首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Paleostratigraphic estimates of divergence time for nine independent cladogenic events within Mammalia, ranging from 14 to 130 million years, were regressed against Tamura–Nei-corrected 12S rRNA transversions. Relative rate-adjusted distances were also regressed against paleostratigraphic divergence times. The resulting equations were used to estimate interordinal divergence times within Eutheria and Metatheria for a data set that includes representatives of all orders in each infraclass. Without the adjustment for rate variation, divergence times range from 34 to 156 million years for placental orders, versus 32 to 86 million years for marsupial orders. With rate adjustments, the range of divergence estimates decreases to 53 to 133 million years for placentals versus 40 to 79 million years for marsupials. The effect of rate adjustments is most noticeable for carnivores and perissodactyls, where rates are slow, and proboscideans, where rates are fast. In agreement with studies based on nuclear genes, both unadjusted and rate-adjusted estimates of sequence divergence indicate that the majority of placental orders originated before the terminal Cretaceous extinction. Exceptions include the perissodactyl–carnivore split and cladogenesis among paenungulate orders. Most marsupial orders, in turn, may have originated in the early Tertiary although didelphimorphs, at least, appear to have split from other lineages in the late Cretaceous. Marsupial divergence times based on 12S rRNA data are in good agreement with estimates based on single-copy DNA hybridization and disagree with the suggestion of Hershkovitz (1992) that Dromiciops separated from other marsupials in the Jurassic.  相似文献   

2.
It has recently been argued that living metazoans diverged over 800 million years ago, based on evidence from 22 nuclear genes for such a deep divergence between vertebrates and arthropods (Gu 1998). Two ``internal' calibration points were used. However, only one fossil divergence date (the mammal–bird split) was directly used to calibrate the molecular clock. The second calibration point (the primate–rodent split) was based on molecular estimates that were ultimately also calibrated by the same mammal–bird split. However, the first tetrapods that can be assigned with confidence to either the mammal (synapsid) lineage or the bird (diapsid) lineage are approximately 288 million years old, while the first mammals that can be assigned with confidence to either the primate or the rodent lineages are 65 million years old, or 85 million years old if ferungulates are part of the primate lineage and zhelestids are accepted as ferungulate relatives. Recalibration of the protein data using these fossil dates indicates that metazoans diverged between 791 and 528 million years ago, a result broadly consistent with the palaeontological documentation of the ``Cambrian explosion.' The third, ``external' calibration point (the metazoan–fungal divergence) was similarly problematic, since it was based on a controversial molecular study (which in turn used fossil dates including the mammal–bird split); direct use of fossils for this calibration point gives the absurd dating of 455 million years for metazoan divergences. Similar calibration problems affect another recent study (Wang et al. 1999), which proposes divergences for metazoans of 1000 million years or more: recalibrations of their clock again yields much more recent dates, some consistent with a ``Cambrian explosion' scenario. Molecular clock studies have persuasively argued for the imperfection of the fossil record but have rarely acknowledged that their inferences are also directly based on this same record. Received: 26 January 1999 / Accepted: 14 April 1999  相似文献   

