首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Early-generation hybrid fitness is difficult to interpret because heterosis can obscure the effects of hybrid breakdown. We used controlled reciprocal crosses and common garden experiments to distinguish between effects of heterosis and nuclear and cytonuclear epistasis among morphotypes and advanced-generation hybrid derivative populations in the Piriqueta caroliniana (Turneraceae) plant complex. Seed germination, growth, and sexual reproduction of first-generation hybrids, inbred parental lines, and outbred parental lines were compared under field conditions. Average vegetative performance was greater for hybrids than for inbred lines, and first-season growth was similar for hybrids and outbred parental lines. Hybrid survival surpassed that of inbred lines and was equal to or greater than outbred lines' survival, and more F(1) than parental plants reproduced. Reductions in hybrid fitness due to Dobzhansky-Muller incompatibilities (epistasis among divergent genetic elements) were expressed as differences in vegetative growth, survival, and reproduction between plants from reciprocal crosses for both F(1) and backcross hybrid generations. Comparing performance of hybrids against parental genotypes from intra- and interpopulation crosses allowed a more robust prediction of F(1) hybrids' success and more accurate interpretations of the genetic architecture of F(1) hybrid vigor.  相似文献   

2.
We performed a common garden experiment using parental, F1, F2, and backcross willow hybrids to test the hypothesis that hybrid willows experience breakdown of resistance to herbivores. After exposing plants to herbivores in the field, we measured the densities/damage caused by 13 insect herbivores and one herbivorous mite. Using joint-scaling tests, we determined the contribution of additive, dominance, and epistasis to variation in susceptibility to herbivores (measured either as density or damage level) among the six genetic classes. We found the genetic architecture of susceptibility/resistance in the parental species to be complex, involving additive, dominance, and epistasis for each herbivore species. Although genic interactions altered plant susceptibility for each of the 14 herbivores, three distinct patterns of response of herbivores to hybrids were expressed. One pattern, observed in four herbivore species, supported the hypothesis of breakdown of resistance genes in recombinant hybrids. A second pattern, shown by six other herbivore species, supported the hypothesis of hybrid breakdown of host recognition genes. In other words, epistatic interactions for host recognition traits (probably oviposition/feeding stimulants or attractants) appeared to be important in determining herbivore abundance for those six species. The final patterns supported a structure of dominance, either for host recognition traits (in the case of three herbivore species) or for host resistance traits (for one herbivore species). The combination of differing responses of herbivore species, including members of the same genus and tribe, and the ubiquitous importance of epistasis suggests that many genes affect herbivore resistance in this hybrid willow system.  相似文献   

3.
Effects of high sub-lethal temperature and UV-irradiation on surviving of inbred lines of Drosophila melanogaster and its F1 hybrids derived from reciprocal crosses between these lines are investigated. High resistance of F1 hybrids to these factors was observed as compared with that of parental inbred lines. D. melanogaster females in inbred lines and F1 hybrids were more resistant than males. Differences in the resistance between females and males were more pronounced in hybrids.  相似文献   

4.
Genomic alteration is a common phenomenon associated with plant tissue culture, which often encompasses genetic changes and epigenetic modifications (e.g. cytosine methylation). Here, we studied genomic alteration in maize by assessing calli and regenerated plants derived from three inbred lines (M17, J7 and JC) and two pairs of reciprocal F1 hybrids (pair I: M17/J7 and J7/M17 and pair II: M17/JC and JC/M17). By employing two molecular markers, the amplified fragment length polymorphism and methylation‐sensitive amplified polymorphism, we found that both types of genomic alterations occurred in calli and regenerated plants of all the studied maize inbred lines and F1 hybrids, but the extent and pattern of changes varied substantially across the genotypes. Among the three inbred lines, M17 showed markedly higher frequencies of both genetic (from 2.1% to 3.8%) and methylation alterations (from 6.5% to 9.9%, by adding up the various patterns) than the other two lines which showed similar frequencies for both types of alterations (genetic: 0.5–1.8%, methylation: 2.1–3.7%). Of the two F1 hybrid pairs, while pair I showed genetic variation frequencies similar to that of the inbred parent with lower changing frequency and pair II was intermediate of those of the parents, both pairs showed frequencies of methylation alteration more or less intermediate of those of their inbred parental lines. Parent‐of‐origin effects in both genetic and methylation changes were detected in only one of the hybrid pairs (primarily pair II) for a given changing pattern. Statistical testing confirmed the genotypic difference in both genetic and methylation (hypomethylation) alterations among the regenerants. Taken together, it could be concluded that the frequency and pattern of both genetic and cytosine methylation alterations in maize tissue culture were largely genetic context‐dependent traits, but stochasticity also played an important part. F1 hybrids were not significantly more stable than their inbred parental lines under tissue culture conditions.  相似文献   

