首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Rho and Arf family small GTPases are well-known regulators of cellular actin dynamics. We recently identified ARAP3, a member of the ARAP family of dual GTPase activating proteins (GAPs) for Arf and Rho family GTPases, in a screen for PtdIns(3,4,5)P(3) binding proteins. PtdIns(3,4,5)P(3) is the lipid product of class I phosphoinositide 3OH-kinases (PI3Ks) and is a signaling molecule used by growth factor receptors and integrins in the regulation of cell dynamics. We report here that as a Rho GAP, ARAP3 prefers RhoA as a substrate and that it can be activated in vitro by the direct binding of Rap proteins to a neighbouring Ras binding domain (RBD). This activation by Rap is GTP dependent and specific for Rap versus other Ras family members. We found no evidence for direct regulation of ARAP3's Rho GAP activity by PtdIns(3,4,5)P(3) in vitro, but PI3K activity was required for activation by Rap in a cellular context, suggesting that PtdIns(3,4,5)P(3)-dependent translocation of ARAP3 to the plasma membrane may be required for further activation by Rap. Our results indicate that ARAP3 is a Rap-effector that plays an important role in mediating PI3K-dependent crosstalk between Ras, Rho, and Arf family small GTPases.  相似文献   

2.
Phosphoinositide 3-kinase in disease: timing, location, and scaffolding   总被引:10,自引:0,他引:10  
When PI3Ks are deregulated by aberrant surface receptors or modulators, accumulation of PtdIns(3,4,5)P3 leads to increased cell growth, proliferation and contact-independent survival. The PI3K/PKB/TOR axis controls protein synthesis and growth, while PtdIns(3,4,5)P3-mediated activation of Rho GTPases directs cell motility. PI3K activity has been linked to the formation of tumors, metastasis, chronic inflammation, allergy and cardiovascular disease. Although increased PtdIns(3,4,5)P3 is a well-established cause of disease, it is seldom known which PI3K isoform is implied. Recent work has demonstrated that PI3Kgamma contributes to the control of cAMP levels in the cardiac system, where the protein acts as a scaffold, but not as a lipid kinase.  相似文献   

3.
Polarized cell movement is triggered by the development of a PtdIns(3,4,5)P(3) gradient at the membrane, which is followed by rearrangement of the actin cytoskeleton. The WASP family verprolin homologous protein (WAVE) is essential for lamellipodium formation at the leading edge by activating the Arp2/3 complex downstream of Rac GTPase. Here, we report that WAVE2 binds to PtdIns(3,4,5)P(3) through its basic domain. The amino-terminal portion of WAVE2, which includes the PtdIns(3,4,5)P(3)-binding sequence, was localized at the leading edge of lamellipodia induced by an active form of Rac (RacDA) or by treatment with platelet-derived growth factor (PDGF). Production of PtdIns(3,4,5)P(3) at the cell membrane by myristoylated phosphatidylinositol-3-OH kinase (PI(3)K) is sufficient to recruit WAVE2 in the presence of dominant-negative Rac and latrunculin, demonstrating that PtdIns(3,4,5)P(3) alone is able to recruit WAVE2. Expression of a full-length mutant of WAVE2 that lacks the lipid-binding activity inhibited proper formation of lamellipodia induced by RacDA. These results suggest that one of the products of PI(3)K, PtdIns(3,4,5)P(3), recruits WAVE2 to the polarized membrane and that this recruitment is essential for lamellipodium formation at the leading edge.  相似文献   

