共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The purpose of this study was to examine the levels of norepinephrine (NE) turnover in skin tissues and to determine the effect of nitric oxide (NO) on NE production in acupuncture points (acupoints) and meridians. The rats were pretreated with alpha-methyl-tyrosine methyl ester and intravenously infused with L-(2,3,5,6-(3)H)-tyrosine. Blood was withdrawn and skin tissues were excised from the low skin resistance points, non-acupoint, and non-meridian areas located on leg, arm, or trunk. The results showed that the skin NE concentration and (3)H-NE release in acupoints were significantly higher than those in non-acupoints and non-meridian controls. (3)H-NE releases in the acupoints were increased by intravenous infusion of 2-N,N-diethylamino-diazenolate-2-oxide, an NO donor, but lowered by N(G)-Propyl-L-arginine, an inhibitor of neuronal NO synthesis. NE turnover rates in the acupoints were lower in the NO donor treated group while the inhibitor of NO synthesis reversed the trend. In contrast, NE turnover rates were not altered by NO donor and inhibitor of NO synthesis in non-acupoint and non-meridian control tissues. This is the first evidence that NE turnover was consistently decreased in acupoints and enhanced NE synthesis/release in acupoints were facilitated by presence of an NO donor and inhibited by an inhibitor of NO synthesis. The data suggest that skin NE synthesis/release in acupoints/meridians is increased in skin acupoints, which is modulated by L-arginine-derived NO synthesis in sympathetic nervous system. 相似文献
3.
Nitric oxide production by arsenite 总被引:6,自引:0,他引:6
Arsenic can either enhance or reduce nitric oxide (NO) production, depending on the type of cell, the species and dose of arsenical tested. The mechanisms of how arsenic increases or decreases NO production remain unclear. Because NO is associated with many pathological conditions, it is conceivable that in those arsenic-target tissues, the NO production may be upregulated by continuous arsenic exposure, and a prolonged over-production of NO may cause inflammation hence a pathological condition. A prolonged interference with the normal physiological level of NO may also play a role in the initiation, promotion, and progression of arsenic-related human cancers. Suppression of NO production has been shown to reduce arsenite-induced oxidative DNA damage, inhibition of pyrimidine dimer excision, and micronuclei. However, a completely reliable story on how NO is involved in arsenic-related human disease is still lacking. 相似文献
4.
Zídek Z 《European cytokine network》2001,12(1):22-32
Enhanced levels of cyclic AMP (cAMP), resulting from stimulation of adenylyl cyclase through activation of distinct pharmacological receptor systems, have a remarkable impact on the activity of the immune system. Among other responses, production of nitric oxide (NO) is also affected. The effects of cAMP range from stimulation to inhibition (or no effect) of immune-stimulated biosynthesis of NO, with a preponderance of stimulatory interference. cAMP has been shown to be a potent, dual modulator of cytokine expression. It dose-dependently suppresses secretion of major NO up-regulatory cytokines tumor necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma). On the other hand, production of IL-10, which is known to regulate the inducible NO synthase (iNOS) activation in both a positive and negative direction, is inversely enhanced. It is suggested that the dual effects of cAMP on NO formation are likely to result from the differences in the concentration ratio of these cytokines. The value of this parameter depends on the type and concentration of cAMP-stable derivatives and cAMP-enhancing agents, such as prostaglandins, beta-adrenoceptor agonists, phosphodiesterase inhibitors, forskolin and cholera toxin. The cytokine ratio may be influenced by dynamically developing multiple down- and up-regulatory feedback circuits among cytokines, NO, and cAMP. 相似文献
5.
6.
7.
