首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Two types of experiments were conducted to determine the relationship of changes in blood luteinizing hormone (LH) and testosterone in bulls given prostaglandin F (PGF). Episodic surges of LH and testosterone occurred in tandem, apparently at random intervals, on the average once during the 8-hr period after bulls were given saline. In contrast, after sc injection of 20 mg PGF, blood serum testosterone increased synchronously to a peak within 90 minutes four-fold greater than pre-injection values, and the testosterone surges were prolonged about three-fold compared to those in controls. Each of the PGF-induced surges of testosterone was preceded by a surge of blood serum LH which persisted for about 45 minutes and peaked at about 3 ng/ml. In a second experiment, PGF was infused (iv, 0.2 mg/min) for 20 hr; blood plasma testosterone increased from 7.0 ± 0.6 to 16.0±1.5 ng/ml within 2.5 hr and remained near this peak for 10 hr. Then testosterone gradually declined to about 9 ng/ml at the conclusion of the 20-hr infusion. These changes in testosterone were paralleled by similar changes in blood plasma LH, although LH declined 3 hr earlier than testosterone. Random episodic peaks of blood plasma LH and testosterone typical of untreated bulls resumed within 8 hr after conclusion of PGF infusion. In both experiments, the surge of testosterone after PGF was preceded by increased blood LH. We conclude that increased LH after administration of PGF probably caused the increased testosterone. However the mechanisms of these actions of PGF remain to be determined.  相似文献   

2.
Prostaglandin F (PGF) was measured by immunoassay in plasma and milk of four cows (six experiments). After 30 mg PGF im, plasma PGF peaked at 15 minutes (2.4 ± 0.7 ng/ml) and declined toward basal values by 3 hours; maximum milk PGF (0.91 ± 0.12 ng/ml) occurred at 1 hour. The average excretion rate in milk was 2.9 μg/day 0.9 μg (0.003%) of which was due to the 30 mg PGF injected. In six non-pregnant control cows, daily changes of milk PGF and progesterone were not consistently related.  相似文献   

3.
Two experiments were conducted, the first to compare sperm output and the second to determine serum testosterone in rabbits given PGF2α or PGE2. In the first, six rabbits were ejaculated twice each Monday, Wednesday and Friday for 5 weeks. Each rabbit was given subcutaneously (sc) each of the following treatments five times: 1) saline, 2) 5 mg PGF2α and 3) 5 mg PGE2. Treatments were given, half at 4 hr and half at 2 hr before first ejaculations. Both PGF2α and PGE2 caused increased (50% and 84%) sperm content of first ejacula, without significantly altering characteristics of second ejacula. The extra sperm in first ejacula was a function of increased sperm density, because seminal volume was unaltered.In the second experiment, 15 rabbits were bled at 0.5-hr intervals for 9 hr and given (sc): 1) saline at 1 and 3 hr (n=4), 2) 2.5 mg PGF2α at 1 and 3 hr (n=4), 3) 2.5 mg PGE2 at 1 and 3 hr (n=4) or 4) 5 mg PGF2α at 1 hr after the onset of blood sampling. In saline-treated controls, episodic surges of testosterone occurred on the average every 5 hours. After the injection of 2.5 or 5.0 mg PGF2α, serum testosterone began to rise at 0.5 hr, peaked (8 to 13 ng/ml) at 1 hr and approached a nadir (0.5 ng/ml) within 4 hours. The second injection of 2.5 mg PGF2α failed to significantly affect serum testosterone. PGE2 treatment was followed by significantly depressed serum testosterone; only 1 of these 4 rabbits had any surge of testosterone for the 8 hr after treatment. In conclusion, PGF2α and PGE2 both increased sperm output, but PGF2α increased serum testosterone while PGE2 depressed serum testosterone. Thus, the sperm output effect of these prostaglandins probably is independent of the acute changes in testosterone secretion.  相似文献   