3.
A phylogeny of tetrapods is inferred from nearly complete sequences of the nuclear RAG-1 gene sampled across 88 taxa encompassing all major clades, analyzed via parsimony and Bayesian methods. The phylogeny provides support for Lissamphibia, Theria, Lepidosauria, a turtle-archosaur clade, as well as most traditionally accepted groupings. This tree allows simultaneous molecular clock dating for all tetrapod groups using a set of well-corroborated calibrations. Relaxed clock (PLRS) methods, using the amniote = 315 Mya (million years ago) calibration or a set of consistent calibrations, recovers reasonable divergence dates for most groups. However, the analysis systematically underestimates divergence dates within archosaurs. The bird-crocodile split, robustly documented in the fossil record as being around approximately 245 Mya, is estimated at only approximately 190 Mya, and dates for other divergences within archosaurs are similarly underestimated. Archosaurs, and particulary turtles have slow apparent rates possibly confounding rate modeling, and inclusion of calibrations within archosaurs (despite their high deviances) not only improves divergence estimates within archosaurs, but also across other groups. Notably, the monotreme-therian split ( approximately 210 Mya) matches the fossil record; the squamate radiation ( approximately 190 Mya) is younger than suggested by some recent molecular studies and inconsistent with identification of approximately 220 and approximately 165 Myo (million-year-old) fossils as acrodont iguanians and approximately 95 Myo fossils colubroid snakes; the bird-lizard (reptile) split is considerably older than fossil estimates (< or = 285 Mya); and Sphenodon is a remarkable phylogenetic relic, being the sole survivor of a lineage more than a quarter of a billion years old. Comparison with other molecular clock studies of tetrapod divergences suggests that the common practice of enforcing most calibrations as minima, with a single liberal maximal constraint, will systematically overestimate divergence dates. Similarly, saturation of mitochondrial DNA sequences, and the resultant greater compression of basal branches means that using only external deep calibrations will also lead to inflated age estimates within the focal ingroup.  相似文献   

4.
Bayesian estimates of divergence times based on the molecular clock yield uncertainty of parameter estimates measured by the width of posterior distributions of node ages. For the relaxed molecular clock, previous works have reported that some of the uncertainty inherent to the variation of rates among lineages may be reduced by partitioning data. Here we test this effect for the purely morphological clock, using placental mammals as a case study. We applied the uncorrelated lognormal relaxed clock to morphological data of 40 extant mammalian taxa and 4,533 characters, taken from the largest published matrix of discrete phenotypic characters. The morphologically derived timescale was compared to divergence times inferred from molecular and combined data. We show that partitioning data into anatomical units significantly reduced the uncertainty of divergence time estimates for morphological data. For the first time, we demonstrate that ascertainment bias has an impact on the precision of morphological clock estimates. While analyses including molecular data suggested most divergences between placental orders occurred near the K‐Pg boundary, the partitioned morphological clock recovered older interordinal splits and some younger intraordinal ones, including significantly later dates for the radiation of bats and rodents, which accord to the short‐fuse hypothesis.  相似文献   

5.
Molecular sequences do not only allow the reconstruction of phylogenetic relationships among species, but also provide information on the approximate divergence times. Whereas the fossil record dates the origin of most multicellular animal phyla during the Cambrian explosion less than 540 million years ago(mya), molecular clock calculations usually suggest much older dates. Here we used a large multiple sequence alignment derived from Expressed Sequence Tags and genomes comprising 129genes (37,476 amino acid positions) and 117 taxa, including 101 arthropods. We obtained consistent divergence time estimates applying relaxed Bayesian clock models with different priors and multiple calibration points. While the influence of substitution rates, missing data, and model priors were negligible, the clock model had significant effect. A log-normal autocorrelated model was selected on basis of cross-validation. We calculated that arthropods emerged ~600 mya. Onychophorans (velvet worms) and euarthropods split ~590 mya, Pancrustacea and Myriochelata ~560 mya, Myriapoda and Chelicerata ~555 mya, and 'Crustacea' and Hexapoda ~510 mya. Endopterygote insects appeared ~390 mya. These dates are considerably younger than most previous molecular clock estimates and in better agreement with the fossil record. Nevertheless, a Precambrian origin of arthropods and other metazoan phyla is still supported. Our results also demonstrate the applicability of large datasets of random nuclear sequences for approximating the timing of multicellular animal evolution.  相似文献   