5.
Fusarium oxysporum is a root-infecting fungal pathogen that causes wilt disease on a broad range of plant species, including the model plant Arabidopsis thaliana. Currently, very little is known about the molecular or physiological processes that are activated in the host during infection and the roles these processes play in resistance and susceptibility to F. oxysporum. In this study, we analyzed global gene expression profiles of F. oxysporum-infected Arabidopsis plants. Genes involved in jasmonate biosynthesis as well as jasmonate-dependent defense were coordinately induced by F. oxysporum. Similarly, tryptophan pathway genes, including those involved in both indole-glucosinolate and auxin biosynthesis, were upregulated in both the leaves and the roots of inoculated plants. Analysis of plants expressing the DR5:GUS construct suggested that root auxin homeostasis was altered during F. oxysporum infection. However, Arabidopsis mutants with altered auxin and tryptophan-derived metabolites such as indole-glucosinolates and camalexin did not show an altered resistance to this pathogen. In contrast, several auxin-signaling mutants were more resistant to F. oxysporum. Chemical or genetic alteration of polar auxin transport also conferred increased pathogen resistance. Our results suggest that, similarly to many other pathogenic and nonpathogenic or beneficial soil organisms, F. oxysporum requires components of auxin signaling and transport to colonize the plant more effectively. Potential mechanisms of auxin signaling and transport-mediated F. oxysporum susceptibility are discussed.  相似文献   

6.
A highly embryogenic cell suspension of alfalfa derived from a genotype sensitive to Fusarium oxysporum was successfully used for selection in vitro for resistance to culture filtrates of F. oxysporum, F. solani and F. avenaceum. Fifty two stable resistant cell lines were obtained and 500 plants regenerated from them. Among the 167 regenerants tested under glass there were 12–20% more plants with increased resistance to pathogens than in the group of plants regenerated from a control cell line. It was also found that the cell suspension cultures derived from genotypes of alfalfa with increased resistance to Fusarium spp. better tolerated filtrates of the pathogen. The results of a comparison of virulence of individual isolates of several species of Fusarium with toxicity of their filtrates to plants in vivo and in cell cultures were not unequivocal.  相似文献   

7.
Summary Eight inbred lines of Brussels sprouts and ten F1 hybrids derived from them were tested for their response to anther culture. From 5–19 plants per genotype were tested, and each plant was tested on 3–6 separate occasions. Results from the inbred lines were broadly similar to those from the F1 hybrids, despite the inbreds producing fewer buds and having a higher frequency of anther deformities. The maximum embryo yield from an inbred line was 215 embryos per 100 anthers, and from a hybrid was 275. From estimation of the variance components it was calculated that, for both inbreds and hybrids, about half the total variation was genetic whereas variation due to plants within genotypes and to occasions within plants were each about 13% of the total. The narrow sense heritability of responsiveness to anther culture (estimated by the proportion of variation between inbred lines which was genetic) was 0.48, and there was partial dominance for this character. In three cases the hybrid outyielded the better inbred, and this heterosis may well be due to dispersed dominant genes.  相似文献   

8.
The phenomenon of heterosis describes the increased agronomic performance of heterozygous F(1) plants compared to their homozygous parental inbred plants. Heterosis is manifested during the early stages of root development in maize. The goal of this study was to identify nonadditive gene expression in primary roots of maize hybrids compared to the average expression levels of their parental inbred lines. To achieve this goal a two-step strategy was used. First, a microarray preselection of nonadditively expressed candidate genes was performed. Subsequently, gene expression levels in a subset of genes were determined via high-throughput quantitative real-time (qRT)-PCR experiments. Initial microarray experiments identified 1941 distinct microarray features that displayed nonadditive gene expression in at least 1 of the 12 analyzed hybrids compared to the midparent value of their parental inbred lines. Most nonadditively expressed genes were expressed between the parental values (>89%). Comparison of these 1941 genes with nonadditively expressed genes identified in maize shoot apical meristems via the same experimental procedure in the same genotypes revealed significantly less overlap than expected by pure chance. This finding suggests organ-specific patterns of nonadditively expressed genes. qRT-PCR analyses of 64 of the 1941 genes in four different hybrids revealed conserved patterns of nonadditively expressed genes in different hybrids. Subsequently, 22 of the 64 genes that displayed nonadditive expression in all four hybrids were analyzed in 12 hybrids that were generated from four inbred lines. Among those genes a superoxide dismutase 2 was expressed significantly above the midparent value in all 12 hybrids and might thus play a protective role in heterosis-related antioxidative defense in the primary root of maize hybrids. The findings of this study are consistent with the hypothesis that both global expression trends and the consistent differential expression of specific genes contribute to the organ-specific manifestation of heterosis.  相似文献   

