首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blast resistance in the indica cultivar (cv.) Q61 was inherited as a single dominant gene in two F2 populations, F2-1 and F2-2, derived from crosses between the donor cv. and two susceptible japonica cvs. Aichi Asahi and Lijiangxintuanheigu (LTH), respectively. To rapidly determine the chromosomal location of the resistance (R) gene detected in Q61, random amplified polymorphic DNA (RAPD) analysis was performed in the F2-1 population using bulked-segregant analysis (BSA) in combination with recessive-class analysis (RCA). One of the three linked markers identified, BA1126550, was cloned and sequenced. The R gene locus was roughly mapped on rice chromosome 8 by comparison of the BA1126550 sequence with rice sequences in the databases (chromosome landing). To confirm this finding, seven known markers, including four sequence-tagged-site (STS) markers and three simple-sequence repeat (SSR) markers flanking BA1126550 on chromosome 8, were subjected to linkage analysis in the two F2 populations. The locus was mapped to a 5.8 cM interval bounded by RM5647 and RM8018 on the short arm of chromosome 8. This novel R gene is therefore tentatively designated as Pi36(t). For fine mapping of the Pi36(t) locus, five additional markers including one STS marker and four candidate resistance gene (CRG) markers were developed in the target region, based on the genomic sequence of the corresponding region of the reference japonica cv. Nipponbare. The Pi36(t) locus was finally localized to an interval of about 0.6 cM flanked by the markers RM5647 and CRG2, and co-segregated with the markers CRG3 and CRG4. To physically map this locus, the Pi36(t)-linked markers were mapped by electronic hybridization to bacterial artificial chromosome (BAC) or P1 artificial chromosome (PAC) clones of Nipponbare, and a contig map was constructed in silico through Pairwise BLAST analysis. The Pi36(t) locus was physically delimited to an interval of about 17.0 kb, based on the genomic sequence of Nipponbare.  相似文献   

2.
We have identified, genetically mapped and physically delimited the chromosomal location of a new blast resistance gene from a broad spectrum resistant genotype ‘DHR9’. The segregation analysis of an F2 progeny of a cross between a susceptible cv. ‘HPU741’ and the resistant genotype ‘DHR9’ suggested that the resistance was conditioned by a single dominant gene. A RAPD marker, OPA82000, linked to the resistance gene was identified by the linkage analysis of 109 F2 individuals. By chromosomal landing of the sequence of RAPD marker on the sequence of reference cv. Nipponbare, the gene was mapped onto rice chromosome 12. Further linkage analysis with two polymorphic simple sequence repeat (SSR) markers, RM2529 and RM1337 of chromosome 12, confirmed the chromosomal localization of the resistance gene. Based on linkage analysis of 521 susceptible F2 plants and comparative haplotype structure analysis of the parental genotypes with SSR and sequence tagged site (STS) markers developed from the Nipponbare PAC/BAC clones of chromosome 12, the resistance gene was delimited within a 2 cM interval defined by STS marker, STS5, on the telomeric side and SSR marker, RRS6 on the centromeric side. By aligning the sequences of linked markers on the sequence of cv. Nipponbare, a ~4.18 Mb cross-over cold region near the centromere of chromosome 12 was delineated as the region of blast resistance gene. In this region, six putatively expressed NBS-LRR genes were identified by surveying the equivalent genomic region of cv. Nipponbare in the TIGR Whole Genome Annotation Database (http://www.tigr.org). NBS-LRR locus, LOC_Os12g18374 situated in BAC clone OJ1115_G02 (Ac. No. AL772419) was short-listed as a potential candidate for the resistance gene identified from DHR9. The new gene was tentatively designated as Pi-42(t). The markers tightly linked to gene will facilitate marker-assisted gene pyramiding and cloning of the resistance gene.  相似文献   

