首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In contact experiments with different experimental conditions, electrochemical Ag+ solutions exhibited better antimicrobial effectiveness against bacteria, a yeast species, and a mold than did analogous silver solutions from inorganic salts. The particular characteristics of electrochemical Ag+, such as the mode of action, effectiveness at low concentrations, and stability, indicate that Ag+ could be used effectively in preservatives.  相似文献   

2.
The electrochemical (EC) detection of iodide at gold, silver and platinum electrodes under similar experimental conditions was evaluated. To achieve optimal amperometric detection, the electrode sensitivity, selectivity, and stability was compared. Isocratic separation of iodide was attained by ion chromatography (IC) using an anion-exchange column with nitrate as an eluent ion (25 mM HNO(3) + 50 mM NaNO(3)). Although the Ag electrode showed the highest selectivity due to the relatively low applied potential (+0.10 V versus Ag|AgCl), it requires continuous surface polishing upon injection of standard solutions or real samples; in addition, the chromatographic peak of iodide exhibited a pronounced dip-tailing. The limit of detection (LoD) of iodide was estimated to be 3.5 microg/L (S/N=3) with an injection volume of 50 microL. Likewise, pulsed electrochemical detection at the silver electrode did not demonstrate the expected results in terms of peak shape and low detection limit. Using the same chromatographic conditions, iodide detection at the Au electrode (E(app)= +0.80 V versus Ag|AgCl) exhibited a regular peak shape accompanied by a sensitivity comparable to the silver one. Yet, upon continuous injections the signal intensity displayed a progressive lowering up to ca. 40% in 6h. Best results in terms of signal stability, peak shape and analytical response were obtained with a modified platinum electrode which allowed to achieve a LoD of 0.5 microg/L (S/N=3). The present IC-EC detection method using a modified Pt electrode (E(app)= +0.85 V versus Ag|AgCl) was successfully applied to determine low contents of iodide in human urine with solid phase extraction as pretreatment. Such a developed method correlated very well with the reference colorimetric method in urine (r=0.95273), and it is specifically suggested when the iodide content is relatively low, i.e., <20 microg/L.  相似文献   

3.
A series of ferrocenyl conjugates to fatty acids have been designed and synthesized to establish the key properties required for use in biomolecular binding studies. Amperometric detection of the ferrocene conjugates was sought in the region of 0.3 V (vs Ag/AgCl) for use in protein/blood solutions. Different linkers and solubilizing moieties were incorporated to produce a conjugate with optimal electrochemical properties. In electrochemical studies, the linker directly attached to the ferrocene was found to affect significantly the E(1/2) value and the stability of the ferrocenium cation. Ester-linked ferrocene conjugates had E(1/2) ranging from +400 to +410 mV, while amide-linked compounds ranged from +350 to +370 mV and the amines +260 to +270 mV. Folding of long-chain substituents around the ferrocene, also significantly affected by the choice of linker, was inferred as a secondary effect that increased E(1/2). The stability of the ferrocenium cation decreased systematically as E(1/2) increased. Disubstituted ferrocene ester and amide conjugates, with oxidation potentials of +640 and +570 mV, respectively, showed only a barely discernible reduction wave in cyclic voltammetry at 50 mV/s. Electrochemical measurements identified two lead compounds with the common structural characteristics of an amide and carbamate linker (compounds 17 and 21) with a C(11) fatty acid chain attached. It is envisaged that such molecules can be used to mimic and study the biomolecular binding interaction between fatty acids and molecules such as human serum albumin.  相似文献   

4.
Cyclic voltammetry demonstrated that cells of Shewanella putrefaciens grown under anaerobic conditions without nitrate were electrochemically active. The electrochemical activity was inactivated reversibly by exposure to air, but not by nitrate. Lactate and an applied potential at +200 mV against an Ag/AgCl reference electrode restored the electrochemical activity. These findings can be used to improve the performance of a mediator-less microbial fuel cell using electrochemically active bacteria in the presence of nitrate.  相似文献   