6.
Current understanding of the diversification of birds is hindered by their incomplete fossil record and uncertainty in phylogenetic relationships and phylogenetic rates of molecular evolution. Here we performed the first comprehensive analysis of mitogenomic data of 48 vertebrates, including 35 birds, to derive a Bayesian timescale for avian evolution and to estimate rates of DNA evolution. Our approach used multiple fossil time constraints scattered throughout the phylogenetic tree and accounts for uncertainties in time constraints, branch lengths, and heterogeneity of rates of DNA evolution. We estimated that the major vertebrate lineages originated in the Permian; the 95% credible intervals of our estimated ages of the origin of archosaurs (258 MYA), the amniote-amphibian split (356 MYA), and the archosaur-lizard divergence (278 MYA) bracket estimates from the fossil record. The origin of modern orders of birds was estimated to have occurred throughout the Cretaceous beginning about 139 MYA, arguing against a cataclysmic extinction of lineages at the Cretaceous/Tertiary boundary. We identified fossils that are useful as time constraints within vertebrates. Our timescale reveals that rates of molecular evolution vary across genes and among taxa through time, thereby refuting the widely used mitogenomic or cytochrome b molecular clock in birds. Moreover, the 5-Myr divergence time assumed between 2 genera of geese (Branta and Anser) to originally calibrate the standard mitochondrial clock rate of 0.01 substitutions per site per lineage per Myr (s/s/l/Myr) in birds was shown to be underestimated by about 9.5 Myr. Phylogenetic rates in birds vary between 0.0009 and 0.012 s/s/l/Myr, indicating that many phylogenetic splits among avian taxa also have been underestimated and need to be revised. We found no support for the hypothesis that the molecular clock in birds "ticks" according to a constant rate of substitution per unit of mass-specific metabolic energy rather than per unit of time, as recently suggested. Our analysis advances knowledge of rates of DNA evolution across birds and other vertebrates and will, therefore, aid comparative biology studies that seek to infer the origin and timing of major adaptive shifts in vertebrates.  相似文献   

7.
New World primates comprise a diverse group of neotropical mammals that suddenly appeared in the Late Oligocene deposits of South America at around 26 million years ago (MYA). Platyrrhines seem to have separated from Old World anthropoids ca. 35 MYA, and their subsequent diversfication is not well documented in the fossil record. Therefore, molecular clock studies were conducted to unveil the temporal scenario for the evolution of the group. In this study, divergence times of all splits within platyrrhines until the generic level were investigated, using two different gene data sets under relaxed molecular clocks. Special attention was paid to the basal diversification of living platyrrhines and to the basal split of the modern Cebidae family, since these nodes were reported to be phylogenetically difficult to resolve. The results showed that analyses from various genomic regions are similar to estimates obtained by early single-gene studies. Living New World primates are descendants of ancestors that lived in the Early Miocene, at around 20 MYA, and modern Cebidae and Pitheciidae appeared ca. 16.9 and 15.6 MYA, respectively. The last common ancestor of living Atelidae is 12.4 million years old, making this clade the youngest New World primate family; at approximately the same time, modern Callitrichinae was evolving (11.8 MYA). The gap between the Platyrrhini/Catarrhini separation and the last common ancestor of living Platyrrhini may be as big as 20 million years. Paleontological and geoclimatological evidence corroborates that the sudden appearance of modern families may be a consequence of environmental changes during the Miocene.  相似文献   

8.
To test the hypothesis put forward by Feduccia of the origin of modern birds from transitional birds, we sequenced the first two complete mitochondrial genomes of shorebirds (ruddy turnstone and blackish oystercatcher) and compared their sequences with those of already published avian genomes. When corrected for rate heterogeneity across sites and non-homogeneous nucleotide compositions among lineages in maximum likelihood (ML), the optimal tree places palaeognath birds as sister to the neognaths including shorebirds. This optimal topology is a re-rooting of recently published ordinal-level avian trees derived from mitochondrial sequences. Using a penalized likelihood (PL) rate-smoothing process in conjunction with dates estimated from fossils, we show that the basal splits in the bird tree are much older than the Cretaceous-Tertiary (K-T) boundary, reinforcing previous molecular studies that rejected the derivation of modern birds from transitional shorebirds. Our mean estimate for the origin of modern birds at about 123 million years ago (Myr ago) is quite close to recent estimates using both nuclear and mitochondrial genes, and supports theories of continental break-up as a driving force in avian diversification. Not only did many modern orders of birds originate well before the K-T boundary, but the radiation of major clades occurred over an extended period of at least 40 Myr ago, thus also falsifying Feduccia's rapid radiation scenario following a K-T bottleneck.  相似文献   