3.
Blast, caused by Magnaporthe oryzae, is one of the most widespread and destructive diseases of rice. Breeding durable resistant cultivars (cvs) can be achieved by pyramiding of various resistance (R) genes. Pia, carried by cv. Aichi Asahi, was evaluated against 612 isolates of M. oryzae collected from 10 Chinese provinces. The Pia gene expresses weak resistance in all the provinces except for Jiangsu. Genomic position-ready marker-based linkage analysis was carried out in a mapping population consisting of 800 F2 plants derived from a cross of Aichi Asahi×Kasalath. The locus was defined in an interval of approximately 90 kb, flanked by markers A16 and A21. Four candidate genes (Pia-1, Pia-2, Pia-3, and Pia-4), all having the R gene conserved structure, were predicted in the interval using the cv. Nipponbare genomic sequence. Four candidate resistance gene (CRG) markers (A17, A25, A26, and A27), derived from the four candidates, were subjected to genotyping with the recombinants detected at the flanking markers. The first three markers completely co-segregated with the Pia locus, and the fourth was absent in the Aichi Asahi genome and disordered with the Pia locus and its flanking markers, indicating that the fourth candidate gene, Pia-4, could be excluded. Co-segregation marker-based genotyping of the three sets of differentials with known R gene genotypes revealed that the genotype of A26 (Pia-3) perfectly matched the R gene genotype of Pia, indicating that Pia-3 is the strongest candidate gene for Pia.  相似文献   

4.
Blast, caused by the ascomycete fungus Magnaporthe oryzae, is one of the most devastating diseases of rice worldwide. The Chinese native cultivar (cv.) Q15 expresses the broad-spectrum resistance to most of the isolates collected from China. To effectively utilize the resistance, three rounds of linkage analysis were performed in an F2 population derived from a cross of Q15 and a susceptible cv. Tsuyuake, which segregated into 3:1 (resistant/susceptible) ratio. The first round of linkage analysis employing simple sequence repeat (SSR) markers was carried out in the F2 population through bulked-segregant assay. A total of 180 SSR markers selected from each chromosome equally were surveyed. The results revealed that only two polymorphic markers, RM247 and RM463, located on chromosome 12, were linked to the resistance (R) gene. To further define the chromosomal location of the R gene locus, the second round of linkage analysis was performed using additional five SSR markers, which located in the region anchored by markers RM247 and RM463. The locus was further mapped to a 0.27 cM region bounded by markers RM27933 and RM27940 in the pericentromeric region towards the short arm. For fine mapping of the R locus, seven new markers were developed in the smaller region for the third round of linkage analysis, based on the reference sequences. The R locus was further mapped to a 0.18 cM region flanked by marker clusters 39M11 and 39M22, which is closest to, but away from the Pita/Pita 2 locus by 0.09 cM. To physically map the locus, all the linked markers were landed on the respective bacterial artificial chromosome clones of the reference cv. Nipponbare. Sequence information of these clones was used to construct a physical map of the locus, in silico, by bioinformatics analysis. The locus was physically defined to an interval of ≈37 kb. To further characterize the R gene, five R genes mapped near the locus, as well as 10 main R genes those might be exploited in the resistance breeding programs, were selected for differential tests with 475 Chinese isolates. The R gene carrier Q15 conveys resistances distinct from those conditioned by the carriers of the 15 R genes. Together, this valuable R gene was, therefore, designated as Pi39(t). The sequence information of the R gene locus could be used for further marker-based selection and cloning. Xinqiong Liu and Qinzhong Yang contributed equally to this work.  相似文献   

