首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sequence heterochrony (changes in the order in which events occur) is a potentially important, but relatively poorly explored, mechanism for the evolution of development. In part, this is because of the inherent difficulties in inferring sequence heterochrony across species. The event-pairing method, developed independently by several workers in the mid-1990s, encodes sequences in a way that allows them to be examined in a phylogenetic framework, but the results can be difficult to interpret in terms of actual heterochronic changes. Here, we describe a new, parsimony-based method to interpret such results. For each branch of the tree, it identifies the least number of event movements (heterochronies) that will explain all the observed event-pair changes. It has the potential to find all alternative, equally parsimonious explanations, and generate a consensus, containing the movements that form part of every equally most parsimonious explanation. This new technique, which we call Parsimov, greatly increases the utility of the event-pair method for inferring instances of sequence heterochrony.  相似文献   

2.
Heterochrony (differences in developmental timing between species) is a major mechanism of evolutionary change. However, the dynamic nature of development and the lack of a universal time frame makes heterochrony difficult to analyze. This has important repercussions in any developmental study that compares patterns of morphogenesis and gene expression across species. We describe a method that makes it possible to quantify timing shifts in embryonic development and to map their evolutionary history. By removing a direct dependence on traditional staging series, through the use of a relative time frame, it allows the analysis of developmental sequences across species boundaries. Applying our method to published data on vertebrate development, we identified clear patterns of heterochrony. For example, an early onset of various heart characters occurs throughout amniote evolution. This suggests that advanced (precocious) heart development arose in evolutionary history before endothermy. Our approach can be adapted to analyze other forms of comparative dynamic data, including patterns of developmental gene expression.  相似文献   

3.
A new method is proposed which uses transitions among acts in non-stereotyped behavioural sequences as phylogenetic characters. This method is derived from the event-pairing method designed for the phylogenetic study of developmental sequences and from ethological analyses of transition matrices. It is applied to study the phylogenetic relationships within a well-known group, the presocial Zetoborinae cockroaches. The analysis is carried out with three data sets: a behavioural data set with transitions among acts in behavioural dyadic sequences, together with morphological and molecular data sets. Non-stereotyped behaviour proved to be phylogenetically informative and to display low homoplasy. This new method opens an avenue for studying the evolution of behaviour in the framework of phylogenetic analysis, which was restricted until now to the study of stereotyped sequences and/or isolated features involved in courting or building activities.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 853–867.  相似文献   

4.
Summary Development involves a series of developmental events, separated by transformations, that follow a particular order or developmental sequence. The sequence may in turn be arbitrarily subdivided into contiguous segments (developmental stages). We discuss the properties of developmental sequences. We also examine the differing analytical approaches that have been used to analyse developmental sequences in an evolutionary context. Ernst Haeckel was a pioneer in this field. His approach was evolutionary and he introduced the idea of sequence heterochrony (evolutionary changes in the sequence of developmental events). Despite the availability of detailed developmental data (e.g. Franz Keibel’s ‘Normal Tables’), Haeckel was unable to undertake a quantitative analysis of developmental data. This is now possible through computer-based analytical techniques such as event-pairing, which can extract important biological information from developmental sequences by mapping them onto established phylogenies. It may also yield data that can be used in phylogeny reconstruction, although the inherent ‘non-independence’ of the data may make this invalid. In future, the methods discussed here may be applied to the analysis of patterns of gene expression in embryos, or adapted to studying gene order on chromosomes.  相似文献   

5.
Heterochrony, the temporal shifting of developmental events relative to each other, requires a degree of autonomy among those processes or structures. Modularity, the division of larger structures or processes into autonomous sets of internally integrated units, is often discussed in relation to the concept of heterochrony. However, the relationship between the developmental modules derived from studies of heterochrony and evolutionary modules, which should be of adaptive importance and relate to the genotype-phenotype map, has not been explicitly studied. I analyzed a series of sectioned and whole cleared-and-stained embryological and neonatal specimens, supplemented with published ontogenetic data, to test the hypothesis that bones within the same phenotypic modules, as determined by morphometric analysis, are developmentally integrated and will display coordinated heterochronic shifts across taxa. Modularity was analyzed in cranial bone ossification sequences of 12 therian mammals. A dataset of 12-18 developmental events was used to assess if modularity in developmental sequences corresponds to six phenotypic modules, derived from a recent morphometric analysis of cranial modularity in mammals. Kendall's tau was used to measure rank correlations, with randomization tests for significance. If modularity in developmental sequences corresponds to observed phenotypic modules, bones within a single phenotypic module should show integration of developmental timing, maintaining the same timing of ossification relative to each other, despite differences in overall ossification sequences across taxa. Analyses did not find any significant conservation of developmental timing within the six phenotypic modules, meaning that bones that are highly integrated in adult morphology are not significantly integrated in developmental timing.  相似文献   