5.
Rapid Ca2+ release from Ca2+ -loaded sarcoplasmic reticulum vesicles (SR) was previously shown to occur upon the addition of micromolar concentrations of heavy metals, and the extent of Ca2+ release was dependent on the binding affinity of the metal to sulfhydryl group(s) on an SR protein (Abramson, J.J., Weden, L., Trimm, J.L., and Salama, G. (1982) Biophys. J. 37, 134a; Abramson, J.J., Trimm, J.L., Weden, L., and Salama, G. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 1526). The nature of this Ca2+ release site was examined further and found to be predominantly distributed in heavy SR (HSR) rather than light SR fractions. Ag+ -induced Ca2+ release from heavy SR was blocked by local anesthetics and ruthenium red which are known to inhibit Ca2+ release in skeletal fibers and in heavy SR, respectively. The rate of Ca2+ efflux from SR triggered by Ag+ was dependent on pH, Mg2+, and ionic strength of the medium. Efflux rates increased by a factor of 4 from pH 6.0 to 7.0 and then decreased in more alkaline reaction mixtures. Efflux rates from actively or passively loaded SR increased by a factor of 2.5 with increasing Mg2+ from 0 to 1 mM and then decreased in the range of 1 to 10 mM Mg2+. ATP-dependent Ca2+ uptake by SR was similar in 100 mM KCl and in 200 mM sucrose solutions, but the extent and rate of Ca2+ efflux induced by Ag+ were dramatically reduced with decreasing ionic strength of the medium. In solutions containing 5 mM Mg2+, the rate of Ca2+ efflux from heavy SR averaged over the first 1.5 s after the addition of Ag+ was 58 nmol of Ca2+/mg of SR/s, a value comparable to the fast initial rate of ATP-dependent Ca2+ uptake. The maximum initial rate of Ag+ -induced Ca2+ efflux from heavy SR in 1 mM Mg2+ may be comparable to the rate of Ca2+ release and tension development in muscle fibers. Our data indicate that Ag+ reacts with a protein or proteins in the SR, probably not the (Ca2+, Mg2+)-ATPase, to induce a rapid release of Ca2+, possibly from the physiological Ca2+ release site.  相似文献   

6.
7.
Electrochemically induced oxidative damage to DNA was studied with double-stranded calf thymus DNA immobilized directly on a gold electrode surface. Pre-polarization of the DNA-modified electrodes at +0.5 V versus Ag/AgCl reference electrode, in a free from DNA blank buffer solution, pH 7.4, allowed for subsequent detection of direct electrochemical oxidation of adsorbed on gold DNA, in the potential range from +0.7 to +0.8 V. The redox potential of the process corresponded to the potentials of the oxidation of guanine bases in DNA. It is shown that with increasing potential scan rate, v, the mechanism of electrochemical oxidation of DNA changes from the irreversible 4e oxidative damage of DNA at low v to reversible 1e oxidation at high v, keeping the electrochemical activity of the adsorbed DNA layer virtually the same.  相似文献   

8.
Permeation characteristics of gramicidin conformers.   总被引:3,自引:3,他引:0       下载免费PDF全文
To investigate the molecular origin of decreased conductance in variant gramicidin channels, we examined the current-voltage (IV) characteristics of single Val1-gramicidin A channels. Unlike standard channels, all variant channels showed pronounced rectification even though bathing solutions were symmetrical. Moreover, channels of lower conductance consistently showed more pronounced rectification. Analysis within the framework of a three-barrier, two-site, single-filing model indicates that the shape of the variant channel IVs could be best explained by an increase in binding affinity near one of the two channel entrances. This conclusion was further tested by characterizing single channel IVs in bi-ionic solutions having different cationic species at each channel entrance. In Cs/Na bi-ionic solutions, reversal potentials of variant channels often differed by a small but significant amount from those of standard channels. When a membrane potential was applied, the ionic currents tended to be reduced more when flowing from the Na+ side than the Cs+ side. These observations support the conclusion that variant channels have increased binding affinity at one end of the channel. Furthermore, H+ currents were increased while Ag+ currents were unaltered for most variant channels exhibiting decreased Na+ or Cs+ currents. The increased H+ conductance argues against long-range coulombic forces as the basis for decreased Na+ or Cs+ conductance while the normal Ag+ conductance suggests that the binding site field strength increases by a change in carbonyl geometry at the channel entrance.  相似文献   

9.
Copper electrochemistry at modified gold electrodes was investigated with two different states of the metal ion: first bound in azurin from Pseudomonas aeruginosa and second introduced via metal ion uptake in metallothionein (MT) from rabbit liver. Azurin was immobilised on a mercaptosuccinic acid (MSA) layer self-assembled on gold. The redox behaviour in the adsorbed as well as in the covalently immobilised state was found to be quasi-reversible with a formal potential of +198 mV versus Ag/AgCl. The pH variation suggests an optimal pH range for efficient electrode communication in the neutral range. MT was fixed at electrochemically cleaned gold using the accessible cysteins of the protein. Copper was found to bind to the MT-modified gold electrode. The electrochemical behaviour of the bound copper was characterised in copper-free solution with a formal potential of +245 mV versus Ag/AgCl. Stability and potential use is discussed.  相似文献   