9.
Three tetraploid somatic hybrid lines produced by protoplast fusion between a dihaploid potato, Solanum tuberosum, cultivar BF15 and the wild potato species Solanum berthaultii were evaluated here for their response to different soil‐borne pathogens, that is Fusarium solani, Pythium aphanidermatum and Rhizoctonia solani as well as to infection by potato virus Y (PVY). Both hybrid and BF15 plants grown in vitro were inoculated with the tested pathogen strains, that is R. solani, P. aphanidermatum, or F. solani. The growth level and disease severity index of these plants were compared to the susceptible commercial cultivar Spunta. A better growth of inoculated hybrid plants and restricted disease symptoms were observed in comparison with the commercial plants. Under glasshouse conditions and after inoculation with R. solani and P. aphanidermatum, improved resistance of the hybrid plants to these pathogens was confirmed. Indeed, these plants showed no significant damage following inoculation and a better development in R. solani‐infected plants. The susceptibility of the hybrid tubers to R. solani, P. aphanidermatum, and to F. solani infection was also determined. A significant reduction of tissue colonisation was observed in all the hybrid lines compared to the cultivated cultivars. The STBc and STBd hybrids also showed improved resistance to the PVY ordinary strain (PVYo) under glasshouse conditions.  相似文献   

10.
Transgenic ethylene-insensitive tobacco (Tetr) plants spontaneously develop symptoms of wilting and stem necrosis when grown in nonautoclaved soil. Fusarium oxysporum, F. solani, Thielaviopsis basicola, Rhizopus stolonifer, and two Pythium spp. were isolated from these diseased Tetr plants and demonstrated to be causal agents of the disease symptoms. Pathogenicity of the two Pythium isolates and four additional Pythium spp. was tested on ethylene-insensitive tobacco and Arabidopsis seedlings. In both plant species, ethylene insensitivity enhanced susceptibility to the Pythium spp., as evidenced by both a higher disease index and a higher percentage of diseased plants. Based on the use of a DNA probe specific for Pythium spp., Tetr plants exhibited more pathogen growth in stem and leaf tissue than similarly diseased control plants. These results demonstrate that ethylene signaling is required for resistance to different root pathogens and contributes to limiting growth and systemic spread of the pathogen.  相似文献   

11.
Chalyk ST 《Genetika》2000,36(8):1088-1092
Three unrelated homozygous maize lines, TS11, P22, and ST156, that produced hybrids in which heterosis was either absent or insignificant were identified. These hybrids were phenotypically similar to self-pollinated homozygous lines. Reciprocal crosses showed that the absence of heterosis is controlled by nuclear genes and is not associated with the cytoplasm of inbred lines. Analysis of F2 plants demonstrated that lines TS11, P22, and ST156 contained allelic genes determining the absence of heterosis in hybrid plants. Crosses of lines TS11, P22, and ST156 with a common selection line 092 generated hybrids with normal heterosis. It was concluded that heterozygosity or homozygosity of particular genes in lines TS11, P22, and ST156 play a pivotal role in the manifestation or the absence of hybrid vigor in hybrids.  相似文献   

12.
Engineering herbicide resistance in crops facilitates control of weed species, particularly those that are closely related to the crop, and may be useful in selecting lines that have undergone multiple transformation events. Here we show that herbicide-resistant plants can be engineered by designing an herbicide and expressing a catalytic antibody that destroys the herbicide in planta. First, we developed a carbamate herbicide that can be catalytically destroyed by the aldolase antibody 38C2. This compound has herbicidal activity on all three plant species tested. Second, the light chain and half of the heavy chain (Fab) of the catalytic antibody were targeted to the endoplasmic reticulum in two classes of Arabidopsis thaliana transformants. Third, the two transgenic plants were crossed to produce an herbicide-resistant F1 hybrid. The in vitro catalytic activity of the protein from F1 hybrids corroborates that catalytic antibodies can be constitutively expressed in transgenic plants, and that they can confer a unique trait.  相似文献   