6.
Morphological variation among larval body plans must be placed into a phylogenetic and ecological context to assess whether similar morphologies are the result of phylogenetic constraints or convergent selective pressures. Investigations are needed of the diverse larval forms within the Lophotrochozoa, especially the larvae of phoronids and brachiopods. The actinotroch larva of Phoronis pallida (Phoronida) was reared in the laboratory to metamorphic competence. Larval development and growth were followed with video microscopy, SEM, and confocal microscopy. Early developmental features were similar to other phoronid species. Gastrulation was accomplished by embolic invagination of the vegetal hemisphere. Mesenchymal cells were found in the remaining blastocoelic space after invagination began. Mesenchymal cells formed the body wall musculature during the differentiation of larval features. Body wall musculature served as the framework from which all other larval muscles proliferated. Larval growth correlated best with developmental stage rather than age. Consistent with other phoronid species, differentiation of juvenile tissues occurred most rapidly at the latest stages of larval development. The minimum precompetency period of P. pallida was estimated to be approximately 4-6 weeks. Previously published studies have documented that the planktonic embryos of P. pallida develop faster than the brooded embryos of P. vancouverensis. However, these data showed that the difference in developmental rate between the two species decreased in succeeding larval stages. There may be convergent selective pressures that result in similar timing to metamorphic competence among phoronid and brachiopod planktotrophic larval types. Morphological differences between these larval types result from heterochronic developmental shifts in the differentiation of juvenile tissue. Similarities in the larval morphology of phoronids and basal deuterostomes are likely the result of functional and developmental constraints rather than a shared (recent) evolutionary origin. These constraints are imposed by the functional design of embryological stages, feeding structures, and swimming structures.  相似文献   

7.
Specialization to nectarivory is associated with radiations within different bird groups, including parrots. One of them, the Australasian lories, were shown to be unexpectedly species rich. Their shift to nectarivory may have created an ecological opportunity promoting species proliferation. Several morphological specializations of the feeding tract to nectarivory have been described for parrots. However, they have never been assessed in a quantitative framework considering phylogenetic nonindependence. Using a phylogenetic comparative approach with broad taxon sampling and 15 continuous characters of the digestive tract, we demonstrate that nectarivorous parrots differ in several traits from the remaining parrots. These trait‐changes indicate phenotype–environment correlations and parallel evolution, and may reflect adaptations to feed effectively on nectar. Moreover, the diet shift was associated with significant trait shifts at the base of the radiation of the lories, as shown by an alternative statistical approach. Their diet shift might be considered as an evolutionary key innovation which promoted significant non‐adaptive lineage diversification through allopatric partitioning of the same new niche. The lack of increased rates of cladogenesis in other nectarivorous parrots indicates that evolutionary innovations need not be associated one‐to‐one with diversification events.  相似文献   

8.
Heterochronic changes in the rate or timing of development underpin many evolutionary transformations. In particular, the onset and rate of bone development have been the focus of many studies across large clades. In contrast, the termination of bone growth, as estimated by suture closure, has been studied far less frequently, although a few recent studies have shown this to represent a variable, although poorly understood, aspect of developmental evolution. Here, we examine suture closure patterns across 25 species of carnivoran mammals, ranging from social‐insectivores to hypercarnivores, to assess variation in suture closure across taxa, identify heterochronic shifts in a phylogenetic framework and elucidate the relationship between suture closure timing and ecology. Our results show that heterochronic shifts in suture closure are widespread across Carnivora, with several shifts identified for most major clades. Carnivorans differ from patterns identified for other mammalian clades in showing high variability of palatal suture closure, no correlation between size and level of suture closure, and little phylogenetic signal outside of musteloids. Results further suggest a strong influence of feeding ecology on suture closure pattern. Most of the species with high numbers of heterochronic shifts, such as the walrus and the aardwolf, feed on invertebrates, and these taxa also showed high frequency of closure of the mandibular symphysis, a state that is relatively rare among mammals. Overall, caniforms displayed more heterochronic shifts than feliforms, suggesting that evolutionary changes in suture closure may reflect the lower diversity of cranial morphology in feliforms.  相似文献   