10.
Electrochemical immunosensors based on a competitive indirect enzyme-linked immunosorbent assay (ciELISA) and an enzymatic recycling system were developed for the detection of okadaic acid (OA). OA-ovalbumin (OA-OVA) conjugate was immobilised on screen-printed electrodes (SPEs) and competition of a newly generated monoclonal antibody (MAb) for free and immobilised OA was subsequently performed. Secondary antibodies labelled with alkaline phosphatase (ALP) or horseradish peroxidase (HRP) were used for signal generation. Experimental parameters were firstly optimised by colorimetric ELISA on microtiter wells and on SPEs. The ELISA system was then tested by amperometry at +300 mV vs. Ag/AgCl (detection of p-aminophenol produced by the reaction of p-aminophenyl phosphate with ALP) or -200 mV vs. Ag/AgCl (detection of 5-methyl-phenazinium methyl sulfate, redox mediator in the HRP bioelectrocatalysis). The limits of detection (LODs) with standard solutions were 1.07 and 1.98 microgL(-1) when using ALP and HRP labels, respectively. An electrochemical signal amplification system based on diaphorase (DI) recycling was integrated into the ALP-based immunosensor, decreasing the LOD to 0.03 microgL(-1) and enlarging the working range by two orders of magnitude. Preliminary results with mussel and oyster extracts were obtained and compared with the colorimetric immunoassay, the colorimetric protein phosphatase inhibition assay (PPIA) and LC-MS/MS.  相似文献   

11.
CD4+ T cells play a crucial role in CTL generation in a DNA vaccination strategy. Several studies have demonstrated the requirement of CD4+ T cells for the induction of a sufficient immune response by coadministrating DNAs. In the present study we investigated the effectiveness of Ag85B of mycobacteria, which is known to be one of the immunogenic proteins for Th1 development, as an adjuvant of a DNA vaccine. HIV gp120 DNA vaccine mixed with Ag85B DNA as an adjuvant induced HIV gp120-specific Th1 responses, as shown by delayed-type hypersensitivity, cytokine secretion, and increasing HIV-specific CTL responses. Moreover, these responses were enhanced in mice primed with Mycobacterium bovis bacillus Calmette-Guérin before immunization of HIV DNA vaccine mixed with Ag85B DNA. Furthermore, these immunized mice showed substantial reduction of HIV gp120-expressing recombinant vaccinia virus titers compared with the titers in other experimental mice after recombinant vaccinia virus challenge. Because most humans have been sensitized by spontaneous infection or by vaccination with mycobacteria, these findings indicate that Ag85B is a promising adjuvant for enhancing CTL responses in a DNA vaccination strategy.  相似文献   

12.
Silver nanoparticles: partial oxidation and antibacterial activities   总被引:4,自引:0,他引:4  
The physical and chemical properties of silver nanoparticles that are responsible for their antimicrobial activities have been studied with spherical silver nanoparticles (average diameter approximately 9 nm) synthesized by the borohydride reduction of Ag+ ions, in relation to their sensitivity to oxidation, activities towards silver-resistant bacteria, size-dependent activities, and dispersal in electrolytic solutions. Partially (surface) oxidized silver nanoparticles have antibacterial activities, but zero-valent nanoparticles do not. The levels of chemisorbed Ag+ that form on the particle's surface, as revealed by changes in the surface plasmon resonance absorption during oxidation and reduction, correlate well with the observed antibacterial activities. Silver nanoparticles, like Ag+ in the form of AgNO3 solution, are tolerated by the bacteria strains resistant to Ag+. The antibacterial activities of silver nanoparticles are related to their size, with the smaller particles having higher activities on the basis of equivalent silver mass content. The silver nanoparticles aggregate in media with a high electrolyte content, resulting in a loss of antibacterial activities. However, complexation with albumin can stabilize the silver nanoparticles against aggregation, leading to a retention of the antibacterial activities. Taken together, the results show that the antibacterial activities of silver nanoparticles are dependent on chemisorbed Ag+, which is readily formed owing to extreme sensitivity to oxygen. The antibacterial activities of silver nanoparticles are dependent on optimally displayed oxidized surfaces, which are present in well-dispersed suspensions.  相似文献   