4.
The susceptibility of induced corpora lutea (CL) of prepuberal gilts and spontaneously formed CL of mature gilts to prostaglandin F (PGF) luteolysis was studied. Prepuberal gilts (120 to 130 days of age) were induced to ovulate with Pregnant Mare Serum Gonadotropin and Human Chorionic Gonadotropin (HCG). The day following HCG was designated as Day 0. Mature gilts which had displayed two or more estrous cycles of 18 to 22 days were used (onset of estrus = Day 0). Gilts were laparotomized on Day 6 to 9, their CL marked with sterile charcoal and totally hysterectomized. On Day 20, gilts were injected IM with either distilled water (DW), 2.5 mg PGF or 5.0 mg PGF. An additional group of prepuberal gilts was injected with 1.25 mg PGF, a dose of PGF equivalent, on a per kilogram body weight basis, to the 2.5 mg PGF dose given to the mature gilts. The percentages of luteal regression on Day 27 to 30 for mature and prepuberal gilts given DW, 2.5 mg PGF and 5.0 mg PGF were 0.0 vs 4.4, 43.5 vs 96.8 and 47.7 vs 91.6, respectively; the percentage of luteal regression for the prepuberal gilts given 1.25 mg PGF was 75.1. These results indicate that induced CL of the prepuberal gilt were more susceptible to PGF luteolysis than spontaneously formed CL of the mature gilt and that pregnancy failure in the prepuberal gilt could be due to increased susceptibility of induced CL to the natural luteolysin.  相似文献   

5.
Vehicle or 8 or 16 mg of PGF per 58 kg body weight was given intramuscularly to intact, hysterectomized or ovariectomized 90–100 day pregnant ewes in three separate experiments. Both doses of PGF increased PGF in ovarian venous plasma compared with controls at 72 hr post treatment in intact (P≤0.05) but did not in hysterectomized (P≥0.05) 90–100 day pregnant ewes. Concentrations of PGE in ovarian venous blood of intact ewes did not differ (P≥0.05) between treatment groups and were equivalent to concentrations of PGE determined in uterine venous plasma. PGE was decreased in ovarian venous plasma by PGF in hysterectomized ewes (P≤0.07). PGE in uterine venous plasma averaged 6 ng/ml over the 72-hr treatment period in intact and ovariectomized 90–100 day pregnant ewes and was 12 fold greater (P≤0.05) than PGF which averaged 500 pg/ml in uterine venous plasma. Both PGF and PGE increased (P≤0.05) by 64 hr in uterine venous plasma of the 8 mg PGF — treated intact pregnant ewes. A significant quadratic increase (P≤0.05) was observed for PGF and PGE in the vehicle and both PGF treatment groups of intact ewes at the end of the 72-hr sampling period. It is concluded that the uterus and ovaries secrete significant quantities of PGE but little PGF during midgestation. In addition, PGF increased uterine secretion of PGE . PGE may be a placental stimulator of ovine placental secretion of progesterone or PGE may protect placental steroidogenesis from actions of PGF.  相似文献   

6.
Henderson and McNatty (Prostaglandins 9:779, 1975) proposed that LH from the preovulatory LH surge attached to receptors on luteal cells and that this attachment might protect the early corpus luteum from PGF induced luteolysis. To test this hypothesis, experiments were performed on heifers at day 10–12 of the cycle. Both jugular veins were catheterized and infusions of either saline (0.64 ml/min) or LH-NIH-B9 (10 μg/min; 0.64 ml/min) were given. Saline infusions were from 0–12 h; LH infusions were for 10 h and were preceded by a 2 h saline infusion. All animals were given 25 mg PGF im at 6 h (6 h into the saline infusion and 4 h into the LH infusion). Blood samples were taken at 0.5 h, 1 h and 4 h intervals from 0–12, 13–18 h and 22–24 h respectively. Serum was assayed for LH and progesterone by radioimmunoassay methods. Two animals received saline and two received LH in each experiment. Eact treatment was replicated 6 times. LH infusion resulted in a mean serum LH of 57 ng/ml compared to 0.90 ng/ml in saline infused animals. This elevation of LH did not alter PGF induced luteolysis as indicated by decline in serum progesterone. This experiment does not support the hypothesis that the newly formed corpus luteum is resistant to PGF because of protection afforded by the protestrus LH surge.  相似文献   