9.
Comparative methods in developmental biology   总被引:3,自引:0,他引:3  
The need for a phylogenetic framework is becoming appreciated in many areas of biology. Such a framework has found limited use in developmental studies. Our current research program is therefore directed to applying comparative and phylogenetic methods to developmental data. In this paper, we examine the concepts underlying this work, discuss potential difficulties, and identify some solutions. While developmental biologists frequently make cross-species comparisons, they usually adopt a phenetic approach, whereby degrees of overall similarity in development are sought. Little emphasis is placed on reconstructing the evolutionary divergence in developmental characters. Indeed, developmental biologists have historically concentrated on apparently ‘conserved’ or ‘universal’ developmental mechanisms. Thus, there has been little need for phylogenetic methodologies which analyse specialised features shared only within a subset of species (i.e., synapomorphies). We discuss the potential value of such methodologies, and argue that difficulties in adapting them to developmental studies fall into three interlinked areas: One concerns the nature and definition of developmental characters. Another is the difficulty of identifying equivalent developmental stages in different species. Finally the phylogenetic non-independence of developmental characters presents real problems under some protocols. These problems are not resolved. However, it is clear that the application of phylogenetic methodology to developmental data is both necessary and fundamental to research into the relationship between evolution and development.  相似文献   

10.
SUMMARY Ossification sequences of the skull in extant Urodela and in Permo‐Carboniferous Branchiosauridae have already been used to study the origin of lissamphibians. But most of these studies did not consider some recent methods developed to analyze the developmental sequences within a phylogenetic framework. Here, we analyze the ossification sequences of 24 cranial bones of 23 extant species of salamanders using the event‐pairing method. This reveals new developmental synapomorphies for several extant salamander taxa and ancestral sequences for Urodela under four alternative reference phylogenies. An analysis with the 12 bones for which ossification sequence data are available in urodeles and in the branchiosaurid Apateon is also performed in order to compare the ancestral condition of the crown‐group of Urodela to the sequence of Apateon. This reveals far more incompatibilities than previously suggested. The similarities observed between some extant salamanders and branchiosaurids may result from extensive homoplasy, as the extreme variation observed in extant Urodela suggests, or be plesiomorphic, as the conservation of some ossification patterns observed in other remotely related vertebrates like actinopterygians suggests. We propose a new, simpler method based on squared‐change optimization to estimate the relative timing of ossification of various bones of hypothetical ancestors, and use independent‐contrasts analysis to estimate the confidence intervals around these times. Our results show that the uncertainty of the ancestral ossification sequence of Urodela is much greater than event‐pairing suggests. The developmental data do not allow to conclude that branchiosaurids are closely related to salamanders and their limited taxonomic distribution in Paleozoic taxa precludes testing hypotheses about lissamphibian origins. This is true regardless of the analytical method used (event‐pairing or our new method based on squared‐change parsimony). Simulations show that the new analytical method is generally more powerful to detect evolutionary shifts in developmental timing, and has lower Type I error rate than event‐pairing. It also makes fewer errors in ancestral character value or state assignment than event‐pairing.  相似文献   

11.
We present a novel phylogenetic approach to infer ancestral ontogenies of shape characters described as landmark configurations. The method is rooted in previously published theoretical developments to analyse landmark data in a phylogenetic context with parsimony as the optimality criterion, in this case using the minimization of differences in landmark position to define not only ancestral shapes but also the changes in developmental timing between ancestor–descendant shape ontogenies. Evolutionary changes along the tree represent changes in relative developmental timing between ontogenetic trajectories (possible heterochronic events) and changes in shape within each stage. The method requires the user to determine the shape of the specimens between two standard events, for instance birth and onset of sexual maturity. Once the ontogenetic trajectory is discretized into a series of consecutive stages, the method enables the user to identify changes in developmental timing associated with changes in the offset and/or onset of the shape ontogenetic trajectories. The method is implemented in a C language program called SPASOS. The analysis of two empirical examples (anurans and felids) using this novel method yielded results in agreement with previous hypotheses about shape evolution in these groups based on non-phylogenetic analyses.  相似文献   

12.
The concept of heterochrony, which denotes a change in the relative timing of developmental events and processes in evolution, has accompanied attempts to link evolution and development for well over a century. During this time the definition of heterochrony and the application of the concept have varied and by the late 1990's, many questioned the usefulness of the concept. However, in the past decade studies of heterochrony have been revitalized by a new focus on developmental sequence, an examination of heterochrony in explicit phylogenetic contexts and increasing tendencies to examine the heterochrony of many kinds of events, including cellular, molecular and genetic events. Examples of such studies are reviewed in this paper and it is argued that this new application of heterochrony provides an extraordinarily rich opportunity for understanding the developmental basis of evolutionary change.  相似文献   