13.
Antimicrobial cellulose acetate nanofibers containing silver nanoparticles   总被引:11,自引:0,他引:11  
It was found for the first time that polymer nanofibers containing Ag nanoparticles on their surface could be produced by UV irradiation of polymer nanofibers electrospun with small amounts of silver nitrate (AgNO3). When the cellulose acetate (CA) nanofibers electrospun from CA solutions with 0.5 wt% of AgNO3 were irradiated with UV light at 245 nm, Ag nanoparticles were predominantly generated on the surface of the CA nanofibers. The number and size of the Ag nanoparticles were continuously increased up to 240 min. The Ag+ ions and Ag clusters diffused and aggregated on the surface of the CA nanofibers during the UV irradiation. The Ag nanoparticles with an average size of 21 nm exhibited strong antimicrobial activity.  相似文献   

14.
A high-performance liquid chromatographic method for the determination of penicillamine in plasma, whole blood, and urine samples is described. The method uses a commercially available electrochemical detector at a potential of +0.1 V versus the Ag/AgCl reference electrode. This method is selective and sensitive for sulfhydryl compounds. The chromatography separates penicillamine from other endogenous sulfhydryl compounds with a limit of detection for penicillamine in biological samples of ca. 10−7M.  相似文献   

15.
Ag(+) ions are greatly toxic to a lot of algae, fungi, viruses and bacteria, which can also induce harmful side-effects to environments and human health. Herein we report an ultra-sensitive method for the selective detection of Ag(+) ions with electrochemical technique based on Ag(+)-assisted isothermal exponential degradation reaction. In the presence of Ag(+), mismatched trigger DNA can transiently bind to template DNA immobilized on an electrode surface through the formation of C-Ag(+)-C base pair, which then initiates the isothermal exponential degradation reaction. As a result, the mismatched trigger DNA may melt off the cleaved template DNA to trigger rounds of elongation and cutting. After the cyclic degradation reactions, removal of the template DNA immobilized on the electrode surface can be efficiently monitored by using electrochemical technique to show the status of the electrode surface, which can be then used to determine the presence of Ag(+). Further studies reveal that the proposed method can be ultra-sensitive to detect Ag(+) at a picomolar level. The selectivity of the detection can also be satisfactory, thus the proposed method for the Ag(+) ions detection may be potentially useful in the future.  相似文献   

16.
Bacterial sorption of heavy metals.   总被引:12,自引:4,他引:8       下载免费PDF全文
Four bacteria, Bacillus cereus, B. subtilis, Escherichia coli, and Pseudomonas aeruginosa, were examined for the ability to remove Ag+, Cd2+, Cu2+, and La3+ from solution by batch equilibration methods. Cd and Cu sorption over the concentration range 0.001 to 1 mM was described by Freundlich isotherms. At 1 mM concentrations of both Cd2+ and Cu2+, P. aeruginosa and B. cereus were the most and least efficient at metal removal, respectively. Freundlich K constants indicated that E. coli was most efficient at Cd2+ removal and B. subtilis removed the most Cu2+. Removal of Ag+ from solution by bacteria was very efficient; an average of 89% of the total Ag+ was removed from the 1 mM solution, while only 12, 29, and 27% of the total Cd2+, Cu2+, and La3+, respectively, were sorbed from 1 mM solutions. Electron microscopy indicated that La3+ accumulated at the cell surface as needlelike, crystalline precipitates. Silver precipitated as discrete colloidal aggregates at the cell surface and occasionally in the cytoplasm. Neither Cd2+ nor Cu2+ provided enough electron scattering to identify the location of sorption. The affinity series for bacterial removal of these metals decreased in the order Ag greater than La greater than Cu greater than Cd. The results indicate that bacterial cells are capable of binding large quantities of different metals. Adsorption equations may be useful for describing bacterium-metal interactions with metals such as Cd and Cu; however, this approach may not be adequate when precipitation of metals occurs.  相似文献   

