capability by changing the angle of applied force and increasing attachment area for the origin of the sternobrachialis pectoralis. The increased protraction capability can counteract profile drag, which is greater in water than in air due to the greater density of water. Soaring birds have furculae that are more U-shaped or circular than those of flapping birds and have the smallest range of variation. These results indicate that the shape of the furcula is functionally related to general differences in flight requirements and may be used to infer relationships of these requirements among birds.  相似文献   

18.
The use of biomimetic tandem flapping foils for ships and underwater vehicles is considered as a unique and interesting concept in the area of marine propulsion.The flapping wings can be used as a thrust producing,stabilizer and control devices which has both propulsion and maneuvering applications for marine vehicles.In the present study,the hydrodynamic performance of a pair of flexible flapping foils resembling penguin flippers is studied.A ship model of 3 m in length is fitted with a pair of counter flapping foils at its bottom mid-ship region.Model tests are carried out in a towing tank to estimate the propulsive performance of flapping foils in bollard and self propulsion modes.The same tests are performed in a numerical environment using a Computational Fluid Dynamics (CFD) software.The numerical and experimental results show reasonably good agreement in both bollard pull and self propulsion trials.The numerical studies are carried out on flexible flapping hydrofoil in unsteady conditions using moving unstructured grids.The efficiency and force coefficients of the flexible flapping foils are determined and presented as a function of Strouhal number.  相似文献   

19.
An improved design of a biomimetic underwater vehicle (RoMan-II) inspired by manta ray is presented in this paper. The design of the prototype and the swimming motion control are discussed. Instead of using rigid multiple degree-of-freedom linkages as fin rays in the first version, six flexible fin rays are adopted to drive two sided fins which generate thrust through flapping motions. Furthermore, in order to save the energy for a long distance cruising, a bio-inspired gliding motion is incorporated onto the motion control of the improved prototype. With a closed-loop buoyancy control system, the vehicle can perform gliding locomotion in water, which reduces the overall energy consumption. The vehicle can also perform pivot turning and backward locomotion without turning its body. It can achieve an average velocity of one body length per second. The vehicle is able to carry various sensors or communication equipments, as the payload capacity is about 4 kg. Initial testing shows that the operation time of the buoyancy body is estimated to about 6 hours for free swimming and 90 hours for a pure gliding. The flapping frequency, flapping amplitude, and the number of waves performed across the fin's chord and wave directions can be independently tuned through the proposed control scheme. In general, the present prototype provides a useful platform to study the ray-like swimming motion in a single or combination mode of flapping, undulation and gliding.  相似文献   

20.
Two styles of bird locomotion, hovering and intermittent flight, have great potential to inform future development of autonomous flying vehicles. Hummingbirds are the smallest flying vertebrates, and they are the only birds that can sustain hovering. Their ability to hover is due to their small size, high wingbeat frequency, relatively large margin of mass-specific power available for flight and a suite of anatomical features that include proportionally massive major flight muscles (pectoralis and supracoracoideus) and wing anatomy that enables them to leave their wings extended yet turned over (supinated) during upstroke so that they can generate lift to support their weight. Hummingbirds generate three times more lift during downstroke compared with upstroke, with the disparity due to wing twist during upstroke. Much like insects, hummingbirds exploit unsteady mechanisms during hovering including delayed stall during wing translation that is manifest as a leading-edge vortex (LEV) on the wing and rotational circulation at the end of each half stroke. Intermittent flight is common in small- and medium-sized birds and consists of pauses during which the wings are flexed (bound) or extended (glide). Flap-bounding appears to be an energy-saving style when flying relatively fast, with the production of lift by the body and tail critical to this saving. Flap-gliding is thought to be less costly than continuous flapping during flight at most speeds. Some species are known to shift from flap-gliding at slow speeds to flap-bounding at fast speeds, but there is an upper size limit for the ability to bound (~0.3 kg) and small birds with rounded wings do not use intermittent glides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号