Carlos Sanhueza Joaquín Araos Luciano Naranjo Eric Barros Mario Subiabre Fernando Toledo Jaime Gutiérrez Delia I. Chiarello Fabián Pardo Andrea Leiva Luis Sobrevia 《Journal of cellular and molecular medicine》2016,20(12):2223-2230
Nitric oxide plays several roles in cellular physiology, including control of the vascular tone and defence against pathogen infection. Neuronal, inducible and endothelial nitric oxide synthase (NOS) isoforms synthesize nitric oxide. Cells generate acid and base equivalents, whose physiological intracellular concentrations are kept due to membrane transport systems, including Na+/H+ exchangers and Na+/HCO3? transporters, thus maintaining a physiological pH at the intracellular (~7.0) and extracellular (~7.4) medium. In several pathologies, including cancer, cells are exposed to an extracellular acidic microenvironment, and the role for these membrane transport mechanisms in this phenomenon is likely. As altered NOS expression and activity is seen in cancer cells and because this gas promotes a glycolytic phenotype leading to extracellular acidosis in gynaecological cancer cells, a pro‐inflammatory microenvironment increasing inducible NOS expression in this cell type is feasible. However, whether abnormal control of intracellular and extracellular pH by cancer cells regards with their ability to synthesize or respond to nitric oxide is unknown. We, here, discuss a potential link between pH alterations, pH controlling membrane transport systems and NOS function. We propose a potential association between inducible NOS induction and Na+/H+ exchanger expression and activity in human ovary cancer. A potentiation between nitric oxide generation and the maintenance of a low extracellular pH (i.e. acidic) is proposed to establish a sequence of events in ovarian cancer cells, thus preserving a pro‐proliferative acidic tumour extracellular microenvironment. We suggest that pharmacological therapeutic targeting of Na+/H+ exchangers and inducible NOS may have benefits in human epithelial ovarian cancer. 相似文献
8.
Małolepsza U 《Postepy biochemii》2007,53(3):263-271
There are still many controversial observations and opinions on the cellular/subcellular localization and sources of endogenous nitric oxide synthesis in plant cells. NO can be produced in plants by non-enzymatic and enzymatic systems depending on plant species, organ or tissue as well as on physiological state of the plant and changing environmental conditions. The best documented reactions in plant that contribute to NO production are NO production from nitrite as a substrate by cytosolic (cNR) and membrane bound (PM-NR) nitrate reductases (NR), and NO production by several arginine-dependent nitric oxide synthase-like activities (NOS). The latest papers indicate that mitochondria are an important source of arginine- and nitrite-dependent NO production in plants. There are other potential enzymatic sources of NO in plants including xanthine oxidoreductase, peroxidase, cytochrome P450. 相似文献
9.
King SB 《Free radical biology & medicine》2004,37(6):737-744
Hydroxyurea is a relatively new treatment for sickle cell disease. A portion of hydroxyurea's beneficial effects may be mediated by nitric oxide, which has also drawn considerable interest as a sickle cell disease treatment. Patients taking hydroxyurea show a significant increase in iron nitrosyl hemoglobin and plasma nitrite and nitrate within 2 h of ingestion, providing evidence for the in vivo conversion of hydroxyurea to nitric oxide. Hydroxyurea reacts with hemoglobin to produce iron nitrosyl hemoglobin, nitrite, and nitrate, but these reactions do not occur fast enough to account for the observed increases in these species in patients taking hydroxyurea. This report reviews recent in vitro studies directed at better understanding the in vivo nitric oxide release from hydroxyurea in patients. Specifically, this report covers: (1) peroxidase-mediated formation of nitric oxide from hydroxyurea; (2) nitric oxide production after hydrolysis of hydroxyurea to hydroxylamine; and (3) the nitric oxide-producing structure-activity relationships of hydroxyurea. Results from these studies should provide a better understanding of the nitric oxide donor properties of hydroxyurea and guide the development of new hydroxyurea-derived nitric oxide donors as potential sickle cell disease therapies. 相似文献
10.
Huffman LJ Prugh DJ Millecchia L Schuller KC Cantrell S Porter DW 《Journal of biosciences》2003,28(1):29-37
Exposure of the lung to lipopolysaccharide (LPS) or silica results in an activation of alveolar macrophages (AMs), recruitment of polymorphonuclear leukocytes (PMNs) into bronchoalveolar spaces, and the production of free radicals. Nitric oxide (NO) is one of the free radicals generated by bronchoalveolar lavage (BAL) cell populations following either LPS or silica exposure. The purpose of the present study was to assess the relative contributions of AMs and PMNs to the amounts of NO produced by BAL cells following intratracheal (IT) instillation of either LPS or silica. Male Sprague Dawley rats (265-340 g body wt.) were given LPS (10 mg/100 g body wt.) or silica (5 mg/100 g body wt.). BAL cells were harvested 18-24 h post-IT and enriched for AMs or PMNs using density gradient centrifugation. Media levels of nitrate and nitrite (NOx; the stable decomposition products of NO) were then measured 18 h after ex vivo culture of these cells. Following IT exposure to either LPS or silica, BAL cell populations were approximately 20% AMs and approximately 80% PMNs. After density gradient centrifugation of BAL cells from LPS- or silica-treated rats, cell fractions were obtained which were relatively enriched for AMs (approximately 60%) or PMNs (approximately 90%). The amounts of NOx produced by the AM-enriched fractions from LPS- or silica-treated rats were approximately 2-4-fold greater than that produced by the PMN-enriched fractions. Estimations of the relative contribution of AMs or PMNs to the NOx produced indicated that: (i) following LPS treatment, 75%-89% of the NOx was derived from AMs and 11%-25% from PMNs; and (ii) following silica treatment, 76%-100% of the NOx was derived from AMs and 0-24% from PMNs. Immunohistochemistry for inducible NO synthase on lung tissue sections supported these findings. We conclude that AMs are the major source of the NO produced by BAL cells during acute pulmonary inflammatory responses to LPS or silica. 相似文献
11.