7.
Seven rabbits were ejaculated four times once weekly, and saline or 2.5 mg PGF tromethamine salt was injected sc at 4 and 2 hours or at 8 and 4 hours before ejaculation. First ejacula taken at 2 hours after the second injection of PGF contained 150% more (P.07) sperm than those after injections of saline. The comparable difference (60%) at 4 hours after PGF was not significant. PGF did not influence sperm output in second, third or fourth ejacula. After 28 daily sc injections of 5 mg PGF in another experiment, the fertility of four treated rabbits was as high as that for four controls. Without sexual preparation in seven bulls, im injections of 40 or 80 mg PGF 30 minutes before ejaculation resulted in 33% greater (P<.05) sperm output than that after injection of 0, 7 or 20 mg PGF, but the highest sperm output after PGF was 30% less (P<.05) than that after sexual preparation in the same bulls. We conclude that injections of PGF result in increased sperm output in ejacula taken without sexual preparation within 2 hours in rabbits and in bulls.  相似文献   

8.
The effect of prostaglandin PGF on the hCG stimulated and basal progesterone production by human corpora lutea was examined . hCG (40 i.u./ml) stimulated progesterone formation in corpora lutea of early (days 16–19 of a normal 28 day cycle), mid (days 20–22) and late (days 23–27) luteal phases. This stimulation was inhibited by PGF (10 μg/ml) in corpora lutea of mid and late luteal phases. PGF alone did not show a consistent effect on basal progesterone production. The inhibition of hCG stimulated progesterone production by PGF at times corresponding to luteolysis indicates a role for that prostaglandin in the process of luteolysis in the human corpus luteum.  相似文献   

9.
Prostaglandin F (PGF) 20 mg combined with urea 80 g was injected intra-amniotically in 20 patients to induce mid-trimester abortion. Abortion resulted in all subjects within 24 hours in a mean time of 12 hours 38 minutes (range 5 hours 50 minutes to 20 hours 45 minutes).Plasma sex steroids were evaluated before and hourly for 5 hours after the injection. A progressive decline in levels occurred with time. Decreases in plasma progesterone, estrone, estradiol and estriol were significant as soon as one hour after injection.Gastrointestinal side effects occurred with a greater frequency than when a comparable dose of PGF is given alone and 2 patients had small cervical lacerations requiring suture. Further studies are indicated to establish whether a lower dose of PGF will be associated with fewer side effects and be as effective.  相似文献   

10.
Normal cyclic dairy cattle (n=7) underwent a midventral laparotomy on day 17 of the estrous cycle and were fitted, ipsilateral to the CL, with: an electromagnetic flow transducer around the uterine artery (UA; n=5); catheters within the ovarian vein (OV; n=7) via a uterine branch of the ovarian vein, uterine branch of the ovarian artery (UBOA; n=5) and facial artery (FA; n=7). On day 18, blood samples were collected at 30 min intervals for 1 h prior to injection of estradiol-17β (E2; 3 mg) and 12 h post-E2. Uterine blood flow (UBF) was monitored continuously and plasma samples analyzed for PGF and PGFM. Exact locations of catheters in reproductive tracts were verified post-slaughter. Data were analyzed by method of least squares analysis of variance. Uterine blood flow (ml/min) increased above pre-E2 flow rates within 30 min post-E2 injection, peaked between 2.5 to 3.5 h and declined between 4 to 8.5 h. A small secondary rise in UBF occurred between 9 and 12 h. Regression analysis for concentrations (pg/ml) of PGF and PGFM in the OV (i.e., [OV]-[FA]) demonstrate a similar response as PGFM concentration in the FA in that all increased at approximately 3 h, peaked between 5 and 7 h and returned to near baseline levels by 9 to 10 h post-E2. Facial artery PGFM concentrations were positively correlated with uterine production of PGF (r=.66) and PGFM (r=.30), whereas FA PGF concentrations were not. In three of five cows, a difference in PGF was detected between UBOA and FA (UBOA > FA); supportive of a local countercurrent exchange between the uterine venous drainage and the ovarian artery.  相似文献   