9.
This study investigated the biogeography and genetic variation in the antitropically distributed Micromesistius genus. A 579 bp fragment of the mitochondrial coI gene was analysed in 279 individuals of Micromesistius poutassou and 163 of Micromesistius australis. The time since divergence was estimated to be c. 2 million years before present (Mb.p.) with an externally derived clock rate by Bayesian methods. Congruent estimates were obtained with an additional data set of cytochrome b sequences derived from GenBank utilizing a different clock rate. The divergence time of 2 Mb.p. was in disagreement with fossil findings in New Zealand and previous hypotheses which suggested the divergence to be much older. It, therefore, appears likely that Micromesistius has penetrated into the southern hemisphere at least two times. Paleoceanographic records indicate that conditions that would increase the likelihood for transequatorial dispersals were evident c. 2-1·6 Mb.p.. Haplotype frequency differences, along with pairwise F(ST) values, indicated that Mediterranean M. poutassou is a genetically isolated population.  相似文献   

10.
Reconstructing the chronology of mammalian evolution is a debated issue between molecule- and fossil-based inferences. A methodological limitation of molecules is the evolutionary rate variation among lineages, precluding the application of the global molecular clock. We considered 2422 first and second codon positions of the combined ADRA2B, IRBP, and vWF nuclear genes for a well-documented set of placentals including an extensive sampling of rodents. Using seven independent calibration points and a maximum-likelihood framework, we evaluated whether molecular and paleontological estimates of mammalian divergence dates may be reconciled by the local molecular clocks approach, allowing local constancy of substitution rates with variations at larger phylogenetic scales. To handle the difficulty of choosing among all possible rate assignments for various lineages, local molecular clocks were based on the results of branch-length and two-cluster tests. Extensive lineage-specific variation of evolutionary rates was detected, even among rodents. Cross-calibrations indicated some incompatibilities between divergence dates based on different paleontological references. To decrease the impact of a single calibration point, estimates derived from independent calibrations displaying only slight reciprocal incompatibility were averaged. The divergence dates inferred for the split between mice and rats (approximately 13-19 Myr) was younger than previously published molecular estimates. The most recent common ancestors of rodents, primates and rodents, boreoeutherians, and placentals were estimated to be, respectively, approximately 60, 70, 75, and 78 Myr old. Global clocks, local clocks, and quartet dating analyses suggested a Late Cretaceous origin of the crown placental clades followed by a Tertiary radiation of some placental orders like rodents.  相似文献   

11.
Statistical methods for estimating divergence times by using multiprotein gamma distances are discussed. When a large number of proteins are used, even a small degree of deviation from the molecular clock hypothesis can be detected. In this case, one may use the stem-lineage method for estimating divergence times. However, the estimates obtained by this method are often similar to those obtained by the linearized tree method. Application of these methods to a dataset of 104 proteins from several vertebrate species indicated that the divergence times between humans and mice and between mice and rats are about 96 and 33 million years (MY) ago, respectively. These estimates were obtained by assuming that birds and mammals diverged 310 MY ago. Similarly application of the methods to the protein sequence data from primate species indicated that the human lineage separated from the chimpanzee, gorilla, Old World monkeys, and New World monkeys about 6.0, 7.0, 23.0, and 33.0 MY ago, respectively. In this case the use of two calibration points, that is, the divergence time (13 MY ago) between humans and orangutans and between primates and artiodactyls (90 MY ago) gave essentially the same estimates.  相似文献   