5.
The Pik m gene in rice confers a high and stable resistance to many isolates of Magnaporthe oryzae collected from southern China. This gene locus was roughly mapped to the long arm of rice chromosome 11 with restriction fragment length polymorphic (RFLP) markers in the previous study. To effectively utilize the resistance, a linkage analysis was performed in a mapping population consisting of 659 highly susceptible plants collected from four F2 populations using the publicly available simple sequence repeat (SSR) markers. The result showed that the locus was linked to the six SSR markers and defined by RM254 and RM144 with ≈13.4 and ≈1.2 cM, respectively. To fine map this locus, additional 10 PCR-based markers were developed in a region flanked by RM254 and RM144 through bioinformatics analysis (BIA) using the reference sequence of cv. Nipponbare. The linkage analysis with these 10 markers showed that the locus was further delimited to a 0.3-cM region flanked by K34 and K10, in which three markers, K27, K28, and K33, completely co-segregated with the locus. To physically map the locus, the Pik m -linked markers were anchored to bacterial artificial chromosome clones of the reference cv. Nipponbare by BIA. A physical map spanning ≈278 kb in length was constructed by alignment of sequences of the clones anchored by BIA, in which only six candidate genes having the R gene conserved structure, protein kinase, were further identified in an 84-kb segment.  相似文献   

6.
Pi-z is a disease resistance gene that has been effectively used to combat a broad-spectrum of races of the rice blast fungus Magnaporthe grisea. Although DNA markers have been reported for selection of the Pi2(t) and Pi-z resistance genes at the Pi-z locus, markers that are more tightly linked to the Pi-z locus would benefit rapid and effective cultivar development. Analysis of the publicly available genome sequence of Nipponbare near the Pi-z locus revealed numerous SSRs that could be converted into markers. Three SSRs on rice PAC AP005659 were found to be very tightly linked to the Pi-z locus, with one marker, AP5659-3, co-segregating with the Pi-z resistance reaction. The Pi-z factor conferring resistance to two races of blast was mapped to a 57 kb region on the physical map of Nipponbare in a location where the Pi2(t) gene was physically mapped. Two SSR marker haplotypes were unique for cultivars carrying the Pi-z gene, which indicates these markers are useful for selection of resistance genes at the Pi-z locus in rice germplasm.  相似文献   

7.
The famous rice cultivar (cv.), St. No. 1, confers complete resistance to many isolates collected from the South China region. To effectively utilize the resistance, a linkage assay using microsatellite markers (SSR) was performed in the three F2 populations derived from crosses between the donor cv. St. No. 1 and each of the three susceptible cvs. C101PKT, CO39 and AS20-1, which segregated into 3R:1S (resistant/susceptible) ratio, respectively. A total of 180 SSR markers selected from each chromosome equally were screened. The result showed that the two markers RM128 and RM486 located on chromosome 1 were linked to the resistance gene in the respective populations above. This result is not consistent with those previously reported, in which a well-known resistance gene Pif in the St. No. 1 is located on chromosome 11. To confirm this result, additional four SSR markers, which located in the region lanked by RM128 and RM486, were tested. The results showed that markers RM543 and RM319 were closer to, and RM302 and RM212 completely co-segregated with the resistance locus detected in the present study. These results indicated that another resistance gene involved in the St. No. 1, which is located on chromosome 1, and therefore tentatively designated as Pi37(t). To narrow down genomic region of the Pi37(t) locus, eight markers were newly developed in the target region through bioinformatics analysis (BIA) using the publicly available sequences. The linkage analysis with these markers showed that the Pi37(t) locus was mapped to a ≈ 0.8 centimorgans (cM) interval flanked by RM543 and FPSM1, where a total of seven markers co-segregated with it. To physically map the locus, the Pi37(t)-linked markers were landed on the reference sequence of cv. Nipponbare through BIA. A contig map corresponding to the locus was constructed based on the reference sequence aligned by the Pi37(t)-linked markers. Consequently, the Pi37(t) locus was defined to 374 kb interval flanking markers RM543 and FPSM1, where only four candidate genes with the resistance gene conserved structure (NBS-LRR) were further identified to a DNA fragment of 60 kb in length by BIA.  相似文献   