11.
The concentration of prostaglandin F (PGF) has been measured in the peripheral plasma of normal rhesus monkeys ( ) during the final third of gestation, and in monkeys treated with dexamethasone or PGF2α after day 145 of pregnancy. Daily administration of PGF2α (10–15 mg/day im) reliably induced abortion within 3–6 days. However, dexamethasone (8 mg/day im from day 145) had no effect on the length of gestation.The concentration of PGF in the femoral venous plasma of untreated or dexamethasone-treated monkeys was highly variable, both in serial samples taken from the same animal and in samples taken from different animals at the same time of gestation. There was no indication of an effect of dexamethasone treatment on the plasma PGF levels, nor did the concentration of PGF increase during late pregnancy before spontaneous parturition. These results show that the myometrium of the pregnant rhesus monkey is highly sensitive to exogenous PGF2α during late gestation. However, a significant increase in the peripheral plasma concentration of PGF prior to the onset of labor was not observed.  相似文献   

12.
It has not been possible to demonstrate prostaglandin F2α (PGF2α) participation in primate luteolysis under conditions of systemic administration or of acute intraluteal injection. These study designs were hampered by the short biological half-life in the first instance and brevity of administration in the latter. In this study, luteolysis has resulted from chronic, intraluteal delivery of PGF2 α. Using the Alzet osmotic pump-cannula system, normally cycling rhesus monkeys were continuously infused, until menses occurred, with PGF2 α (10 ng/1/hr) directly into the corpus luteum (CL, n=6), into the stroma of the ovary bot bearing the corpus luteum (NCL, n=3), or subcutaneously (SC, n=5). An additional 5 monkeys received vehicle (V) into the corpus luteum. All experiments commenced 5–7 days after the preovulatory estradiol surge. Luteal function was assessed by the daily measurements of plasma progesterone, estradiol, and LH. Intraluteal PGF2α caused premature functional luteolysis in all monkeys, as reflected by a highly significant decline in circulating progesterone and estradiol and the early onset of menstruation, when compared to the other groups. V, NCL, and SC infusions had no effect on either circulating steroid levels or luteal phase lengths. None of the experimental groups showed any change in plasma LH concentrations. These are the first data to indicate that PGF2α can induce functional luteolysis in the primate, and the site of action appears to be the corpus luteum.  相似文献   

13.
Pregnant hamsters were administered (SC) prostaglandin or vehicle on the morning of the 4th day of pregnancy. Serum progesterone was significantly depressed (p<.01) at 0.5, 2, and 6 hours after treatment with 100 μg PGF. Serum progesterone levels were unchanged 2 hours and 6 hours after treatment with 100 μg PGF and 2 hours after treatment with 1 mg PGF. Progesterone levels were depressed to less than 1 ng/ml 6 hours after treatment with 1 mg PGF. The specific uptake of 3H-PGF in whole hamster corpora lutea was significantly depressed 2 hours and 6 hours following 100 μg PGF treatment. A 15% depression in specific uptake occurred 0.5 hour post-treatment. Treatment with 100 μg PGF resulted in no change. Administration of 1 mg PGF resulted in depressed 3H-PGF uptake at both 2 and 6 hours post-treatment.Prostacyclin (PGI2) treatment resulted in no change in either 3H-PGF specific uptake or serum progesterone 2 hours after 100 μg treatment SC. These parameters were both reduced approximately 30% 6 hours post-treatment. Treatment with 6-keto-PGF resulted in a complete lack of measurable 3H-PGF uptake and serum progesterone levels less than 1 ng/ml at both 2 and 6 hours after treatment with 1 mg SC.  相似文献   