4.
The directional movement of cells in a gradient of external stimulus is termed chemotaxis and is important in many aspects of development and differentiated cell function. Phophoinositide 3-kinases (PI(3)Ks) are thought to have critical roles within the gradient-sensing machinery of a variety of highly motile cells, such as mammalian phagocytes, allowing these cells to respond quickly and efficiently to shallow gradients of soluble stimuli. Our analysis of mammalian neutrophil migration towards ligands such as fMLP shows that, although PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3) accumulate in a PI(3)Kgamma-dependent fashion at the up-gradient leading-edge, this signal is not required for efficient gradient-sensing and gradient-biased movement. PI(3)Kgamma activity is however, a critical determinant of the proportion of cells that can move, that is, respond chemokinetically, in reaction to fMLP. Furthermore, this dependence of chemokinesis on PI(3)Kgamma activity is context dependent, both with respect to the state of priming of the neutrophils and the type of surface on which they are migrating. We propose this effect of PI(3)Kgamma is through roles in the regulation of some aspects of neutrophil polarization that are relevant to movement, such as integrin-based adhesion and the accumulation of polymerized (F)-actin at the leading-edge.  相似文献   

5.
Neutrophil priming by agents such as TNF-alpha and GM-CSF causes a dramatic increase in the response of these cells to secretagogue agonists and affects the capacity of neutrophils to induce tissue injury. In view of the central role of phosphatidylinositol 3-kinase (PI3-kinase) in regulating NADPH oxidase activity we examined the influence of priming agents on agonist-stimulated phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) accumulation in human neutrophils. Pretreatment of neutrophils with TNF-alpha or GM-CSF, while not influencing fMLP-stimulated PtdIns(3,4,5)P3 accumulation at 5 s, caused a major increase in PtdIns(3,4,5)P3 at later times (10-60 s), which paralleled the augmented superoxide anion (O2-) response. The intimate relationship between PtdIns(3,4,5)P3 accumulation and O2- release was confirmed using platelet-activating factor, which caused full but transient priming of both responses. Likewise, LY294002, a PI3-kinase inhibitor, and genistein, a tyrosine kinase inhibitor, caused parallel inhibition of O2- generation and PtdIns(3,4,5)P3 accumulation; in contrast, radicicol, which inhibits receptor-mediated activation of p85 PI3-kinase, had no effect on either response. Despite major increases in PI3-kinase activity observed in p85 and anti-phosphotyrosine immunoprecipitates in growth factor-stimulated smooth muscle cells, no such increase was observed in primed/stimulated neutrophils. In contrast, both fMLP and TNF-alpha alone caused a 3-fold increase in PI3-kinase activity in p110gamma PI3-kinase immunoprecipitates. p21(ras) activation (an upstream regulator of PI3-kinase) was unaffected by priming. These data demonstrate that timing and magnitude of PtdIns(3,4,5)P3 accumulation in neutrophils correlate closely with O2- generation, that PI3-kinase-gamma is responsible for the enhanced PtdIns(3,4,5)P3 production seen in primed cells, and that factors other than activation of p21(ras) underlie this response.  相似文献   

6.
Neutrophils exposed to chemoattractants polarize and accumulate polymerized actin at the leading edge. In neutrophil-like HL-60 cells, this asymmetry depends on a positive feedback loop in which accumulation of a membrane lipid, phosphatidylinositol (PI) 3,4,5-trisphosphate (PI[3,4,5]P3), leads to activation of Rac and/or Cdc42, and vice versa. We now report that Rac and Cdc42 play distinct roles in regulating this asymmetry. In the absence of chemoattractant, expression of constitutively active Rac stimulates accumulation at the plasma membrane of actin polymers and of GFP-tagged fluorescent probes for PI(3,4,5)P3 (the PH domain of Akt) and activated Rac (the p21-binding domain of p21-activated kinase). Dominant negative Rac inhibits chemoattractant-stimulated accumulation of actin polymers and membrane translocation of both fluorescent probes and attainment of morphologic polarity. Expression of constitutively active Cdc42 or of two different protein inhibitors of Cdc42 fails to mimic effects of the Rac mutants on actin or PI(3,4,5)P3. Instead, Cdc42 inhibitors prevent cells from maintaining a persistent leading edge and frequently induce formation of multiple, short lived leading edges containing actin polymers, PI(3,4,5)P3, and activated Rac. We conclude that Rac plays a dominant role in the PI(3,4,5)P3-dependent positive feedback loop required for forming a leading edge, whereas location and stability of the leading edge are regulated by Cdc42.  相似文献   