Morphine modulation of plasmodial-antigens-induced colony-stimulating factors production by macrophages 总被引:5,自引:0,他引:5
Morphine abuse is known to cause immunosuppression and enhanced host susceptibility to malaria. We studied the effect of morphine on the Plasmodium berghei total-parasite-antigens soluble in culture medium (P.b.SA)-induced production of colony-stimulating factors (CSFs) by mouse peritoneal macrophages, in vitro. Morphine exerted a concentration-dependent biphasic modulatory effect; at 1 x 10(-4)-1 x 10 x 10(-6) M it slightly inhibited, whereas at 1 X 10(-8)-1 x 10(-10) M it augmented the production of CSFs. However, at 1 x 10(-12) M concentration the augmenting effect of morphine was significantly (p<0.05) diminished. Selective agonists of delta- (DPDPE) and mu- (DAGO) opioid receptors also respectively, inhibited and augmented the production of CSFs. The CSFs appear to be synthesized de novo as cycloheximide (50.0 microg/ml) completely inhibited their production. Naloxone ( 1 x 10(-5) M) lacked any effect on the inhibitory effect of morphine; however, at 1 x 10(-3) M it exerted partial blocking effect. Conversely, at 1 x 10(-5) M naloxone significantly (p<0.05) blocked the augmenting effect of morphine. These results suggest that morphine via opioid receptors, in a concentration-dependent biphasic manner, modulated the P.b.SA-induced de novo production of CSFs by macrophages, in vitro. 相似文献
12.
Nitric oxide inhibits superoxide production by inflammatory polymorphonuclear leukocytes 总被引:5,自引:0,他引:5
Rodenas Jesus; Mitjavila M. Teresa; Carbonell Teresa 《American journal of physiology. Cell physiology》1998,274(3):C827
Nitric oxide(NO ·) has a complex role in the inflammatory response. Inthis study, we modified the levels of endogenous NO · in vivoin an acute model of inflammation and evaluated the interactionsbetween NO · and superoxide anion() produced bypolymorphonuclear leukocytes (PMNs) accumulated in the inflamed area.We injected phosphate-buffered saline (control group), 6 µmol ofL-N5-(1-iminoethyl)ornithine(L-NIO group), or 6 µmol ofL-arginine (L-arginine group) into thegranuloma pouch induced by carrageenan in rats. plus (indicative of NO · generation) was 188 nmol in the exudate of the control group, but itdecreased in the L-NIO group(P < 0.05) and increased in theL-arginine group(P < 0.05). When PMNsfrom treated rats were incubated in vitro, the productionof superoxide anion () decreased by ~46% in theL-arginine group. Furthermore, was inhibited in PMNs whenL-arginine was addedto the incubation medium before phorbol 12-myristate 13-acetatestimulation but not when added simultaneously. Our results suggest aprotective role for NO · in inflammation, through theinactivation of NADPH oxidase and the consequent impairment of production for cell-mediatedinjury. 相似文献
13.
Nitric oxide production in agricultural soils 总被引:2,自引:0,他引:2
Numerous papers on nitric oxide have been published covering various aspects ranging from its solution and gas-phase chemistry, biochemical and physiological functions and atmospheric processes. This review emphasizes recent developments in the literature relating to NO/NOx production in agricultural soils. We have tried to minimize overlap with other recent and relevant review articles. Emission measurements that have been made since 1992 are tabulated and discussed in terms of variability, fertilization effects, and advances made in monitoring fluxes. We describe attempts made by a number of authors to utilize ecological markers such as aeration, water, ammonium, nitrate content, etc. in order to distinguish between nitrification and denitrification as the primary source of production and/or consumption in natural field situations. This may allow a rational accounting for the high spatial and temporal variability observed, and the formulation of reliable predictive models. Factors such as diffusion, oxygen, water, and carbon (content and quality) that regulate or significantly influence production, consumption and emission are discussed. Finally some important implications of recent research relating to nitrification and denitrification is presented showing the chemical oxidation of NO which could occur when the acetylene inhibition technique is used. 相似文献
14.