14.
The role of prostaglandin F2α (PGF2α) in luteolysis in the non-human primate is poorly understood. We have recently reported that chronic PGF2α infusion to the corpus luteum via Alzet pump, induced premature, functional luteolysis in the rhesus monkey. In the present study we sought to determine the ovarian events leading to spontaneous luteolysis in the monkey. Rhesus monkeys underwent laparotomy during the early luteal (4–5 days after the preovulatory estradiol surge, PES), mid-luteal (7–9 days PES), and late luteal (10–14 days PES) phases or at the first day of menses (M). Concentrations of progesterone, estradiol, estrone, and 13, 14-dihydro-15-keto-PGF2α (PGFM) were measured in the ovarian venous effluents ipsilateral and contralateral to the ovary bearing the corpus luteum. Steroid levels in the ovarian vein on the corpus luteum side were significantly higher than the non-corpus luteum side throughout the cycle. PGFM levels were similar on both sides until the late luteal phase, when the effluent of the ovary bearing the corpus luteum contained significantly more PGFM (206±3) vs. 123±9 pg/ml, mean±sem); this disparity increased further at the time of menses (241±38 vs. 111±22 pg/ml). These data are the first to show an asymmetric secretion of PGFM in the ovarian venous effluent in the primate and suggest that PGF2α of ovarian and possibly of corpus luteum origin may be directly involved in luteal demise.  相似文献   

15.
Plasma levels of prostaglandin F (PGF) in female red-sided garter snakes (
) were measured at intervals after mating or exposure to males. PGF levels increased significantly within 15 minutes of mating and peaked 6–24 hr after mating. Females that did not mate, but received similar amounts of male courtship, had levels of PGF significantly lower than those of females that mated. These results extend previous findings that unmated female garter snakes injected with PGF exhibit sexual behavior characteristics of females that have mated. Together these data indicate that female garter snakes elaborate PGF in response to stimuli associated with mating and that PGF has a functional role in inducing post-mating declines in sexual behavior of this species.  相似文献   

16.
Prostaglandin F (PGF) was administered via a Foley catheter over a 12 hour period to 8 healthy volunteers awaiting laparoscopic sterilisation. The amount of PGF infused varied between 500 μg and 2000 μg every 2 hours for 6 doses. Plasma progestins and oestradiol 17β, and urinary estrogens and pregnanediol were assayed throughout the study period.There was no evidence of luteolysis in any patient although vaginal bleeding of varying duration occurred in all women within 36 hours of administration of PGF.  相似文献   

17.
Pulmonary rapidly-adapting-receptors (RARs) are sensory nerve endings whose afferent fibers can be recorded in the vagus nerve. RARs may play a role in reflex bronchoconstriction as seen in anaphylaxis. They can be stimulated by chemical mediators of anaphylaxis, such as prostaglandin F2α (PGF2α). PGF2α aerosol was administered to saline and bovine serum albumin (BSA)-treated guinea pigs while recording the activity of RARs. PGF2α (250 μg/ml) given for 7–13 minutes increased both tracheal pressure and nerve activity over that produced by saline exposure in untreated guinea pigs. PGF2α administered for three minutes (5–100 μg/ml) increased RAR nerve activity in a dose-related manner in the first five minutes of the experiment only in the BSA treated guinea pigs. Since changes in tracheal pressure did not show a significant dose-response relationship, the RARs responding to PGF2α seemed to be stimulated by a direct mechanism. No correlation was shown between tracheal pressure and RAR nerve activity during PGF2α treatment. Whereas, a significant correlation was found between tracheal pressure and RAR nerve activity during histamine aerosol treatment (r=0.985). Histamine aerosol (1 to 1000 μg/ml, 3 min.) increased intratracheal pressure for 3 out of 4 doses. RAR nerve activity increased significantly only at the highest dose. Therefore, a possible direct effect of PGF2α upon RARs exists while the effect of histamine seems dependent upon changes in airway pressure in the guinea pig.  相似文献   