17.
Bacterial sorption of heavy metals   总被引:14,自引:0,他引:14  
Four bacteria, Bacillus cereus, B. subtilis, Escherichia coli, and Pseudomonas aeruginosa, were examined for the ability to remove Ag+, Cd2+, Cu2+, and La3+ from solution by batch equilibration methods. Cd and Cu sorption over the concentration range 0.001 to 1 mM was described by Freundlich isotherms. At 1 mM concentrations of both Cd2+ and Cu2+, P. aeruginosa and B. cereus were the most and least efficient at metal removal, respectively. Freundlich K constants indicated that E. coli was most efficient at Cd2+ removal and B. subtilis removed the most Cu2+. Removal of Ag+ from solution by bacteria was very efficient; an average of 89% of the total Ag+ was removed from the 1 mM solution, while only 12, 29, and 27% of the total Cd2+, Cu2+, and La3+, respectively, were sorbed from 1 mM solutions. Electron microscopy indicated that La3+ accumulated at the cell surface as needlelike, crystalline precipitates. Silver precipitated as discrete colloidal aggregates at the cell surface and occasionally in the cytoplasm. Neither Cd2+ nor Cu2+ provided enough electron scattering to identify the location of sorption. The affinity series for bacterial removal of these metals decreased in the order Ag greater than La greater than Cu greater than Cd. The results indicate that bacterial cells are capable of binding large quantities of different metals. Adsorption equations may be useful for describing bacterium-metal interactions with metals such as Cd and Cu; however, this approach may not be adequate when precipitation of metals occurs.  相似文献   

18.
The route for presentation of Ag to CD8+ or CD4+ T cells following DNA vaccination is critical for determining outcome, but the pathways involved are unclear. In this study, we compare two different DNA vaccine designs aimed to elicit CD8+ T cell responses against a specific peptide-epitope either by direct- or cross-presentation. Each carries sequences from tetanus toxin (TT) to provide essential CD4+ T cell help. In the first already proven design, the peptide-epitope is fused to the N-terminal domain of fragment C from TT. This appears to act mainly by cross-presentation. In the second design, the peptide-epitope is encoded by a minigene, with induction of Th responses mediated by coexpression of a hybrid invariant chain molecule, incorporating a single determinant from TT (p30) in exchange for class II-associated invariant chain peptide. This design appears to act mainly via direct presentation from transfected APCs. Both vaccines mediated Th-dependent priming of CD8+ T cells in mice, but the kinetics and level of the responses differed markedly, consistent with engagement of distinct pathways of Ag presentation. Importantly, the vaccines could be combined in an alternating prime-boost regime, in either order, generating substantially expanded memory CD8+ T cells, with potent effector function. Taken together, these results demonstrate that vaccination protocols involving different modes of Ag presentation at prime and boost can significantly improve the effectiveness of immunization.  相似文献   

19.
Ag+-induced Ca2+ release in isolated sarcoplasmic reticulum (SR) was studied by the stopped flow method monitoring chlortetracycline fluorescence change. After improving the experimental procedure, the initial rate of Ca2+ release could be determined more precisely than before. Micromolar concentrations of Ag+ specifically enhanced Ca2+ efflux from heavy fraction of SR vesicles (HSR). This specific effect was referred to as Ag+-induced calcium release. The Ag+-induced Ca2+ efflux was activated by caffeine and ATP, but was inhibited by Mg2+ and procaine. Further, Ag+ enhanced the Ca2+-induced Ca2+ release over the whole range of Ca2+ concentrations, similarly to ATP. Parallel to Ca2+ efflux, Mg2+ efflux, measured by the same method, was also activated by Ag+. Choline permeability determined by the light scattering method was also activated by Ag+. The results suggest that Ag+ binds to the activation site of the Ca2+-induced Ca2+ release channel and opens the channel. The Ag+ binding site is different from the Ca2+ binding site but similar to the ATP binding site.  相似文献   

20.
A sensitive and quick assay for redox proteins based on electrochemical titrations in a thin-layer electrochemical cell is described. Using a combination of modified-electrode and "mediator-enhanced" electrochemistry, equilibration of the cell volume (4 microliters) with the applied potential allows series of spectra as a function of the potential to be recorded rapidly. A complete redox titration between +500 and -600 mV (vs Ag/AgCl/3 M KCl) in 30-mV intervals takes approximately 2 h. The detection limit of the assay, evaluated for cytochrome c at the alpha-band absorption, is quoted to approximately 100 pmol. The use of this redox assay for the detection of redox-active contaminants in biochemical preparations, for the determination of midpoint potentials of redox enzymes, and for the characterization of complex membrane-bound or soluble redox systems is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号