7.
When presented with a gradient of chemoattractant, many eukaryotic cells respond with polarized accumulation of the phospholipid PtdIns(3,4,5)P(3). This lipid asymmetry is one of the earliest readouts of polarity in neutrophils, Dictyostelium discoideum and fibroblasts. However, the mechanisms that regulate PtdInsP(3) polarization are not well understood. Using a cationic lipid shuttling system, we have delivered exogenous PtdInsP(3) to neutrophils. Exogenous PtdInsP(3) elicits accumulation of endogenous PtdInsP(3) in a positive feedback loop that requires endogenous phosphatidylinositol-3-OH kinases (PI(3)Ks) and Rho family GTPases. This feedback loop is important for establishing PtdInsP(3) polarity in response to both chemoattractant and to exogenous PtdInsP(3); it may function through a self-organizing pattern formation system. Emergent properties of positive and negative regulatory links between PtdInsP(3) and Rho family GTPases may constitute a broadly conserved module for the establishment of cell polarity during eukaryotic chemotaxis.  相似文献   

8.
The cellular effects of stromal cell-derived factor-1 (SDF-1) are mediated primarily by binding to the CXC chemokine receptor-4. We report in this study that SDF-1 and its peptide analogues induce a concentration- and time-dependent accumulation of phosphatidylinositol-(3,4,5)-trisphosphate (PtdIns(3,4,5)P3) in Jurkat cells. This SDF-1-stimulated generation of D-3 phosphoinositide lipids was inhibited by pretreatment of the cells with an SDF-1 peptide antagonist or an anti-CXCR4 Ab. In addition, the phosphoinositide 3 (PI 3)-kinase inhibitors wortmannin and LY294002, as well as the Gi protein inhibitor pertussis toxin, also inhibited the SDF-1-stimulated accumulation of PtdIns(3,4,5)P3. The effects of SDF-1 on D-3 phosphoinositide lipid accumulation correlated well with activation of the known PI 3-kinase effector protein kinase B, which was also inhibited by wortmannin and pertussis toxin. Concentrations of PI 3-kinase inhibitors, sufficient to inhibit PtdIns(3,4,5)P3 accumulation, also inhibited chemotaxis of Jurkat and peripheral blood-derived T lymphocytes in response to SDF-1. In contrast, SDF-1-stimulated actin polymerization was only partially inhibited by PI 3-kinase inhibitors, suggesting that while chemotaxis is fully dependent on PI 3-kinase activation, actin polymerization requires additional biochemical inputs. Finally, SDF-1-stimulated extracellular signal-related kinase (ERK)-1/2 mitogen-activated protein kinase activation was inhibited by PI 3-kinase inhibitors. In addition, the mitogen-activated protein/ERK kinase inhibitor PD098059 partially attenuated chemotaxis in response to SDF-1. Hence, it appears that ERK1/2 activation is dependent on PI 3-kinase activation, and both biochemical events are involved in the regulation of SDF-1-stimulated chemotaxis.  相似文献   

9.
Phosphatidylinositol 3-kinases (PtdIns 3-kinases) that produce phosphatidylinositol (3,4,5) triphosphate (PtdIns(3,4,5)P3) are considered to be important regulators of actin dynamics in animal cells. In plants, neither PtdIns(3,4,5)P3 nor the enzyme that produces this lipid has been reported. However, a PtdIns 3-kinase that produces phosphatidylinositol 3-phosphate (PtdIns3P) has been identified, suggesting that PtdIns3P, instead of PtdIns(3,4,5)P3, regulates actin dynamics in plant cells. Phosphatidylinositol 4-kinase (PtdIns 4-kinase) is closely associated with the actin cytoskeleton in plant cells, suggesting a role for this lipid kinase and its product phosphatidylinositol 4-phosphate (PtdIns4P) in actin-related processes. Here, we investigated whether or not PtdIns3P or PtdIns4P plays a role in actin reorganization induced by a plant hormone abscisic acid (ABA) in guard cells of day flower ( Commelina communis ). ABA-induced changes in actin filaments were inhibited by LY294002 (LY) and wortmannin (WM), inhibitors of PtdIns3P and PtdIns4P synthesis. Expression of PtdIns3P- and PtdIns4P-binding domains also inhibited ABA-induced actin reorganization in a manner similar to LY and WM. These results suggest that PtdIns3P and PtdIns4P regulate actin dynamics in guard cells. Furthermore, we demonstrate that PtdIns3P exerts its effect on actin dynamics, at least in part, via generation of reactive oxygen species (ROS) in response to ABA.  相似文献   