12.
The evolution of tribospheny and the antiquity of mammalian clades   总被引:25,自引:0,他引:25  
The evolution of tribosphenic molars is a key innovation in the history of Mammalia. Tribospheny allows for both shearing and grinding occlusal functions. Marsupials and placentals are advanced tribosphenic mammals (i.e., Theria) that show additional modifications of the tribosphenic dentition including loss of the distal metacristid and development of double-rank postvallum/prevallid shear. The recent discovery of Eomaia [Nature 416 (2002) 816], regarded as the oldest eutherian mammal, implies that the marsupial-placental split is at least 125 million years old. The conventional scenario for the evolution of tribosphenic and therian mammals hypothesizes that each group evolved once, in the northern hemisphere, and is based on a predominantly Laurasian fossil record. With the recent discovery of the oldest tribosphenic mammal (Ambondro) from the Mesozoic of Gondwana, Flynn et al. [Nature 401 (1999) 57] suggested that tribospheny evolved in Gondwana rather than in Laurasia. Luo et al. [Nature 409 (2001) 53; Acta Palaeontol. Pol. 47 (2002) 1] argued for independent origins of tribospheny in northern (Boreosphenida) and southern (Australosphenida) hemisphere clades, with the latter including Ambondro, ausktribosphenids, and monotremes. Here, we present cladistic evidence for a single origin of tribosphenic molars. Further, Ambondro may be a stem eutherian, making the split between marsupials and placentals at least 167 m.y. old. To test this hypothesis, we used the relaxed molecular clock approach of Thorne/Kishino with amino acid data sets for BRCA1 [J. Mammal. Evol. 8 (2001) 239] and the IGF2 receptor [Mammal. Genome 12 (2001) 513]. Point estimates for the marsupial-placental split were 182-190 million years based on BRCA1 and 185-187 million years based on the IGF2 receptor. These estimates are fully compatible with the results of our cladistic analyses.  相似文献   

13.
The ongoing debate on the reliability of avian molecular clocks is actually based on only a small number of calibrations carried out under different assumptions with respect to the choice and constraints of calibration points or to the use of substitution models. In this study, we provide substitution rate estimates for two mitochondrial genes, cytochrome b and the control region, and age estimates for lineage splits within four subgenera of tits (Paridae: Parus, Cyanistes, Poecile and Periparus). Overall sequence divergence between cytochrome b lineages covers a range of 0.4-1.8% per million years and is thus consistent with the frequently adopted approximation for a sequence divergence between avian lineages of 1.6-2% per my. Overall rate variation is high and encompasses the 2% value in a 95% CI for model corrected data. Mean rate estimates for cytochrome b range between 1.9 and 8.9 x 10(-3) substitutions per site per lineage. Local rates differ significantly between taxonomic levels with lowest estimates for haplotype lineages. At the population/subspecies level mean sequence divergence between lineages matches the 2% rule best for most cytochrome b datasets (1.5-1.9% per my) with maximum estimates for small isolated populations like those of the Canarian P. teneriffae complex (up to 3.9% per my). Overall rate estimates for the control region range at similar values like those for cytochrome b (2.7-8.8 x 10(-3), 0.5-1.8% per my), however, within some subgenera mean rates are higher than those for cytochrome b for uncorrected sequence data. The lowest rates for both genes were calculated for coal tits of subgenus Periparus (0.04-0.6% per my). Model-corrected sequence data tend to result in higher rate estimates than uncorrected data. Increase of the gamma shape parameter goes along with a significant decrease of rate and partly age estimates, too. Divergence times for earliest deep splits within tit subgenera Periparus and Parus were dated to the mid Miocene at 10-14my bp. Most recent splits between east and west Palearctic taxa of blue, willow and great tits were dated to the Pliocene/Pleistocene boundary with the earliest estimates based on model-corrected trees. Relaxation of the Messinian calibration point leads to more recent divergence times for North African coal and blue tit populations during the mid Pliocene. Despite a relatively broad age constraint for the split between Nearctic and Palearctic Poecile due to the Pliocene re-opening of the Bering Strait, the split between chickadees and willow tits is dated considerably earlier than in former studies to the upper bound of the age constraint at 7.4 my BP.  相似文献   

14.
An associated partial skeleton from the Late Pliocene (3.0–2.6 million years) of St. George Island, Pribilofs, Alaska, is identified as the modern Thick-billed Murre (Uria lomvia). This is the oldest occurrence of either modern species of Uria and probably the oldest Cenozoic bird yet known from Alaska. A split between the two modern species of >3 million years is in accordance with divergence times derived from DNA sequences.  相似文献   