13.
Summary Hybrid embryos resulting from crosses between a highly regenerable maize germplasm (Hi II) and certain elite inbreds were treated with Agrobacterium tumefaciens containing the uidA (GUS) and pat genes under the control of different constitutive promoters. Six of the elite inbred lines were derived from a Lancaster background and three were derived from an Iowa Stiff Stalk background. Hybrid embryos from all three Stiff Stalk lines gave transgenic events at various frequencies, two of them at a comparable frequency to that observed with Hi II embryos. Embryos from only one Lancaster/Hi II hybrid were successfully transformed and the frequency was quite low. Additional Lancaster elite inbreds were then tested as a hybrid with Hi II and failed to produce a single transgenic event. The transgenic Hi II/elite events showed many characteristics of ‘hybrid vigor’ including more aggressive rooting, thicker stems, and taller stature than plants derived from Hi II events. The hybrid T0 plants exhibited excellent tassel development in the greenhouse with abundant pollen shed. Seed set in the greenhouse was significantly (3–5-fold) higher than with Hi II transformats. Attempts to transform embryos derived from self or sibling crosses of the four inbred lines that were successful as hybrids with Hi II did not produce any transgenic events. T0 plants having ∼50% elite genomic contribution perform nearly as well in the greenhouse as seed-derived elite inbred parents and offer a significantly reduced time line for recombinant protein product development from transgenic plants.  相似文献   

14.
PCR-analysis of maize inbred lines has been carried out. Genetic distances between the lines have been calculated, allelic composition and heterosis level of F-hybrids have been determined. Heterosis level of hybrid seed yield rised according to increasing of genetic distances between initial lines. Correlation of allelic composition of inbred line microsatellite loci and heterosis level of the respective hybrids has been revealed.  相似文献   

15.
Antibiosis-based resistance to two insect pests of rice, Nilaparvata lugens (St?l) (Hemiptera: Delphacidae) and Marasmia patnalis Bradley (Lepidoptera: Pyralidae), was compared in 11 F1 hybrids and their parental lines. Our objective was to determine whether hybrids show heterosis (hybrid vigor) for insect resistance or susceptibility. Heterosis is defined as the amount by which a hybrid exceeds its midparent value or its better parent. Overall, we did not find evidence of heterosis or heterobeltiosis (a type of heterosis in which a hybrid exceeds its better parent) for antibiosis-based resistance or susceptibility to either of the insects. One hybrid, IR64616H, seemed more resistant to M. patnalis than its better parent but none of the other hybrids showed heterobeltiosis for resistance or susceptibility to either insect. Three hybrids had resistance to N. lugens that exceeded their midparent value, possibly due to dominant resistance in one of the parents. The increased frequency and severity of insect outbreaks on hybrid rice that have been reported in China may be attributable to factors other than diminished antibiosis in hybrids, such as greater attractiveness of hybrids to migrating or dispersing insects or differences in agronomic practices applied to hybrids and inbred rice cultivars.  相似文献   

16.
Hybridization is an important factor in the evolution of plants; however, many of the studies that have examined hybrid fitness have been concerned with the study of early generation hybrids. We examined the early- and late-generation fitness consequences of hybridization between two ecotypes of the selfing annual Avena barbata in a greenhouse environment as well as in two natural environments. Fitness of early generation (F2) hybrids reflects both the action of dominance effects (hybrid vigor) and recombination (hybrid breakdown) and was not significantly different from that of the midparent in any environment. Fitness of later generation (F6) recombinant inbred lines (RILS) derived from the cross reflect both the loss of early generation heterozygosity as well as disruption of any coadapted gene complexes present in the parents. In all environments, F6 RILs were on average significantly less fit than the (equally homozygous) midparent, indicating hybrid breakdown through the disruption of epistatic interactions. However, the inbred F6 were also less fit than the heterozygous F2, indicating that hybrid vigor also occurs in A. barbata, and counteracts hybrid breakdown in early generation hybrids. Also, although the F6 generation mean is lower than the midparent mean, there are individual genotypes within the F6 generation that are capable of outperforming the parental ecotypes in the greenhouse. Fewer hybrid genotypes are capable of outperforming the parental ecotypes in the field. Overall, these experiments demonstrate how a single hybridization event can result in a number of outcomes including hybrid vigor, hybrid breakdown, and transgressive segregation, which interact to determine long-term hybrid fitness.  相似文献   