10.
The role of adenosine receptor in regulation of insulin-induced activation of phosphoinositide 3-kinase (PI 3-kinase) and protein kinase B was studied in isolated rat adipocytes. Rat adipocytes are known to spontaneously release adenosine, which in turn binds and stimulates the adenosine A1 receptors on the cells. In the present study, we observed that degradation of this adenosine by adenosine deaminase attenuated markedly the insulin-induced accumulation of phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3), a product of PI 3-kinase. p-Aminophenylacetyl xanthine amine congener (PAPA-XAC), an inhibitor of the adenosine A1 receptor, also inhibited the insulin-induced PtdIns(3,4,5)P3 accumulation. When extracellular adenosine was inactivated by adenosine deaminase, phenylisopropyladenosine, an adenosine A1 receptor agonist, potentiated the insulin-induced accumulation of PtdIns(3,4,5)P3. Insulin-induced activation of protein kinase B, the activity of which is controlled by the lipid products of PI 3-kinase, was also potentiated by adenosine. Prostaglandin E2, another activator of a pertussis toxin-sensitive GTP-binding protein in these cells, potentiated the insulin actions. Thus, the receptors coupling to the GTP-binding protein were found to positively regulate the production of PtdIns(3,4,5)P3, a putative second messenger for insulin actions, in physiological target cells of insulin.  相似文献   

11.
PtdIns(3,4,5)P3 regulates spindle orientation in adherent cells   总被引:1,自引:0,他引:1  
Cultured adherent cells divide on the substratum, leading to formation of the cell monolayer. However, how the orientation of this anchorage-dependent cell division is regulated remains unknown. We have previously shown that integrin-dependent adhesion orients the spindle parallel to the substratum, which ensures this anchorage-dependent cell division. Here, we show that phosphatidylinositol-3,4,5-triphosphate (PtdIns(3,4,5)P3) is essential for this spindle orientation control. In metaphase, PtdIns(3,4,5)P3 is accumulated in the midcortex in an integrin-dependent manner. Inhibition of phosphatidylinositol-3-OH kinase (PI(3)K) reduces the accumulation of PtdIns(3,4,5)P3 and induces spindle misorientation. Introduction of PtdIns(3,4,5)P3 to these cells restores the midcortical accumulation of PtdIns(3,4,5)P3 and proper spindle orientation. PI(3)K inhibition causes dynein-dependent spindle rotations along the z-axis, resulting in spindle misorientation. Moreover, dynactin, a dynein-binding partner, is accumulated in the midcortex in a PtdIns(3,4,5)P3-dependent manner. We propose that PtdIns(3,4,5)P3 directs dynein/dynactin-dependent pulling forces on spindles to the midcortex, and thereby orients the spindle parallel to the substratum.  相似文献   