15.
The age of the angiosperms: a molecular timescale without a clock   总被引:8,自引:0,他引:8  
The age of the angiosperms has long been of interest to botanists and evolutionary biologists. Many early efforts to date the age of the angiosperms and evolutionary divergences within the angiosperm clade using a molecular clock have yielded age estimates that are grossly inconsistent with the fossil record. We investigated the age of angiosperms using Bayesian relaxed clock (BRC) and penalized likelihood (PL) approaches. Both of these methods allow the incorporation of multiple fossil constraints into the optimization procedure. The BRC method allows a range of values for among-lineage rate of substitution, from a nearly clocklike behavior to a condition in which each branch is allowed an optimal substitution rate, and also accounts for variation in molecular evolution across multiple genes. A topology derived from an analysis of genes from all three plant genomes for 71 taxa was used as a backbone. The effects on age estimates of different genes, single-gene versus concatenated datasets, and the inclusion and assumptions of fossils as age constraints were examined. In addition, the influence of prior distributions on estimates of divergence times was also explored. These results indicate that widely divergent age estimates can result from the different methods (198-139 million years ago), different sources of data (275-122 million years ago), and the inclusion of temporal constraints to topologies. Most dates, however, are between 180-140 million years ago, suggesting a Middle Jurassic-Early Cretaceous origin of flowering plants, predating the oldest unequivocal fossil angiosperms by about 45-5 million years. Nonetheless, these dates are consistent with other recent studies that have used methods that relax the assumption of a strict molecular clock and also agree with the hypothesis that the angiosperms may be somewhat older than the fossil record indicates.  相似文献   

16.
The evolution of fungus-growing termites is supposed to have started in the African rain forests with multiple invasions of semi-arid habitats as well as multiple invasions of the Oriental region. We used sequences of the mitochondrial COII gene and Bayesian dating to investigate the time frame of the evolution of Macrotermes, an important genus of fungus-growing termites. We found that the genus Macrotermes consists of at least 6 distantly related clades. Furthermore, the COII sequences suggested some cryptic diversity within the analysed African Macrotermes species. The dates calculated with the COII data using a fossilized termite mound to calibrate the clock were in good agreement with dates calculated with COI sequences using the split between Locusta and Chortippus as calibration point which supports the consistency of the calibration points. The clades from the Oriental region dated back to the early Tertiary. These estimates of divergence times suggested that Macrotermes invaded Asia during periods with humid climates. For Africa, many speciation events predated the Pleistocene and fall in range of 6-23 million years ago. These estimates suggest that savannah-adapted African clades radiated with the spread of the semi-arid ecosystems during the Miocene. Apparently, events during the Pleistocene were of little importance for speciation within the genus Macrotermes. However, further investigations are necessary to increase the number of taxa for phylogenetic analysis.  相似文献   

17.
Mitochondrial DNA remains one of the most widely used molecular markers to reconstruct the phylogeny and phylogeography of closely related birds. It has been proposed that bird mitochondrial genomes evolve at a constant rate of ~0.01 substitution per site per million years, that is that they evolve according to a strict molecular clock. This molecular clock is often used in studies of bird mitochondrial phylogeny and molecular dating. However, rates of mitochondrial genome evolution vary among bird species and correlate with life history traits such as body mass and generation time. These correlations could cause systematic biases in molecular dating studies that assume a strict molecular clock. In this study, we overcome this issue by estimating corrected molecular rates for birds. Using complete or nearly complete mitochondrial genomes of 475 species, we show that there are strong relationships between body mass and substitution rates across birds. We use this information to build models that use bird species’ body mass to estimate their substitution rates across a wide range of common mitochondrial markers. We demonstrate the use of these corrected molecular rates on two recently published data sets. In one case, we obtained molecular dates that are twice as old as the estimates obtained using the strict molecular clock. We hope that this method to estimate molecular rates will increase the accuracy of future molecular dating studies in birds.  相似文献   