8.
The Oryza sativa subsp. indica reference cultivar (cv.), 93-11 is completely resistant to many Chinese isolates of the rice blast fungus. Resistance segregated in a 3:1 (resistance/susceptible) ratio in an F2 population from the cross between 93-11 and the japonica reference cv. Nipponbare, when challenged with two independent blast isolates. The chromosomal location of this monogenic resistance was mapped to a region of the long arm of chromosome 12 by bulk segregant analysis, using 180 evenly distributed SSR markers. Five additional SSR loci and nine newly developed PCR-based markers allowed the target region to be reduced to ca. 1.8 cM, equivalent in Nipponbare to about 800 kb. In the reference sequence of Nipponbare, this region includes an NBS-LRR cluster of four genes. The known blast resistance gene Pi-GD-3 also maps in this region, but the 93-11 resistance was distinguishable from Pi-GD-3 on the basis of race specificity. We have therefore named the 93-11 resistance Pi41. Seven markers completely linked to Pi41 will facilitate both marker-assisted breeding and gene isolation cloning.  相似文献   

9.
The identification and utilization of broad-spectrum resistance genes have been proven the most effective and economical approach to control rice blast disease. To understand the molecular mechanism of broad-spectrum resistance to rice blast, we conducted genetic and fine mapping analysis of the blast resistance gene in a Chinese rice variety: Gumei 4 (GM4) identified with broad-spectrum resistance and used in rice breeding for blast resistance for more than 20 years. Genetic and mapping analysis indicated that blast resistance to nine isolates of different Chinese races in GM4 was controlled by the same dominant locus designated as Pigm(t) that was finely mapped to an approximately 70-kb interval between markers C5483 and C0428 on chromosome 6, which contains five candidate NBS--LRR disease resistance genes. The allelism test showed that Pigm(t) was either tightly linked or allelic to Pi2 and Pi9, two known blast resistance genes. Mapping information also indicated that another blast resistance gene Pi26(t) might also be located at the same region. Candidate genes were identified by sequence analysis of the Nipponbare and Pi9 locus and the corresponding region in GM4. Sequence divergence of candidate genes was observed between GM4 and model varieties Nipponbare and 9311, and Pi9. Our current study provides essential information and new genetic resource for the cloning of functional resistance gene(s) and for marker-assisted selection in rice breeding for broad-spectrum blast resistance.Yiwen Deng and Xudong Zhu contributed equally to this work.  相似文献   

10.
The fragrance gene plays an important role in high-quality rice varieties and has been widely used in breeding programs. Using a random sample of 370 individuals from an F2 segregating population developed from a cross between a japonica rice variety 9407 with fragrant flavor and an indica variety IRBB60, the fgr locus was mapped on chromosome 8 between SSR markers, PSM465 and RM1109, with genetic distances of 0.3 cM and 0.1 cM to respective markers. These mapping efforts confirmed the previous mapping results. A large F3 mapping population with 7300 individuals was then developed from F2 plants, in which a small chromosomal region defined by the SSR markers, PSM465 and RM1109, was heterozygous. The analysis of recombinants in the fgr region anchored the gene locus to an interval of 28 kb flanked by the left marker NS9 and the right marker L06. Sequence analysis of this fragment predicted three open reading frames encoding putative 3-methylcrotonyl-CoA carboxylase, putative isoleucyl-tRNA synthetase, and betaine aldehyde dehydrogenase (BADH2). The latter was presumed to be the candidate gene for fragrance. This result will be very useful in molecular cloning of the fgr gene and marker-assisted transfer of the fgr gene in rice breeding programs. Published in Russian in Fiziologiya Rastenii, 2009, vol. 56, No. 4, pp. 587–595. This text was submitted by the authors in English.  相似文献   