12.
Signaling by phosphatidylinositol (PI) 3-kinases is mediated by 3-phosphoinositides, which bind to Pleckstrin homology (PH) domains that are present in a wide spectrum of proteins. PH domains can be classified into three groups based on their different lipid binding specificities. Distinct 3-phosphoinositides can accumulate upon PI 3-kinase activation in cells in response to different stimuli and mediate specific cellular responses. In Swiss 3T3 mouse fibroblasts, oxidative stress induced by 1 mM H(2)O(2) caused almost exclusive accumulation of phosphatidylinositol 3,4-bisphosphate (PtdIns(3, 4)P(2)), whereas osmotic stress increased both phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) and PtdIns(3,4)P(2) levels. The increase in PtdIns(3,4)P(2) levels, caused by oxidative stress, correlated with the activation of protein kinase B, which has a promiscuous PH domain that binds both PtdIns(3,4,5)P(3) and PtdIns(3, 4)P(2). p70 S6 kinase, another signaling component downstream of PI 3-kinase, however, was not activated by this oxidative stress-induced increase in PtdIns(3,4)P(2) levels. Increased PtdIns(3,4,5)P(3) and PtdIns(3,4)P(2) levels in response to osmotic stress did not correlate with protein kinase B activation, because of concomitant activation of an inhibitory pathway, but p70 S6 kinase was activated by osmotic stress. These results demonstrate that PtdIns(3,4)P(2) can accumulate independently of PtdIns(3,4, 5)P(3) and exerts a pattern of cellular responses that is distinct from that induced by accumulation of PtdIns(3,4,5)P(3).  相似文献   

13.
Motile nonmuscle cells concentrate phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) in areas of new actin filament assembly. There is great interest in assessing the in vivo functional significance of these phosphoinositides, and we have used Listeria monocytogenes to explore the contribution of PtdIns(3,4,5)P3 and PtdIns(4,5)P2 to its actin-based motility. In Listeria-infected PtK2 cells Akt-pleckstrin homology (PH)-green fluorescent protein (GFP) and phospholipase C delta (PLC delta)-PH-GFP both first concentrate at the front of motile Listeria, subsequently surrounding the bacterium and then concentrating in the actin filament tail. Surprisingly, Listeria ActA mutant strains lacking the putative phosphoinositide binding site are also able to concentrate these probes. Reduction of available PtdIns(3,4,5)P3 by expression of Akt-PH-GFP and available PtdIns(4,5)P2 by expression of PLC delta-PH-GFP both significantly slow Listeria actin-based movement. Treatment of cells with the PI 3-kinase inhibitor, LY294002, dissociates Akt-PH but not PLC delta-PH, from the bacterial surface and cell membranes, and results in near complete inhibition of Listeria actin-based motility and filopod formation. Removal of LY294002 results in rapid and full recovery of Akt-PH localization, Listeria actin-based motility, and filopod formation. These findings suggest that PtdIns(4,5)P2 is concentrated at the surface of Listeria and serves as the substrate for PtdIns(3,4,5)P3 production, indicating a central role for PI 3-kinases in Listeria intracellular actin-based motility and filopod formation.  相似文献   

14.
Class IA PI3Ks (phosphoinositide 3-kinases) generate the secondary messenger PtdIns(3,4,5)P(3), which plays an important role in many cellular responses. The accumulation of PtdIns(3,4,5)P(3) in cell membranes is routinely measured using GFP (green fluorescent protein)-labelled PH (pleckstrin homology) domains. However, the kinetics of membrane PtdIns(3,4,5)P(3) synthesis and turnover as detected by PH domains have not been validated using an independent method. In the present study, we measured EGF (epidermal growth factor)-stimulated membrane PtdIns(3,4,5)P(3) production using a specific monoclonal anti-PtdIns(3,4,5)P(3) antibody, and compared the results with those obtained using PH-domain-dependent methods. Anti-PtdIns(3,4,5)P(3) staining rapidly accumulated at the leading edge of EGF-stimulated carcinoma cells. PtdIns(3,4,5)P(3) levels were maximal at 1 min, and returned to basal levels by 5 min. In contrast, membrane PtdIns(3,4,5)P(3) production, measured by the membrane translocation of an epitope-tagged (BTK)PH (PH domain of Bruton's tyrosine kinase), remained approx. 2-fold above basal level throughout 4-5 min of EGF stimulation. To determine the reason for this disparity, we measured the rate of PtdIns(3,4,5)P(3) hydrolysis by measuring the decay of the PtdIns(3,4,5)P(3) signal after LY294002 treatment of EGF-stimulated cells. LY294002 abolished anti-PtdIns(3,4,5)P(3) membrane staining within 10 s of treatment, suggesting that PtdIns(3,4,5)P(3) turnover occurs within seconds of synthesis. In contrast, (BTK)PH membrane recruitment, once initiated by EGF, was relatively insensitive to LY294002. These data suggest that sequestration of PtdIns(3,4,5)P(3) by PH domains may affect the apparent kinetics of PtdIns(3,4,5)P(3) accumulation and turnover; consistent with this hypothesis, we found that GRP-1 (general receptor for phosphoinositides 1) PH domains [which, like BTK, are specific for PtdIns(3,4,5)P(3)] inhibit PTEN (phosphatase and tensin homologue deleted on chromosome 10) dephosphorylation of PtdIns(3,4,5)P(3) in vitro. These data suggest that anti-PtdIns(3,4,5)P(3) antibodies are a useful tool to detect localized PtdIns(3,4,5)P(3), and illustrate the importance of using multiple approaches for the estimation of membrane phosphoinositides.  相似文献   