13.
Approaches to macroevolution require integration of its two fundamental components, i.e. the origin and the sorting of variation, in a hierarchical framework. Macroevolution occurs in multiple currencies that are only loosely correlated, notably taxonomic diversity, morphological disparity, and functional variety. The origin of variation within this conceptual framework is increasingly understood in developmental terms, with the semi-hierarchical structure of gene regulatory networks (GRNs, used here in a broad sense incorporating not just the genetic circuitry per se but the factors controlling the timing and location of gene expression and repression), the non-linear relation between magnitude of genetic change and the phenotypic results, the evolutionary potential of co-opting existing GRNs, and developmental responsiveness to nongenetic signals (i.e. epigenetics and plasticity), all requiring modification of standard microevolutionary models, and rendering difficult any simple definition of evolutionary novelty. The developmental factors underlying macroevolution create anisotropic probabilities—i.e., an uneven density distribution—of evolutionary change around any given phenotypic starting point, and the potential for coordinated changes among traits that can accommodate change via epigenetic mechanisms. From this standpoint, “punctuated equilibrium” and “phyletic gradualism” simply represent two cells in a matrix of evolutionary models of phenotypic change, and the origin of trends and evolutionary novelty are not simply functions of ecological opportunity. Over long timescales, contingency becomes especially important, and can be viewed in terms of macroevolutionary lags (the temporal separation between the origin of a trait or clade and subsequent diversification); such lags can arise by several mechanisms: as geological or phylogenetic artifacts, or when diversifications require synergistic interactions among traits, or between traits and external events. The temporal and spatial patterns of the origins of evolutionary novelties are a challenge to macroevolutionary theory; individual events can be described retrospectively, but a general model relating development, genetics, and ecology is needed. An accompanying paper (Jablonski in Evol Biol 2017) reviews diversity dynamics and the sorting of variation, with some general conclusions.  相似文献   

14.
The multispecies coalescent (MSC) is a statistical framework that models how gene genealogies grow within the branches of a species tree. The field of computational phylogenetics has witnessed an explosion in the development of methods for species tree inference under MSC, owing mainly to the accumulating evidence of incomplete lineage sorting in phylogenomic analyses. However, the evolutionary history of a set of genomes, or species, could be reticulate due to the occurrence of evolutionary processes such as hybridization or horizontal gene transfer. We report on a novel method for Bayesian inference of genome and species phylogenies under the multispecies network coalescent (MSNC). This framework models gene evolution within the branches of a phylogenetic network, thus incorporating reticulate evolutionary processes, such as hybridization, in addition to incomplete lineage sorting. As phylogenetic networks with different numbers of reticulation events correspond to points of different dimensions in the space of models, we devise a reversible-jump Markov chain Monte Carlo (RJMCMC) technique for sampling the posterior distribution of phylogenetic networks under MSNC. We implemented the methods in the publicly available, open-source software package PhyloNet and studied their performance on simulated and biological data. The work extends the reach of Bayesian inference to phylogenetic networks and enables new evolutionary analyses that account for reticulation.  相似文献   

15.
It is postulated widely that changes in developmental timing (i.e., heterochrony) represent a major mechanism of evolutionary change. However, it is only with recent methodological advances that changes in the order in which development proceeds (sequence heterochrony) can be identified and quantified. We apply these techniques to examine whether heterochrony in the early embryonic (organogenetic) period has played an important role in the diversification of mammals. Although we find clear instances of sequence heterochrony in mammals, particularly between eutherians and marsupials, the majority of mammalian lineages that we could examine (those within the major clades Euarchontoglires and Laurasiatheria) show few or no heterochronic changes in the 116 events examined (e.g., Artiodactyla, Euarchonta, Fereuungulata, Glires, Primates, Rodentia). This is in contrast with the timing shifts reported between and within other tetrapod clades. Our results suggest that sequence heterochrony in embryonic stages has not been a major feature of mammalian evolution. This might be because mammals, and perhaps amniotes in general, develop for an extended time in a protected environment, which could shield the embryos from strong diversifying selection. Our results are also consistent with the view that mammal embryos are subject to special developmental constraints. Therefore, other mechanisms explaining the diversity of extant mammals must be sought.  相似文献   

16.
The vertebrate skull is anatomically complex and phylogenetically diverse; it presents unique opportunities to examine the role of developmental processes in evolutionary change. Previous studies have largely examined phylogenetic trends in tissue composition or change in the timing of developmental events (heterochrony). Additional important insights may be gained if skull evolution and development are viewed from the standpoint of pattern formation. Contemporary models of pattern formation offer the possibility of linking developmental mechanisms of cranial morphogenesis from the level of genes, through cell biology, to adult form.  相似文献   