Sud N Sharma S Wiseman DA Harmon C Kumar S Venema RC Fineman JR Black SM 《American journal of physiology. Lung cellular and molecular physiology》2007,293(6):L1444-L1453
Previously, we have shown that pulmonary arterial endothelial cells (PAECs) isolated from fetal lambs produce significant levels of nitric oxide (NO) but minimal superoxide upon stimulation, whereas PAECs isolated from 4-wk-old lambs produce significant amounts of both NO and superoxide. These data indicated that a certain degree of uncoupling of endothelial NO synthase (eNOS) occurs in PAECs during postnatal development. In this study, we sought to extend these studies by investigating the potential role of heat shock protein 90 (HSP90) in eNOS coupling. Western blot analyses revealed higher HSP90 expression in PAECs isolated from fetal compared with 4-wk-old lambs, whereas the analysis of recombinant human eNOS activation in vitro in the presence of HSP90 indicated that HSP90 significantly augmented NO production while inhibiting superoxide generation from eNOS. To further investigate whether HSP90 could be involved in uncoupling of eNOS in PAECs isolated from 4-wk-old lambs, we utilized an adenovirus to overexpress HSP90. We found that overexpression of HSP90 significantly increased the shear-stimulated association of HSP90 with eNOS and led to significant increases in NO production and reduced NOS-dependent superoxide generation. Conversely, the exposure of PAECs isolated from fetal lambs to the HSP90 inhibitor radicicol led to significant decreases in eNOS-HSP90 interactions, decreased shear-stimulated NO generation, and increased NOS-dependent superoxide production indicative of eNOS uncoupling. Finally, we examined eNOS-HSP90 interactions in our lamb model of pulmonary hypertension associated with increased pulmonary blood flow (shunt). Our data indicate that HSP90-eNOS interactions were decreased in shunt lambs and that this was associated with decreased NO generation and an increase in eNOS-dependent generation of superoxide. Together, our data support a significant role for HSP90 in promoting NO generation and inhibiting superoxide generation by eNOS and indicate that the disruption of this interaction may be involved in the endothelial dysfunction associated with pulmonary hypertension. 相似文献
15.
16.
Kohno K Okamoto I Sano O Arai N Iwaki K Ikeda M Kurimoto M 《Bioscience, biotechnology, and biochemistry》2004,68(1):138-145
In this study, we have examined the anti-inflammatory actions of royal jelly (RJ) at a cytokine level. When supernatants of RJ suspensions were added to a culture of mouse peritoneal macrophages stimulated with lipopolysaccharide and IFN-gamma, the production of proinflammatory cytokines, such as TNF-alpha, IL-6, and IL-1, was efficiently inhibited in a dose-dependent manner without having cytotoxic effects on macrophages. This suggests that RJ contains factor(s) responsible for the suppression of proinflammatory cytokine secretion. We named the factor for honeybees RJ-derived anti-inflammatory factor (HBRJ-AIF), and further investigated the molecular aspects of it. Size fractionation study showed that HBRJ-AIF is composed of substances of low (< 5 kDa) and high (> 30 kDa) molecular weights, with the former being a major component. Chromatographic analysis showed that MRJP3 is one candidate for the HBRJ-AIF with high molecular weights. Thus, our results suggest that RJ has anti-inflammatory actions through inhibiting proinflammatory cytokine production by activated macrophages. 相似文献
17.
Modulation of macrophage functions by fatty acids (FA) has been studied by several groups, but the effect of FA on nitric oxide production by macrophages has been poorly examined. In the present study the effect of palmitic, stearic, oleic, linoleic, arachidonic, docosahexaenoic and eicosapentaenoic acids on NF-kappaB activity and NO production in J774 cells (a murine macrophage cell line) was investigated. All FA tested stimulated NO production at low doses (1-10 microM) and inhibited it at high doses (50-200 microM). An increase of iNOS expression and activity in J774 cells treated with a low concentration of FA (5 microM) was observed. The activity of NF-kappaB was time-dependently enhanced by the FA treatment. The inhibitory effect of FA on NO production may be due to their cytotoxicity, as observed by loss of membrane integrity and/or increase of DNA fragmentation in cells treated for 48 h with high concentrations. The results indicate that, at low concentrations FA increase NO production by J774 cells, whereas at high concentrations they cause cell death. 相似文献
18.