17.
Although defense responses mediated by the plant oxylipin jasmonic acid (JA) are often necessary for resistance against pathogens with necrotrophic lifestyles, in this report we demonstrate that jasmonate signaling mediated through COI1 in Arabidopsis thaliana is responsible for susceptibility to wilt disease caused by the root-infecting fungal pathogen Fusarium oxysporum . Despite compromised JA-dependent defense responses, the JA perception mutant coronatine insensitive 1 ( coi1 ), but not JA biosynthesis mutants, exhibited a high level of resistance to wilt disease caused by F. oxysporum . This response was independent from salicylic acid-dependent defenses, as coi1/NahG plants showed similar disease resistance to coi1 plants. Inoculation of reciprocal grafts made between coi1 and wild-type plants revealed that coi1 -mediated resistance occurred primarily through the coi1 rootstock tissues. Furthermore, microscopy and quantification of fungal DNA during infection indicated that coi1 -mediated resistance was not associated with reduced fungal penetration and colonization until a late stage of infection, when leaf necrosis was highly developed in wild-type plants. In contrast to wild-type leaves, coi1 leaves showed no necrosis following the application of F. oxysporum culture filtrate, and showed reduced expression of senescence-associated genes during disease development, suggesting that coi1 resistance is most likely achieved through the inhibition of F. oxysporum -incited lesion development and plant senescence. Together, our results indicate that F. oxysporum hijacks non-defensive aspects of the JA-signaling pathway to cause wilt-disease symptoms that lead to plant death in Arabidopsis.  相似文献   

18.
Tospovirus has emerged as a serious viral pathogen for several crops including tomato. The tomato production is being severely affected worldwide by Tospovirus. Some reports have been published about the association of plant virus and development of human disease either by direct or indirect consumption. Resistance to this virus has been identified as good source in wild tomato species (Lycopersicum peruvianum). But the introgression of resistance genes into cultivated tomato lines and the development of interspecific hybrid are hampered due to incompatibility, fertilization barriers and embryo abortion. But this barrier has been broken by applying the embryo rescue methods. This study describes the development of interspecific hybrid tomato plants by highly efficient embryo rescue method and screening for Tospovirus resistance. The interspecific hybrid tomato plants were developed by making a cross between wild tomato species (L. peruvianum) and cultivated tomato (Solanum lycopersicum). The immature embryos were cultured in standardized medium and interspecific hybrids were developed from embryogenic callus. The immature embryos excised from 7 to 35 days old fruits were used for embryo rescue and 31 days old embryos showed very good germination capabilities and produced the highest number of plants. Developed plants were hardened enough and shifted to green house. The hybrid nature of interspecific plants was further confirmed by comparing the morphological characters from their parents. The F1, F2 and F3 plants were found to have varying characters especially for leaf type, color of stem, fruits, size, shapes and they were further screened for virus resistance both in lab and open field followed by Enzyme linked Immunosorbant Assay confirmation. Finally, a total of 11 resistant plants were selected bearing red color fruits with desired shape and size.  相似文献   

19.
Progressive heterosis, i.e., the additional hybrid vigor in double-cross tetraploid hybrids not found in their single-cross tetraploid parents, has been documented in a number of species including alfalfa,potato, and maize. In this study, four artificially induced maize tetraploids, directly derived from standard inbred lines, were crossed in pairs to create two single-cross hybrids. These hybrids were then crossed to create double-cross hybrids containing genetic material from all four original lines. Replicated fieldbased phenotyping of the materials over four years indicated a strong progressive heterosis phenotype in tetraploids but not in their diploid counterparts. In particular, the above ground dry weight phenotype of double-cross tetraploid hybrids was on average 34% and 56% heavier than that of the single-cross tetraploid hybrids and the double-cross diploid counterparts, respectively. Additionally,whole-genome resequencing of the original inbred lines and further analysis of these data did not show the expected spectrum of alleles to explain tetraploid progressive heterosis under the complementation of complete recessive model. These results underscore the reality of the progressive heterosis phenotype,its potential utility for increasing crop biomass production, and the need for exploring alternative hypothesis to explain it at a molecular level.  相似文献   

20.
The activity, physico-chemical properties and multiple molecular forms of enzymes (alcohol dehydrogenase, superoxide dismutase, nonspecific alpha- and beta-esterases, hydroxide peptidohydrolase) were studied in ontogenesis of Drosophila inbred lines and their hybrids under conditions of high temperature (37-41 degrees C) and the presence in food of 10% ethanol. It was established that resistance of individuals to the effect of high temperature and alcohol, including manifestation of adaptive heterosis in hybrids not always depends on the level of the activity of enzymes analysed and is rather determined by allelic state of the appropriate structural genes. So, in conditions of the alcohol stress the individuals containing highly active F form of alcohol dehydrogenase have selective advantage and flie with hybrid F/S enzyme of higher activity and heat stability are more stable to the effect of high temperature. It is supposed that the complexes of adaptation genes (CGA) are formed in individuals of populations in response to the regular action of unfavourable environmental factors. These complexes condition optimal allelic control and most efficient regulation of enzyme activity in environment. Genotypic adaptation of individuals as well as occurrence of adaptive heterosis in hybrids seem likely to be connected with formation of CGA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号