17.
Most integrative studies involving phylogenetic, developmental and ecological trends showed that the diversity of developmental modifications among the Platyhelminthes was linked to transmission opportunity pressures. For parasitic flatworms with complex life cycles it was suggested that the evolutionary forces that constrained or enhanced developmental strategies implied heterochronic patterns. Similar patterns were also reported from the Monogenea with direct life cycles, especially for Polystomatidae, which infest amphibious Sarcopterygians. Polystoma, whose members are recovered almost exclusively from anuran hosts of the Neobatrachia, is capable of following two alternative developmental strategies depending on the physiological stage of its host. Processes by which parasites reach maturity are strikingly different, and lead to discrete adult phenotypes within the same parasite species. In the present study, we investigate the origin and evolution of developmental patterns of polystomatids in a phylogenetic framework, using an integrative approach of heterochrony and evolutionary ecology. The results suggest that both phenotypes have coexisted during the early stages of polystome evolution, and that neither of them can be considered as the ancestral one. The two developmental pathways, each associated with one life cycle, may have arisen independently prior to polystome diversification, when strictly aquatic sarcopterygians attempted colonization of temporary freshwater environments. The occurrence of these two patterns within species of the genus Polystoma is suggested to reflect the ancestral condition, and to have allowed both developmental strategies to be successful depending on shifts in transmission opportunities. Thus, host evolutionary ecology may be the main factor in shaping developmental strategies within polystomatids.  相似文献   

18.
SUMMARY Heterochrony, evolutionary changes in developmental timing, can be studied either by examining changes in growth or changes in the sequence of developmental events. Developmental sequence data has the potential to address many important questions in the field of developmental evolution, but methodological challenges remain due to the biological and logical dependence of events in a ranked sequence. In the past 10 years, the study of sequence heterochrony has undergone a rebirth, with the creation of several new methods for the analysis of this type of data. These methods can be divided into two broad categories: phenetic comparisons between terminal taxa that strive to uncover integrations within the developmental sequences and putative shared sequence heterochronies, and phylogeny-based methods that derive ancestor-descendent sequence heterochronies and establish statements of sequence evolution. In this review, we will discuss the strengths and weaknesses of the methodologies that have been proposed to quantitatively examine developmental sequence data, and studies that have attempted to implement them in an evolutionary context.  相似文献   

19.

Background

The rate of evolution varies spatially along genomes and temporally in time. The presence of evolutionary rate variation is an informative signal that often marks functional regions of genomes and historical selection events. There exist many tests for temporal rate variation, or heterotachy, that start by partitioning sampled sequences into two or more groups and testing rate homogeneity among the groups. I develop a Bayesian method to infer phylogenetic trees with a divergence point, or dramatic temporal shifts in selection pressure that affect many nucleotide sites simultaneously, located at an unknown position in the tree.

Results

Simulation demonstrates that the method is most able to detect divergence points when rate variation and the number of affected sites is high, but not beyond biologically relevant values. The method is applied to two viral data sets. A divergence point is identified separating the B and C subtypes, two genetically distinct variants of HIV that have spread into different human populations with the AIDS epidemic. In contrast, no strong signal of temporal rate variation is found in a sample of F and H genotypes, two genetic variants of HBV that have likely evolved with humans during their immigration and expansion into the Americas.

Conclusion

Temporal shifts in evolutionary rate of sufficient magnitude are detectable in the history of sampled sequences. The ability to detect such divergence points without the need to specify a prior hypothesis about the location or timing of the divergence point should help scientists identify historically important selection events and decipher mechanisms of evolution.
  相似文献   

20.
The evolution of developmental sequences, or sequence heterochrony, is an emerging field of study that addresses the temporal interplay between evolution and development. Some phylogenetic signal has been found in developmental sequence data, but sampling has generally been limited to small numbers of taxa and few developmental events. Here we present the largest ossification sequence dataset to date. The sequences are composed of ossification events throughout the avian skeleton, and are used to address the evolutionary signal of ossification sequence data within this clade. The results indicate that ossification sequences are conserved in birds, and show a stronger phylogenetic signal than previous studies, perhaps due to the volume of data. Phylogenetic signal is not strong enough, however, to consider ossification sequence data to be any better at resolving phylogenetic hypotheses than other morphological data and just as prone to evolutionary convergence. There is no one-to-one correlation between ossification sequence and developmental stage. We discuss some methodological implications of our findings, as well as commonalities in avian ossification sequences such as early ossification of the long bones relative to the dermatocranium, and of the hindlimb over the forelimb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号