11.
Phytic acid is the primary storage form of phosphorus (P) in cereal grains. In addition to being essential for normal seedling growth and development, phytic acid plays an important role in human and animal nutrition. The rice low phytic acid mutation lpa1 results in a 45% reduction in seed phytic acid with a molar equivalent increase in inorganic P. The Lpa1 locus was previously mapped to the long arm of chromosome 2. Using microsatellite markers and a recombinant inbred line population, we fine mapped this locus between the markers RM3542 and RM482, which encompass a region of 135 kb. Additional markers were developed from the DNA sequence of this region. Two of these markers further delimited the locus to a 47-kb region containing eight putative open reading frames. Cloning and molecular characterization of the Lpa1 gene will provide insight into phytic acid biosynthesis in plants. The markers reported here should also be useful in introgressing the low phytic acid phenotype into other rice cultivars.The mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.  相似文献   

12.
Photoperiod-thermo-sensitive genic male sterile (PTGMS) rice exhibits a number of desirable traits for hybrid rice production. The cloning genes responsible for PTGMS and those elucidating male sterility mechanisms and reversibility to fertility would be of great significance to provide a foundation to develop new male sterile lines. Guangzhan63S, a PTGMS line, is one of the most widely used indica two-line hybrid rice breeding systems in China. In this study, genetic analysis based on F2 and BC1F2 populations derived from a cross between Guangzhan63S and 1587, determined a single recessive gene controls male sterility in Guangzhan63S. Molecular marker techniques combined with bulked-segregant analysis (BSA) were used and located the target gene (named ptgms2-1) between two SSR markers RM12521 and RM12823. Fine mapping of the ptgms2-1 locus was conducted with 45 new Insertion–Deletion (InDel) markers developed between the RM12521 and RM12823 region, using 634 sterile individuals from F2 and BC1F2 populations. Ptgms2-1 was further mapped to a 50.4 kb DNA fragment between two InDel markers, S2-40 and S2-44, with genetic distances of 0.08 and 0.16 cM, respectively, which cosegregated with S2-43 located on the AP004039 BAC clone. Ten genes were identified in this region based on annotation results from the RiceGAAS system. A nuclear ribonuclease Z gene was identified as the candidate for the ptgms2-1 gene. This result will facilitate cloning the ptgms2-1 gene. The tightly linked markers for the ptgms2-1 gene locus will further provide a useful tool for marker-assisted selection of this gene in rice breeding programs.  相似文献   

13.
Genetic analysis and fine mapping of a resistance gene against brown planthopper (BPH) biotype 2 in rice was performed using two F2 populations derived from two crosses between a resistant indica cultivar (cv.), AS20-1, and two susceptible japonica cvs., Aichi Asahi and Lijiangxintuanheigu. Insect resistance was evaluated using F1 plants and the two F2 populations. The results showed that a single recessive gene, tentatively designated as bph19(t), conditioned the resistance in AS20-1. A linkage analysis, mainly employing microsatellite markers, was carried out in the two F2 populations through bulked segregant analysis and recessive class analysis (RCA), in combination with bioinformatics analysis (BIA). The resistance gene locus bph19(t) was finely mapped to a region of about 1.0 cM on the short arm of chromosome 3, flanked by markers RM6308 and RM3134, where one known marker RM1022, and four new markers, b1, b2, b3 and b4, developed in the present study were co-segregating with the locus. To physically map this locus, the bph19(t)-linked markers were landed on bacterial artificial chromosome or P1 artificial chromosome clones of the reference cv., Nipponbare, released by the International Rice Genome Sequencing Project. Sequence information of these clones was used to construct a physical map of the bph19(t) locus, in silico, by BIA. The bph19(t) locus was physically defined to an interval of about 60 kb. The detailed genetic and physical maps of the bph19(t) locus will facilitate marker-assisted gene pyramiding and cloning.  相似文献   