15.
The phospholipid phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)) is accepted to be a direct modulator of ion channel activity. The products of phosphoinositide 3-OH kinase (PI3K), PtdIns(3,4)P(2) and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)), in contrast, are not. We report here activation of the epithelial Na(+) channel (ENaC) reconstituted in Chinese hamster ovary cells by PI3K. Insulin-like growth factor-I also activated reconstituted ENaC and increased Na(+) reabsorption across renal A6 epithelial cell monolayers via PI3K. Neither IGF-I nor PI3K affected the levels of ENaC in the plasma membrane. The effects of PI3K and IGF-I on ENaC activity paralleled changes in the plasma membrane levels of the PI3K product phospholipids, PtdIns(3,4)P(2)/PtdIns(3,4,5)P(3), as measured by evanescent field fluorescence microscopy. Both PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3) activated ENaC in excised patches. Activation of ENaC by PI3K and its phospholipid products corresponded to changes in channel open probability. We conclude that PI3K directly modulates ENaC activity via PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3). This represents a novel transduction pathway whereby growth factors, such as IGF-I, rapidly modulate target proteins independent of signaling elicited by kinases downstream of PI3K.  相似文献   

16.
We describe a novel approach to the relative quantification of phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P(3)] and its application to measure, in neutrophils, the activation of phosphoinositide 3-kinase (PI3K). This protein-lipid overlay-based assay allowed us to confirm and extend the observations, first, that N-formyl-methionyl-leucyl-phenylalanine (fMLP) stimulation of primed human neutrophils leads to a transient and biphasic increase in PtdIns(3,4,5)P(3) levels and, second, that the ability of fMLP to stimulate PtdIns(3,4,5)P(3) accumulation in neutrophils isolated from mice carrying a Ras-insensitive ('DASAA') knock-in of PI3Kgamma (p110gamma(DASAA/DASAA)) is substantially dependent on the Ras binding domain of PI3Kgamma.  相似文献   

17.
The products of PI 3-kinase activation, PtdIns(3,4,5)P3 and its immediate breakdown product PtdIns(3,4)P2, trigger physiological processes, by interacting with proteins possessing pleckstrin homology (PH) domains. One of the best characterized PtdIns(3,4,5)P3/PtdIns(3,4)P2 effector proteins is protein kinase B (PKB), also known as Akt. PKB possesses a PH domain located at its N terminus, and this domain binds specifically to PtdIns(3,4,5)P3 and PtdIns(3,4)P2 with similar affinity. Following activation of PI 3-kinase, PKB is recruited to the plasma membrane by virtue of its interaction with PtdIns(3,4,5)P3/PtdIns(3,4)P2. PKB is then activated by the 3-phosphoinositide-dependent pro-tein kinase-1 (PDK1), which like PKB, possesses a PtdIns(3,4,5)P3/PtdIns(3,4)P2 binding PH domain. Here, we describe the high-resolution crystal structure of the isolated PH domain of PKB(alpha) in complex with the head group of PtdIns(3,4,5)P3. The head group has a significantly different orientation and location compared to other Ins(1,3,4,5)P4 binding PH domains. Mutagenesis of the basic residues that form ionic interactions with the D3 and D4 phosphate groups reduces or abolishes the ability of PKB to interact with PtdIns(3,4,5)P3 and PtdIns(3,4)P2. The D5 phosphate faces the solvent and forms no significant interactions with any residue on the PH domain, and this explains why PKB interacts with similar affinity with both PtdIns(3,4,5)P3 and PtdIns(3,4)P2.  相似文献   