Brock TG McNish RW Mancuso P Coffey MJ Peters-Golden M 《Prostaglandins & other lipid mediators》2003,71(3-4):131-145
Resident rat peritoneal macrophages synthesize a variety of prostanoids and leukotrienes from arachidonic acid. Overnight treatment with lipopolysaccharide (LPS) induces the synthesis of cyclooxygenase-2 (COX-2) and an altered prostanoid profile that emphasizes the preferential conversion of arachidonic acid to prostacyclin and prostaglandin E2. In these studies, we report that exposure to LPS also caused a strong suppression of 5-lipoxygenase but not 12-lipoxygenase activity, indicated by the inhibition of synthesis of both leukotriene B4 and 5-hydroxyeicosatetraenoic acid (5-HETE), but not of 12-HETE. Inhibition of 5-lipoxygenase activity by LPS was both time- and dose-dependent. Treatment of macrophages with prostaglandin E2 partially inhibited leukotriene synthesis, and cyclooxygenase inhibitors partially blocked the inhibition of leukotriene generation in LPS-treated cells. In addition to COX-2, nitric oxide synthase (NOS) was also induced by LPS. Treatment of macrophages with an NO donor mimicked the ability of LPS to significantly reduce leukotriene B4 synthesis. Inhibition of NOS activity in LPS-treated cells blunted the suppression of leukotriene synthesis. Inhibition of both inducible NOS and COX completely eliminated leukotriene suppression. Finally, macrophages exposed to prolonged LPS demonstrated impaired killing of Klebsiella pneumoniae and the combination of NOS and COX inhibitors restored killing to the control level. These results indicate that prolonged exposure to LPS severely inhibits leukotriene production via the combined action of COX and NOS products. The shift in mediator profile, to one that minimizes leukotrienes and emphasizes prostacyclin, prostaglandin E2 and NO, provides a signal that reduces leukocyte function, as indicated by impaired killing of Gram-negative bacteria. 相似文献
19.
Nitric oxide (NO) is currently regarded as a signal molecule involved in plant cell differentiation and programmed cell death. Here, we investigated NO production in the differentiating xylem of Zinnia elegans by confocal laser scanning microscopy to answer the question of whether NO is produced during xylem differentiation. Results showed that NO production was mainly located in both phloem and xylem regardless of the cell differentiation status. However, there was evidence for a spatial NO gradient inversely related to the degree of xylem differentiation and a protoplastic NO burst was associated with the single cell layer of pro-differentiating thin-walled xylem cells. Confirmation of these results was obtained using trans-differentiating Z. elegans mesophyll cells. In this system, the scavenging of NO by means of 2-phenyl-4,4,5,5-tetramethyl imidazoline-1-oxyl-3-oxide (PTIO) inhibits tracheary element differentiation but increases cell viability. These results suggest that plant cells, which are just predetermined to irreversibly trans-differentiate in xylem elements, show a burst in NO production, this burst being sustained as long as secondary cell wall synthesis and cell autolysis are in progress. 相似文献
20.
Cintia Monteiro de Barros Danielle Ronald de Carvalho Leonardo R. Andrade Mauro Sérgio G. Pavão Silvana Allodi 《Cell and tissue research》2009,338(1):117-128
Ascidian hemolymph contains various types of blood cells (hemocytes), which are believed to be involved in defense mechanisms. We have studied nitric-oxide (NO) synthase activity in hemocytes of the ascidian Styela plicata after exposure to lipopolysaccharide (LPS). To investigate which cell types are involved in NO production, we first identified, by electron microscopy, the types of hemocytes previously described, mainly by light microscopy, by others. Five types of blood cells could be recognized in the hemolymph: granulocytes, hemoblasts, lymphocyte-like cells, morula cells, and pigment cells. The lymphocyte-like cells produced the most NO. In agreement with studies of other invertebrates, nitrite generation did not change after LPS stimulation in assays in vitro, under either different concentrations of LPS or different time periods. Therefore, we performed an in vivo assay by injecting a known quantity of Escherichia coli into the tunic of the ascidians in order to investigate possible differences in NO levels. No increase of NO occurred accompanying the inflammatory reaction suggesting that another molecule in the pathway was involved. We found that nuclear factor κB (NFκB) was activated. Since NFκB is involved in the production of many substances related to immune responses, additional molecules might also be generated in response to E. coli infection. These observations may improve our understanding of the reaction of animals to eutrophic conditions. 相似文献