首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Regulation of the xyl gene operons of the Pseudomonas putida TOL plasmid is mediated by the products of the downstream clustered and divergently oriented xylR and xylS regulatory genes. The xylR-xylS intergenic region contains the xylR and xylS promoters Pr and Ps, respectively. A binding site for the XylR activator protein is located upstream of Ps and overlapping Pr. DNase I footprint experiments showed that one of these sites, which overlaps the recognition site for XylR activator, as well as an AT-rich region comprising the Ps promoter consensus were protected by integration host factor (IHF). IHF was found to act negatively in the in vivo activation of the Ps promoter, since the activity of a Ps promoter::lacZ fusion was elevated in an Escherichia coli mutant lacking IHF. In contrast, no alteration in the synthesis of XylR protein in the E. coli IHF-deficient mutant was detected.  相似文献   

3.
4.
5.
6.
7.
8.
9.
The sequence elements determining the binding of the sigma54-containing RNA polymerase (sigma54-RNAP) to the Pu promoter of Pseudomonas putida have been examined. Contrary to previous results in related systems, we show that the integration host factor (IHF) binding stimulates the recruitment of the enzyme to the -12/-24 sequence motifs. Such a recruitment, which is fully independent of the activator of the system, XylR, requires the interaction of the C-terminal domain of the alpha subunit of RNAP with specific DNA sequences upstream of the IHF site which are reminiscent of the UP elements in sigma70 promoters. Our data show that this interaction is mainly brought about by the distinct geometry of the promoter region caused by IHF binding and the ensuing DNA bending. These results support the view that binding of sigma54-RNAP to a promoter is a step that can be subjected to regulation by factors (e.g. IHF) other than the sole intrinsic affinity of sigma54-RNAP for the -12/-24 site.  相似文献   

10.
The sequences surrounding the -12/-24 motif of the m-xylene-responsive sigma54 promoter Pu of the Pseudomonas putida TOL plasmid pWW0 were replaced by various DNA segments of the same size recruited from PnifH sigma54 promoter variants known to have various degrees of efficacy and affinity for sigma54-RNA polymerase (RNAP). In order to have an accurate comparison of the output in vivo of each of the hybrids, the resulting promoters were recombined at the same location of the chromosome of P. putida KT2442 with a tailored vector system. The promoters included the upstream activation sequence (UAS) for the cognate regulator of the TOL system (XylR) fused to the -12/-24 region of the wild-type PnifH and its higher sigma54-RNAP affinity variants PnifH049 and PnifH319. As a control, the downstream region of the glnAp2 promoter (lacking integration host factor) was fused to the XylR UAS as well. When the induction patterns of the corresponding lacZ fusion strains were compared in vivo, we observed that promoters bearing the RNAP binding site of PnifH049 and PnifH319 were not silenced during exponential growth, as is distinctly the case for the wild-type Pu promoter or for the Pu-PnifH variant. Taken together, our results indicate that the promoter sequence(s) spanning the -12/-24 region of Pu dictates the coupling of promoter output to growth conditions.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
The interactions between the sigma54-containing RNA polymerase (sigma54-RNAP) and the region of the Pseudomonas putida Pu promoter spanning from the enhancer to the binding site for the integration host factor (IHF) were analyzed both by DNase I and hydroxyl radical footprinting. A short Pu region centered at position -104 was found to be involved in the interaction with sigma54-RNAP, both in the absence and in the presence of IHF protein. Deletion or scrambling of the -104 region strongly reduced promoter affinity in vitro and promoter activity in vivo, respectively. The reduction in promoter affinity coincided with the loss of IHF-mediated recruitment of the sigma54-RNAP in vitro. The experiments with oriented-alpha sigma54-RNAP derivatives containing bound chemical nuclease revealed interchangeable positioning of only one of the two alpha subunit carboxyl-terminal domains (alphaCTDs) both at the -104 region and in the surroundings of position -78. The addition of IHF resulted in perfect position symmetry of the two alphaCTDs. These results indicate that, in the absence of IHF, the sigma54-RNAP asymmetrically uses only one alphaCTD subunit to establish productive contacts with upstream sequences of the Pu promoter. In the presence of IHF-induced curvature, the closer proximity of the upstream DNA to the body of the sigma54-RNAP can allow the other alphaCTD to be engaged in and thus favor closed complex formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号