18.
Many evolutionary studies of birds rely on the estimation of molecular divergence times and substitution rates. In order to perform such analyses, it is necessary to incorporate some form of calibration information: a known substitution rate, radiometric ages of heterochronous sequences, or inferred ages of lineage splitting events. All three of these techniques have been employed in avian molecular studies, but their usage has not been entirely satisfactory. For example, the 'traditional' avian mitochondrial substitution rate of 2% per million years is frequently adopted without acknowledgement of the associated uncertainty. Similarly, fossil and biogeographic information is almost always converted into an errorless calibration point. In both cases, the resulting estimates of divergence times and substitution rates will be artificially precise, which has a considerable impact on hypothesis testing. In addition, using such a simplistic approach to calibration discards much of the information offered by the fossil record. A number of more sophisticated calibration methods have recently been introduced, culminating in the development of probability distribution-based calibrations. In this article, I discuss the use of this new class of methods and offer guidelines for choosing a calibration technique.  相似文献   

19.
Although the relationships of the living hominoid primates (humans and apes) are well known, the relationships of the fossil species, times of divergence of both living and fossil species, and the biogeographic history of hominoids are not well established. Divergence times of living species, estimated from molecular clocks, have the potential to constrain hypotheses of the relationships of fossil species. In this study, new DNA sequences from nine protein-coding nuclear genes in great apes are added to existing datasets to increase the precision of molecular time estimates bearing on the evolutionary history of apes and humans. The divergence of Old World monkeys and hominoids at the Oligocene-Miocene boundary (approximately 23 million years ago) provides the best primate calibration point and yields a time and 95% confidence interval of 5.4 +/- 1.1 million years ago (36 nuclear genes) for the human-chimpanzee divergence. Older splitting events are estimated as 6.4 +/- 1.5 million years ago (gorilla, 31 genes), 11.3 +/- 1.3 million years ago (orangutan, 33 genes), and 14.9 +/- 2.0 million years ago (gibbon, 27 genes). Based on these molecular constraints, we find that several proposed phylogenies of fossil hominoid taxa are unlikely to be correct.  相似文献   

20.
Temporary water bodies are important freshwater habitats in the arid zone of Australia. They harbor a distinct fauna and provide important feeding and breeding grounds for water birds. This paper assesses, on the basis of haplotype networks, analyses of molecular variation and relaxed molecular clock divergence time estimates, the phylogeographic history, and population structure of four common temporary water species of the Australian endemic clam shrimp taxon Limnadopsis in eastern and central Australia (an area of >1,350,000 km(2)). Mitochondrial cytochrome c oxidase subunit I sequences of 413 individuals and a subset of 63 nuclear internal transcribed spacer 2 sequences were analyzed. Genetic differentiation was observed between populations inhabiting southeastern and central Australia and those inhabiting the northern Lake Eyre Basin and Western Australia. However, over large parts of the study area and across river drainage systems in southeastern and central Australia (the Murray-Darling Basin, Bulloo River, and southern Lake Eyre Basin), no evidence of population subdivision was observed in any of the four Limnadopsis species. This indicates recent gene flow across an area of ~800,000 km(2). This finding contrasts with patterns observed in other Australian arid zone taxa, particularly freshwater species, whose populations are often structured according to drainage systems. The lack of genetic differentiation within the area in question may be linked to the huge number of highly nomadic water birds that potentially disperse the resting eggs of Limnadopsis among temporary water bodies. Genetically undifferentiated populations on a large geographic scale contrast starkly with findings for many other large branchiopods in other parts of the world, where pronounced genetic structure is often observed even in populations inhabiting pools separated by a few kilometers. Due to its divergent genetic lineages (up to 5.6% uncorrected p-distance) and the relaxed molecular clock divergence time estimates obtained, Limnadopsis parvispinus is assumed to have inhabited the Murray-Darling Basin continuously since the mid-Pliocene (~4 million years ago). This means that suitable temporary water bodies would have existed in this area throughout the wet-dry cycles of the Pleistocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号