18.
Receptor-activated phosphoinositide (PI) 3-kinases produce PtdIns(3, 4,5)P(3) and its metabolite PtdIns(3,4)P(2) that function as second messengers in membrane recruitment and activation of target proteins. The cytohesin and centaurin protein families are potential targets for PtdIns(3,4,5)P(3) that also regulate and interact with Arf GTPases. Consequently, these families are poised to transduce PI 3-kinase activation into coordinated control of Arf-dependent pathways. Proposed downstream events in PI 3-kinase-regulated Arf cascades include modulation of vesicular trafficking and the actin cytoskeleton.  相似文献   

19.
Phosphatidylinositol 3-kinase (PI3K) mediates a variety of cellular responses by generating PtdIns(3,4)P2 and PtdIns(3,4,5)P3. These 3-phosphoinositides then function directly as second messengers to activate downstream signaling molecules by binding pleckstrin homology (PH) domains in these signaling molecules. We have established a novel assay in the yeast Saccharomyces cerevisiae to identify proteins that bind PtdIns(3,4)P2 and PtdIns(3,4,5)P3 in vivo which we have called TOPIS (Targets of PI3K Identification System). The assay uses a plasma membrane-targeted Ras to complement a temperature-sensitive CDC25 Ras exchange factor in yeast. Coexpression of PI3K and a fusion protein of activated Ras joined to a PH domain known to bind PtdIns(3,4)P2 (AKT) or PtdIns(3,4,5)P3 (BTK) rescues yeast growth at the non-permissive temperature of 37 degreesC. Using this assay, we have identified several amino acids in the beta1-beta2 region of PH domains that are critical for high affinity binding to PtdIns(3,4)P2 and/or PtdIns(3,4,5)P3, and we have proposed a structural model for how these PH domains might bind PI3K products with high affinity. From these data, we derived a consensus sequence which predicts high-affinity binding to PtdIns(3, 4)P2 and/or PtdIns(3,4,5)P3, and we have identified several new PH domain-containing proteins that bind PI3K products, including Gab1, Dos, myosinX, and Sbf1. Use of this assay to screen for novel cDNAs which rescue yeast at the non-permissive temperature should provide a powerful approach for uncovering additional targets of PI3K.  相似文献   

20.
In osteoclasts, polyphosphoinositides such as phosphatidylinositol 4,5 bisphosphate (PI(4,5)P2) and phosphatidylinositol 3,4,5 trisphosphate (PI(3,4,5)P3) are produced in response to integrin alphavbeta3 signaling and they have a critical role in actin cytoskeleton remodeling. The levels of PI(4,5)P2 and PI(3,4,5)P3 are regulated by Rho GTPase through the activation of phosphatidylinositol 4-phosphate 5-kinase (PI4P-5 kinase) and phospatidylinositol 3-kinase (PI3 kinase), respectively. Interaction of PI(4,5)P2 with gelsolin and Wiscott-Aldrich syndrome protein (WASP) is critical for podosome assembly/disassembly and actin ring formation in osteoclasts. Interaction of PI(3,4,5)P3 with gelsolin functions in orchestrating the podosome signaling complex consisting of several key signaling molecules. Gelsolin deficiency has been shown to block podosome assembly and motility in mouse osteoclasts. However, these osteoclasts are able to form a WASP-containing actin ring and retain their resorptive function. The TAT-mediated delivery of gelsolin phosphoinositide-binding domains into osteoclasts resulted in production of podosome clusters and disruption of actin ring formation. Hence, these osteoclasts were hypomotile and less resorptive. Our observations suggest that both PI(4,5)P2 and PI(3,4,5)P3 are involved in regulating osteoclast functions through modulation of severing, capping, and nucleating functions of actin-binding proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号