14.
Rice blast, caused by the fungal pathogen Magnaporthe oryzae (Moryzae), is one of the most destructive and widespread plant diseases in the world. Utilization of resistance genes in rice breeding is considered to be an effective and economical method to control this disease. To identify new sources of blast resistance, a set of 1160 introgression lines (ILs) containing chromosome segments of Chaling common wild rice (Oryza rufipogon Griff.) in the genetic background of an elite indica rice variety 93-11 were developed and phenotyped in the blast nursery. Thirty-three ILs displaying stable blast resistance in three consecutive years were obtained. Among them, one line, IL1043, was subsequently found to be resistant to all of the 28 M. oryzae isolates from different regions through artificial inoculation in greenhouse. By combining bulk segregant analysis coupled with next-generation sequencing (BSA-seq) and recessive class analysis (RCA), a major blast resistance gene in IL1043, designated Picl(t), was mapped on rice chromosome 6 flanked by the markers RM527 and Indel6 with an interval of approximately 925 kb, which covers the Pi2/9 locus. These results will facilitate fine mapping and cloning of Picl(t), and the linked markers will further provide a useful tool for rice blast resistance breeding.  相似文献   

15.
A library consisting of 1,123 single-segment substitution lines (SSSLs) in the same genetic background of an elite rice variety Huajingxian74 (HJX74) was evaluated for heading date. From this library, the SSSL W05-1-11-5-16-2-5 with the substituted interval of PSM103—RM348-OSR15-PSM382-RM131-RM127—RM280 was found having a gene, which stably performed extreme late heading date which performed stable and late heading in the different environments of Shandong, Guangdong, and Hainan. To map the gene governing heading date, the SSSL W05-1-11-5-16-2-5 was crossed with the recipient HJX74 to develop an F2 segregating population. The distribution of late and early heading plants in this population fitted a segregation ratio of 3:1, indicating the late heading was controlled by a dominant gene. The gene locus for heading date was tentatively designated as qHD4-1. Using a random sample of 460 individuals from the F2 segregation population, the qHD4-1 locus was mapped between two SSR markers RM3335 and RM17572, with genetic distances of 0.1 and 0.2 cM, respectively. For fine mapping of qHD4-1, a large F2:3 segregating population of 3,000 individuals were developed from F2 plants heterozygous in the RM3335-RM17572 region. Recombinants analyses further mapped qHD4-1 to an interval of 20.7-kb-bounded WB05 and the WB06. Sequence analysis of this 20.7-kb region revealed that it contains three open reading frames (ORFs), encoding wall-associated receptor kinase-like 5, putative F-box domain containing protein, and putative arogenate/prephenate dehydratase. Of them, ORF1, predicting to encode serine/threonine kinase, is considered the most likely as the candidate gene. The genetic and physical map of the qHD4-1 locus will be very useful in molecular cloning of the qHD4-1gene.  相似文献   

16.
To facilitate resistance gene characterization in the present study, the pathogenicities of newly collected blast isolates from rice fields in the Philippines were characterized using international blast differential varieties consisting of 31 monogenic lines that target 24 resistance genes. To classify and designate the blast isolates, we used a new international blast designation system, which has been proposed as a suitable naming system for comparing blast races among different studies. A total of 23 rice blast isolates collected from the Philippines were classified into 16 pathotypes, which showed reaction patterns different from those seen in the standard isolates. Among the blast pathotypes, 11 had differentiating ability for four Pik alleles (Pik, Pik‐m, Pik‐h, and Pik‐p) and Pi1, whereas the standard blast isolates from the Philippines were not able to differentiate these genes. In addition, several blast isolates were avirulent to IRBLt‐K59, IRBL19‐A, and Lijiangxintuanheigu, although the standard differential blast isolates were virulent to these lines. Moreover, two blast isolates were virulent to a monogenic line, IRBL9‐W, which harbours Pi9 and was resistant to all standard differential blast isolates. By using the isolates avirulent to IRBL19‐A, Pi19(t) was successfully mapped in the centromeric region on chromosome 12 with simple sequence repeat markers RM27937 and RM1337. These markers are useful for marker‐assisted Pi19(t) introgression worldwide.  相似文献   