18.
Plasma prolactin and F-prostaglandins (PGF) were measured in anesthetized male Sprague-Dawley rats before and at 15, 30, 45 and 60 minutes following i.v. injection of either PGF (4 mg/kg), chlorpromazine, 1 mg/kg or chlorpromazine (1 mg/kg) after pretreatment with i.p. indomethacin (2 mg/kg). Following PGF administration, plasma prolactin levels increased significantly only at 15 and 30 minutes in spite of extremely high PGF levels throughout 60 minutes. Besides the expected rise in plasma prolactin, chlorpromazine caused a transient but statistically significant increase in PGF. Indomethacin blocked the chlorpromazine-induced PGF rise but not prolactin increase. Animals stressed with ether anesthesia showed elevation of plasma prolactin, which was not blocked by indomethacin although PGF concentration fell. These results indicate that PGF can stimulate prolactin release. This effect does not appear to be physiologic since very high PGF levels are required. Furthermore, blockade of prostaglandin synthesis by indomethacin does not prevent the release of prolactin in response to chlorpromazine or stress. Our findings do not support a possible role of PGFs as intermediaries in prolactin release. However, it is possible that PGFs may work through other mechanisms not investigated in our study.  相似文献   

19.
Two experiments involving 44 cycling heifers were conducted to evaluate the luteolytic activity of a synthetic prostaglandin, AY 24366, and PGF. Activity was assessed by the decline in progesterone level of peripheral blood and occurrence of estrus. Progesterone concentrations of jugular blood plasma were quantified by radioimmunoassay. In the first experiment, 36 heifers were treated during diestrus with AY 24366 (A - 10mg intrauterine, B - 30mg intramuscular and C - 60mg im) or with PGF (D - 5mg, iu, E - 15mg im and F - 30mg im). Mean progesterone 0, 24 and 48 hours after treatment were A - 6.33, 5.55 and 5.06; B - 6.35, 2.79 and 3.92; C - 5.23, 2.69 and 3.91; D - 5.19, 1.50 and 1.51; E - 4.69, 0.85 and 0.61; F - 6.66, 0.80 and 0.48 ng/ml. Standing estrus was observed in 1, 1, 1, 4, 5 and 6 females in groups A, B, C, D, E and F respectively within 72 hours of treatment. PGF resulted in significantly (P<0.01) lower progesterone at 24 and 48 hours than AY 24366. However, im administration of the latter did significantly (P<0.05) lower progesterone at 24 hours. In the second trial six heifers were treated with either 120 or 180mg of AY 24366 im on day 12 of the cycle. Mean progesterone declined from 3.84 to 2.12 ng/ml (P<0.01) by 6 hours and to 1.59 ng/ml by 12 hours. Thereafter the decline was gradual and reached a level of 0.65 ng/ml at 72 hours. All six heifers showed standing estrus at 78±2 hours and were inseminated. Two in each group conceived. Doses of 15mg PGF and 120mg AY 24366 were effective in causing luteal regression, however, the latter caused respiratory discomfort for 5 to 10 minutes post treatment.  相似文献   

20.
The naturally-occurring metabolite of prostaglandin F, 15-keto prostaglandin F (15-keto PGF), elicited rapid and sustained declines in serum progesterone concentrations when administered to rhesus monkeys beginning on day 22 of normal menstrual cycles. Evidence for luteolysis of a more convincing nature was obtained in studies where a single dose of 15-keto PGF was given on day 20 of ovulatory menstrual cycles in which intramuscular injections of hCG were also given on days 18–20; serum progesterone concentrations fell precipitously in monkeys within 24 hours following intramuscular administration of 15-keto PGF. However, corpus luteum function was impaired in only 4 of 11 early pregnant monkeys when 15-keto PGF was administered on days 30 and 31 from the last menses, a time when the ovary is essential for the maintenance of pregnancy. Gestation failed in 2 additional monkeys 32 and 60 days after treatment with 15-keto PGF, but progressed in an apparently normal manner in the remaining 5 animals. Two pregnant monkeys treated with 15-keto PGF on day 42 from the last menstrual period, a time when the ovary is no longer required for gestation, continued their pregnancies uneventfully. Corpus luteum function was not impaired in 9 control monkeys which received injections of vehicle or hCG at appropriate times during the menstrual cycle or pregnancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号