17.
18.
Resistance to the brown planthopper (BPH), Nilaparvata lugens Stål, a devastating sucking insect pest of rice, is an important breeding objective in rice improvement programs. Bph15, one of the 17 major BPH resistance genes so far identified in both cultivated and wild rice, has been identified in an introgression line, B5, and mapped on chromosome 4 flanked by restriction fragment length polymorphism markers C820 and S11182. In order to pave the way for positional cloning of this gene, we have developed a high-resolution genetic map of Bph15 by positioning 21 DNA markers in the target chromosomal region. Mapping was based on a PCR-based screening of 9,472 F2 individuals derived from a cross between RI93, a selected recombinant inbred line of B5 bearing the resistance gene Bph15, and a susceptible variety, Taichung Native 1, in order to identify recombinant plants within the Bph15 region. Recombinant F2 individuals with the Bph15 genotype were determined by phenotype evaluation. Analysis of recombination events in the Bph15 region delimited the gene locus to an interval between markers RG1 and RG2 that co-segregated with the M1 marker. A genomic library of B5 was screened using these markers, and bacterial artificial chromosome clones spanning the Bph15 chromosome region were obtained. An assay of the recombinants using the sub-clones of these clones in combination with sequence analysis delimited the Bph15 gene to a genomic segment of approximately 47 kb. This result should serve as the basis for eventual isolation of the Bph15 resistance gene.  相似文献   

19.
In our previous studies, a single segment substitution line (SSSL) W23-03-8-9-1 with substituted interval of PSM301-PSM306-PSM305-PSM304-RM3894-RM3372-RM569-RM231-RM545 on chromosome 3 has been found to comprise a gene for extremely early heading date. To map this gene, the SSSL W23-03-8-9-1 was crossed with the recipient Huajingxian (HJX74) to develop an F2 segregating population. The distribution of early and late heading plants in this population fitted a segregation ratio of 3: 1, indicating that early heading was controlled by a dominant gene. Using a random sample of 520 individuals from the F2 segregation population, the qHD3-1 locus was mapped between two SSR markers, RM3894 and RM3372, with genetic distances of 1.2 and 1.1 cM, respectively. For fine mapping of qHD3-1, a large F2: 3 segregating population was developed, with 6000 individuals from the F2 plants heterozygous in the RM3894 and RM3372 regions. The analysis of recombinants in the qHD3-1 region put the gene locus into an interval of 29.5 kb flanked by the left marker 3HD8 and the right marker 3HD9. Sequence analysis of this fragment predicted eight open reading frames. One of them, ORF8, with its molecular function predicted to encode ribonuclease III activity and RNA binding, is considered the most interesting candidate gene.  相似文献   

20.
Genetic control of the synthesis of high gamma-tocopherol (gamma-T) content in the seed oil of safflower (Carthamus tinctorius L.) and development of highly reliable molecular markers for this trait were determined through molecular tagging and candidate gene approaches. An F2 population was developed by crossing the high gamma-T natural mutant IASC-1 with the CL-1 line (standard, high alpha-T profile). This population segregated for the partially recessive gene Tph2. Bulked segregant analysis with random amplified polymorphic DNA (RAPD) and microsatellite (SSR) markers revealed linkage of eight RAPD and one SSR marker loci to the Tph2 gene and allowed the construction of a Tph2 linkage map. RAPD fragments closest to the Tph2 gene were transformed into sequence-characterized amplified region markers. A gamma-T methyltransferase (gamma-TMT) locus was found to co-segregate with Tph2. The locus/band was isolated, cloned and sequenced and it was confirmed as a gamma-TMT gene. A longer partial genomic DNA sequence from this gene was obtained. IASC-1 and CL-1 sequence alignment showed one non-synonymous and two synonymous nucleotide mutations. Intron fragment length polymorphism and insertion-deletion markers based on the gamma-TMT sequence diagnostic for the Tph2 mutation were developed and tested across 22 safflower accessions, cultivars, and breeding lines. The results from this study provide strong support for the role of the gamma-TMT gene in determining high gamma-T content in safflower and will assist introgression of thp2 alleles into elite safflower lines to develop varieties with improved tocopherol composition for specific market niches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号